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1 Introduction

In this paper we propose a new set valued solution concept for cooperative

games with transferable utility that we call the equal split-off set. This

solution is based on egalitarian considerations and it is inspired by the Dutta-

Ray algorithm for finding the constrained egalitarian solution for convex

games (cf. Dutta and Ray (1989)).

More precisely, we consider a world N of n players, N = {1, . . . , n}, who
believe in equal share cooperation. For each coalition S ⊆ N , let the real

number v(S) represent what the players in S can get if they cooperate (i.e.

v(S) is the worth or the value of coalition S). We assume that the entire set

of players will cooperate and deal with the question how the whole amount

of money v(N) generated by N should be divided among the players by

considering the following step-wise process.

First, one of the coalitions with maximal average worth, say T1, forms and

the players in T1 divide equally the worth v(T1). In step 2 one of the coalitions

in N \ T1 with maximal average marginal worth w.r.t. T1, say T2, forms,

joins costless T1, and divides equally the increase in value v(T2 ∪ T1)− v(T1)

among its members. The process stops when a partition of N of the form

hT1, . . . , TKi for some 1 ≤ K ≤ n is reached. This procedure generates a

payoff vector x ∈ Rn which we call an equal split-off allocation. The equal

split-off set is then defined as consisting of all equal split-off allocations.

Notice that the difference between the above procedure and the Dutta-

Ray algorithm for finding the constrained egalitarian solution for convex

games is that the corresponding selected coalitions need not to be the largest
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coalitions with the highest average worth.

The outline of this paper is as follows. After some preliminaries in Section

2, we introduce the equal split-off set for superadditive games in Section 3

and study some of its properties on this class of games. It turns out that any

allocation in the equal split-off set is efficient and individually rational, and,

in addition, it belongs to the equal division core of the corresponding game.

In Section 4 we concentrate on the class of convex games and prove that the

equal split-off set of a convex game consists of a unique allocation which is

the constrained egalitarian solution of that game. We conclude in Section 5

by pointing out some directions for further research.

2 Preliminaries

A TU-game is a pair (N, v), where N = {1, . . . , n} is a set of players and
v : 2N → R is a characteristic function on N satisfying v(∅) = 0. Often,

we will identify a game (N, v) with its characteristic function v. For any

coalition S ⊆ N , v(S) is the worth of coalition S, i.e. the members of S can

obtain a total payoff of v(S) by agreeing to cooperate.

A game v is called

• superadditive, if v(S∪T ) ≥ v(S)+v(T ) for all S, T ⊆ N with S∩T = ∅;

• convex, if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ⊆ N .

An allocation in a game v is a payoff vector x ∈ Rn. An allocation of

v(N) such that this amount is cleared is called efficient, and an allocation

x such that xi ≥ v (i) for each i ∈ N is called individually rational. The

imputation set I(v) of a game v is the set of all efficient and individually
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rational allocations, i.e.

I(v) =

(
x ∈ Rn |

X
i∈N

xi = v(N) and xi ≥ v(i) for each i ∈ N

)
.

Further, an allocation is called stable if any coalition S ⊆ N receives at

least its value v(S). The core C(v) of a game v is the set of all efficient and

stable allocations (Gillies, 1953), i.e. the set

C(v) =

(
x ∈ I(v) |

X
i∈S

xi ≥ v(S) for each S ∈ 2N
)
.

For each game v we have that C(v) is a subset of the equal division core

EDC(v) of v. The latter concept was introduced by Selten (1972) as the set½
x ∈ I(v) | @S ∈ 2N \ {∅} s.t. v (S)|S| > xi for all i ∈ S

¾
consisting of all efficient payoff vectors which cannot be improved upon by

the equal division allocation of any subcoalition.

An interesting element of the core C(v) of a convex game v (and, hence,

of EDC(v)) is the Dutta-Ray constrained egalitarian solution DR(v). This

solution consists of the unique allocation in C(v) that Lorenz dominates every

other core allocation. In their seminal paper, Dutta and Ray (1989) provide

an algorithm for generating DR(v) for each convex game v. We apply a

modified version of the Dutta-Ray algorithm to any superadditive game in

order to produce allocations in the equal split-off set of v.

3 The equal split-off set for superadditive games

Let v be a superadditive game and π = hT1, . . . , TKi be an ordered partition
of the player set N . We set v1 := v, and for each k ∈ {2, . . . ,K} we define
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the marginal game

vk : N \ ¡∪k−1
s=1Ts

¢→ R

by

vk(S) := vk−1 (Tk−1 ∪ S)− vk−1 (Tk−1) = v
¡¡∪k−1

s=1Ts

¢ ∪ S
¢− v

¡∪k−1
s=1Ts

¢
.

We call the partition π = hT1, . . . , TKi of N a suitable ordered partition

with respect to the game v if Tk ∈ argmax
S∈2N\(∪k−1

s=1Ts)\{∅}
vk(S)
|S| for all k ∈

{1, . . . , K}.
Given such a partition π, the equal split-off allocation for v generated by

π is the payoff vector x = (xi)i∈N ∈ Rn, where for all Tk ∈ π and all i ∈ Tk,

xi =
vk(Tk)
|Tk| .

Now we define the equal split-off set ESOS(v) of the game v as the set

{x ∈ Rn | ∃π s.t. x is an equal split-off allocation for v generated by π} .

In order to illustrate this solution concept, let us have a look at the

following examples:

Example 1 (2-person superadditive games) Let v be a game on the player

set N = {1, 2} satisfying v (1, 2) ≥ v (1) + v (2). Suppose without loss of

generality that v(1) ≥ v(2) and consider the following four cases:

(i) v (1) > 1
2
v (1, 2). Then h{1} , {2}i is the unique suitable ordered partition

and ESOS(v) = {(v (1) , v (1, 2)− v (1))};
(ii) v (2) < v (1) = 1

2
v (1, 2). In this case ESOS(v) =

©¡
1
2
v (1, 2) , 1

2
v (1, 2)

¢ª
corresponding to the suitable ordered partitions h{1} , {2}i and h{1, 2}i;
(iii) v (2) = v (1) = 1

2
v (1, 2). Also here ESOS(v) =

©¡
1
2
v (1, 2) , 1

2
v (1, 2)

¢ª
=

{(v (1) , v (2))} corresponding to the three suitable ordered partitions h{1} , {2}i,
h{2} , {1}i, and h{1, 2}i;
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(iv) v (1) < 1
2
v (1, 2). Then h{1, 2}i is the unique suitable ordered partition

and ESOS(v) =
©¡

1
2
v (1, 2) , 1

2
v (1, 2)

¢ª
.

Example 2 (Simple games) In a simple game v on player set N we have that

for all S ⊆ N , v(S) ∈ {0, 1} with v (∅) = 0 and v(N) = 1. A coalition S ⊆ N

is called minimal winning if v(S) = 1 and v(S0) = 0 for all S 0 ⊂ S ⊆ N .

Given a simple game v, we denote the set of all minimal winning coalitions

with a smallest cardinality by W s. In the case of simple games ESOS(v) =n
1
|S|e

S | S ∈ W s
o
because for any suitable ordered partition hT1, . . . , TKi we

will have T1 ∈ W s, and all players in T1 will receive 1
|T1| whereas the players

in N \ T1 will receive payoff 0.

Example 3 (Glove games) Let N = L ∪ R, L ∩ R 6= ∅ and the game v be

defined by v(S) = min {|S ∩ L| , |R ∩ L|} for each S ⊆ N . If |L| = |R|, then
ESOS(v) =

©¡
1
2
, . . . , 1

2

¢ª
that can be generated by many suitable ordered

partitions, where each element Tk of such a partition has the property that

|Tk ∩ L| = |Tk ∩R|. In case |L| > |R| each element x ∈ ESOS(v) satisfies

xi =
1
2
for each i ∈ R and for |R| elements of L, and xi = 0 for the other

elements of L. Conversely, all elements of this type belong to ESOS(v).

One can easily check that the egalitarian split-off set in Examples 1-3 is

a subset of the imputation set of the corresponding game. This fact turns

out to be true for all superadditive games as is shown in

Proposition 1 Let v be a superadditive game. Then ESOS(v) ⊆ I(v).

Proof. We have to prove that each allocation in ESOS(v) is efficient and

individually rational.

Take x ∈ ESOS(v) generated by a suitable ordered partition hT1, . . . , TKi.
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Then

X
i∈N

xi =
KX
k=1

|Tk| vk(Tk)

|Tk|

=
KX
k=1

|Tk|
v
¡∪k

s=1Ts

¢− v
¡∪k−1

s=1Ts

¢
|Tk|

=

KX
k=1

¡
v
¡∪k

s=1Ts

¢− v
¡∪k−1

s=1Ts

¢¢
= v(N),

i.e. x is efficient.

Take now an i ∈ N . We have to prove that xi ≥ v (i). Suppose i ∈ Tr for

some r ∈ {1, . . . , K}. Then

xi =
vr(Tr)

|Tr| =
v (∪r

s=1Ts)− v
¡∪r−1

s=1Ts

¢
|Tr|

≥ v
¡¡∪r−1

s=1Ts

¢ ∪ {i}¢− v
¡∪r−1

s=1Ts

¢
≥ v(i),

where the first inequality follows from the definition of Tr and the second

inequality from the superadditivity of v. Hence, x is individually rational.

We conclude that x ∈ I(v), ESOS(v) ⊆ I(v).

Our next proposition shows a monotonicity property of each suitable or-

dered partition of N with respect to a superadditive game.

Proposition 2 Let v be a superadditive game and let hT1, . . . , TKi be a suit-
able ordered partition of N w.r.t. v. Then

max
S∈2N\(∪k−1

s=1Ts)\{∅}

vk(S)

|S| ≥ max
S∈2N\(∪k

s=1Ts)\{∅}

vk+1(S)

|S|

for all k ∈ {1, . . . , K − 1}.
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Proof. By definition of Tk we have

v
¡∪k

s=1Ts

¢− v
¡∪k−1

s=1Ts

¢
|Tk| ≥ v

¡∪k+1
s=1Ts

¢− v
¡∪k−1

s=1Ts

¢
|Tk|+ |Tk+1| .

Moreover,

v
¡∪k+1

s=1Ts

¢− v
¡∪k−1

s=1Ts

¢
|Tk|+ |Tk+1| =

v
¡∪k+1

s=1Ts

¢− v(∪k
s=1Ts) + v(∪k

s=1Ts)− v
¡∪k−1

s=1Ts

¢
|Tk|+ |Tk+1| ,

implying that

v
¡∪k

s=1Ts

¢− v
¡∪k−1

s=1Ts

¢
|Tk| ≥ v

¡∪k+1
s=1Ts

¢− v(∪k
s=1Ts) + v(∪k

s=1Ts)− v
¡∪k−1

s=1Ts

¢
|Tk|+ |Tk+1| .

This inequality is equivalent to

¡
v
¡∪k

s=1Ts

¢− v
¡∪k−1

s=1Ts

¢¢ |Tk|+
¡
v
¡∪k

s=1Ts

¢− v
¡∪k−1

s=1Ts

¢¢ |Tk+1|
≥ ¡

v
¡∪k+1

s=1Ts

¢− v
¡∪k

s=1Ts

¢¢ |Tk|+
¡
v
¡∪k

s=1Ts

¢− v
¡∪k−1

s=1Ts

¢¢ |Tk| ,

which is at its turn equivalent to

¡
v
¡∪k

s=1Ts

¢− v
¡∪k−1

s=1Ts

¢¢ |Tk+1| ≥
¡
v
¡∪k+1

s=1Ts

¢− v
¡∪k

s=1Ts

¢¢ |Tk| .

We show next that the equal split-off set of a superadditive game is a

refinement of the equal division core of that game.

Theorem 1 Let v be a superadditive game. Then ESOS(v) ⊆ EDC(v).

Proof. Let x ∈ ESOS(v) be generated by the suitable ordered partition

hT1, . . . , TKi. Take S ∈ 2N \ {∅}. We have to prove that there is an i ∈ S

such that xi ≥ v(S)
|S| .
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Let m ∈ {1, . . . , K} be the smallest number such that Tm ∩ S 6= ∅. Then

v(S)

|S| ≤ v
¡¡∪m−1

s=1 Ts

¢ ∪ S
¢− v

¡∪m−1
s=1 Ts

¢
|S|

≤ v (∪m
s=1Ts)− v

¡∪m−1
s=1 Ts

¢
|Tm|

=
vm(Tm)

|Tm| = max
T∈2N\(∪m−1

s=1 Ts)\{∅}

vm(T )

|T | ,

where the first inequality follows from the superadditivity of v and the second

inequality from the definition of Tm. Note that xi = max
T∈2N\(∪m−1

s=1 Ts)\{∅}
vm(T )
|T | ≥

v(S)
|S| for each i ∈ Tm ∩ S. So, x ∈ EDC(v), ESOS(v) ⊆ EDC(v).

The next example provides a game for which the equal split-off set is a

strict subset of the equal division core.

Example 4 Let N = {1, 2, 3} and v be a glove game with L = {1, 2}
and R = {3}. Then EDC(v) =

©
x ∈ I(v) | x3 ≥ 1

2

ª
and ESOS(v) =©¡

1
2
, 0, 1

2

¢
,
¡
0, 1

2
, 1
2

¢ª
.

4 The equal split-off set for convex games

We start this section with a lemma that holds for arbitrary TU-games and

will play an important role when proving that the equal split-off set of a con-

vex game consists of a single allocation which is the Dutta-Ray egalitarian

solution of that game.

Lemma 1 Let v be a TU-game and let hT1, . . . , TKi be a suitable ordered par-
tition of N w.r.t. v by means of marginal games v1, . . . , vK. Let Tm+1, . . . , Tq

be a sequence of coalitions from the ordered partition such that vi (Ti) = α |Ti|
for each i ∈ {m+ 1, . . . , q}. Then vm+1

¡∪q
i=m+1Ti

¢
= α

Pq

i=m+1 |Ti|.
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Proof. Because vi (Ti) = α |Ti| for each i ∈ {m+ 1, . . . , q} we have

vm+1 (Tm+1) = α |Tm+1| ,
vm+1 (Tm+1 ∪ Tm+2)− vm+1 (Tm+1) = α |Tm+2| ,

. . .

vm+1
¡∪q

i=m+1Ti

¢− vm+1
¡∪q−1

i=m+1Ti

¢
= α |Tq| .

By summing up these equalities we obtain vm+1
¡∪q

i=m+1Ti

¢
= α

Pq

i=m+1 |Ti|.

Let hD1, . . . , DP i be the ordered partition of N according to the Dutta-

Ray algorithm for finding the constrained egalitarian solution DR(v) of a

convex game v. In each step p ∈ {1, . . . , P} of the Dutta-Ray algorithm Dp

is the largest element in the set

Mp := arg max
S∈2N\{∪p−1

i=1 Di}\{∅}
v
¡
S ∪ ¡∪p−1

i=1Di

¢¢− v
¡¡∪p−1

i=1Di

¢¢
|S| .

We recall that for each p ∈ {1, . . . , P} the set Mp has a lattice structure

w.r.t. the partial ordering of inclusion. So,

Dp = ∪ {D | D ∈Mp} . (#)

For further use we introduce also the following notation:

Dp−1 : = ∪p−1
r=1Dr;

vDp−1(S) : = v
¡
S ∪Dp−1

¢− v
¡
Dp−1

¢
for each S ∈ 2N\Dp−1 ;

dp : =
v
¡
Dp ∪

¡∪p−1
r=1Di

¢¢− v
¡¡∪p−1

r=1Di

¢¢
|Dp| .

The next proposition will play a key role in this section.
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Proposition 3 Let hD1, . . . , Dp, . . . , DP i be the ordered partition of N ob-

tained by applying the Dutta-Ray algorithm to a convex game v. Let T Ã Dp

be such that vDp−1(T ) = dp |T |, and let T = Dp−1 ∪ T . Then

(1) max
S∈2N\T \{∅}

v
T
(S)

|S| = dp;

(2) argmax
S∈2N\T \{∅}

v
T
(S)

|S| ⊆ 2Dp\T .

Proof. Take S ∈ 2N\T \ {∅}. Then

vT (S) = v
¡
S ∪ T

¢− v(T )

=
¡
v
¡
S ∪ T

¢− v
¡
Dp−1

¢¢− ¡v ¡T ¢− v
¡
Dp−1

¢¢
= vDp−1(S ∪ T )− vDp−1(T )

= vDp−1(S ∪ T )− dp |T | .

Further, since Dp is the largest set in N \ Dp−1 with average worth dp,

and |S ∪ T | = |S|+ |T |, we have

vDp−1(S ∪ T ) < dp (|S|+ |T |) if S \Dp 6= ∅, and
vDp−1(S ∪ T ) ≤ dp (|S|+ |T |) if S ⊆ Dp,

implying that
v
T
(S)

|S| < dp if S \Dp 6= ∅, and
v
T
(S)

|S| ≤ dp if S ⊆ Dp.

To conclude that (1) and (2) hold we have only to show still that there

is S∗ ∈ 2Dp\T such that vT (S
∗) = dp |S∗|.

Since (#) holds we can take an A ∈ argmax
S∈2N\Dp−1\{∅}

v
Dp−1 (S)

|S| and

A * T . Then A ⊆ Dp. If A ∩ T = ∅, we take S∗ = A; otherwise we take
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S∗ = A \ T . So, S∗ ∈ 2Dp\T , and

vT (S
∗) = v

¡
S∗ ∪ T

¢− v(T )

=
¡
v
¡
S∗ ∪ T

¢− v
¡
Dp−1

¢¢− ¡v ¡T ¢− v
¡
Dp−1

¢¢
=

¡
v
¡
(S∗ ∪ T ) ∪Dp−1

¢− v
¡
Dp−1

¢¢− ¡v ¡T ∪Dp−1
¢− v

¡
Dp−1

¢¢
= vDp−1(S

∗ ∪ T )− vDp−1(T )

= dp (|S∗|+ |T |)− dp |T | = dp |S∗| ,

where the last equality follows from S∗∪T = A∪T ∈ argmax
S∈2N\Dp−1\{∅}

v
Dp−1 (S)

|S| ,

and |S∗ ∪ T | = |S∗|+ |T |.

We show now that the equal split-off set of a convex game consists of a

unique allocation which is precisely the constrained egalitarian solution of

that game.

Theorem 2 Let v be a convex game. Then ESOS(v) = {DR(v)}.

Proof. Let hD1, . . . , DP i be the ordered partition of N according to the

Dutta-Ray algorithm for finding the constrained egalitarian solutionDR(v) =

(DRi(v))i∈N of v. Let hT1, . . . , TKi be a suitable ordered partition of N with

respect to v for finding the allocation x = (xi)i∈N in the equal split-off set

ESOS(v) of v. We have to show that x = DR(v).

We prove by induction that for each k ∈ {1, . . . ,K} the following property
(Pk) holds:

(Pk) There is a unique sk ∈ {1, . . . , P} such that ∪k
r=1Tr ⊆ ∪sk

p=1Dp, Tk ⊆
Dsk , and xi = DRi(v) for each i ∈ ∪k

r=1Tr.

First, note that (P1) holds with s1 = 1. Indeed T1 ⊆ D1 since T1,D1 ∈M1

and D1 = ∪ {D | D ∈M1}, so xi = DRi(v) = d1 for each i ∈ T1.
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Further, we prove that (Pq) implies (Pq+1) for each q ∈ {1, . . . , K − 1}.
So suppose that (Pq) holds. Then we show (Pq+1) by distinguishing two

cases:

(a) ∪q
r=1Tr = ∪sq

p=1Dp. In this case Tq+1,Dsq+1 ∈ M q+1 and
¯̄
Dsq+1

¯̄ ≥
|Tq+1|. Therefore, (Pq+1) holds with sq+1 = sq+1, and Tq+1 ⊆ Dsq+1 because

Dsq+1 = ∪ {D | D ∈M q+1}. Hence, xi = DRi(v) for each i ∈ ∪q+1
r=1Tr because

of (Pq) and the fact that xi = DRi(v) = dq+1 for each i ∈ Tq+1.

(b) ∪q
r=1Tr ( ∪sq

p=1Dp. We prove that in this case (Pq+1) holds with

sq+1 = sq and Tq+1 ⊆ Dsq .

Letm < q be such that ∪m
r=1Tr = ∪sq−1

j=1 Dj and for each i ∈ {m+ 1, . . . , q},
Ti ( Dsq and vDsq−1

(Ti) = dsq |Ti|.
Then for T = ∪q

i=m+1Ti ( Dsq we have by Lemma 1 that vDsq−1
(T ) =

dsq |T |. Now we apply Proposition 3 with sq in the role of p, obtaining that

Tq+1 ⊆ Dsq and vDsq−1
(Tq+1) = dsq |Tq+1|. Therefore, (Pq+1) holds with

sq+1 = sq and Tq+1 = Dsq , and xi = DRi(v) for each i ∈ ∪q+1
r=1Tr.

Since (Pk) holds for each k ∈ {1, . . . , K}, we conclude that each suitable
ordered partition hT1, . . . , TKi of N w.r.t. a convex game v is a refinement of

the Dutta-Ray partition hD1, . . . , DP i of v. Specifically, there exist l1, . . . , lP
such thatD1 = ∪l1

r=1Tr, D2 = ∪l2
r=l1+1

Tr, . . . ,DP = ∪lP
r=lP−1+1Tr, with lP = K,

implying that ESOS(v) = {DR(v)}.

5 Concluding remarks

In Section 3 of this paper the equal split-off set has been introduced on

the class of superadditive games as a new set valued solution concept based

on egalitarian considerations. We have proved that for any superadditive

game the new solution concept contains only allocations which are efficient
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and individually rational, and that it is a refinement of the equal division

core. Further, in Section 4, we have proved that for each convex game the

equal split-off set consists of a single allocation which is the Dutta-Ray con-

strained egalitarian solution for that game. When the game v is not su-

peradditive we can extend the equal split-off set to arbitrary TU-games by

defining ESOS(v) := ESOS(v), where v denotes the superadditive cover of

the game v and study properties of the equal split-off set in this more general

setting. Another interesting topic for further research is the relation between

the equal split-off set and the constrained egalitarian solution of Dutta and

Ray for superadditive games, when the latter solution exists. Further inves-

tigations should be done for clarifying possible relations between the equal

split-off set and existing egalitarianism-based solution concepts for arbitrary

TU-games such as the strong-constrained egalitarian allocations (cf. Dutta

and Ray (1991)), the egalitarian set, the preegalitarian set and the stable

egalitarian set (cf. Arin and Inarra (2002)) and for balanced games like the

Lorenz solution (cf. Hougaard et al. (2001)), the Lorenz stable set and the

egalitarian core (cf. Arin and Inarra (2001)).
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