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Abstract

In this paper the structure of the set of equilibria for two person multicri-

teria games is analysed. It turns out that the classical result for the set of

equilibria for bimatrix games, that it is a finite union of polytopes, is only

valid for multicriteria games if one of the players only has two pure strate-

gies. A full polyhedral description of these polytopes can be derived when

the player with an arbitrary number of pure strategies has one criterion.
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1. Introduction

Multicriteria strategic form games were first introduced by Blackwell (1956). The

difference between these games and ordinary strategic form games is that a player

in a strategic form game only has one criterion (his payoff) to evaluate the outcome

of the game (i.e. the profile of strategies chosen by the players of the game) while in

a multicriteria game each player may have an arbitrary number of criteria (payoffs)

that are intrinsically uncomparable with each other.

Nash introduced the notion of an equilibrium for non-cooperative games in strategic

form in his papers in 1950 and 1951. Since then the equilibrium concept has been

and still is being studied extensively. One of the topics in this investigation is the

structure of the set of equilibria of a bimatrix game. (A bimatrix game is a non-

cooperative game in strategic form with two players.) Over the last decades a fair

number of papers has been published on this topic. It turned out that the set of

equilibria of a bimatrix game is a finite union of polytopes. Proofs of this fact can

for example be found in Winkels (1979), Jansen (1981) and Jansen and Jurg (1990).

From a computational point of view these results are quite important. The main

reason for this is that the original proof of Nash of the existence of equilibria is

not constructive. It shows that the assumption that a non-cooperative game does

not have an equilibrium leads to a contradiction. It does therefore not tell you

how to find an equilibrium for a given game. Also the basic inequalities in the

definition of the equilibrium concept are not of much help. In general (without

further assumptions on the structure of the game) these inequalities are polynomial

and it is not clear how one can actually calculate one single solution given these

inequalities, let alone how to find a parametric representation of the complete set of
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equilibria.

In the case of bimatrix games life is much simpler. For such a game it is possible to

show that the set of equilibria is a finite union of polytopes and it is moreover possible

to derive a polyhedral description of each of these polytopes. Hence, by using some

theory of linear inequalities, it is possible to compute all extremal points of such

a polytope and in this way find a parametric description of the set of equilibria.

There are also a number of exact algorithms for the computation of one specific

equilibrium, such as the algorithm of Lemke and Howson (1964), that are based on

the special structure of the set of equilibria for bimatrix games.

In this paper we investigate to what extent the results on the structure of the

set of equilibria of a bimatrix game can be carried over to the equilibrium concept

introduced by Shapley (1959) for two person multicriteria games. Unfortunately our

results are on the negative side of the spectrum. First of all we provide an example

to show that the set of equilibria may have a quadratic component whenever both

players have three or more pure strategies and one of the players has more than

one criterion. Secondly we show that the set of equilibria is indeed a finite union

of polytopes if one of the players has two pure strategies. The actual polyhedral

description of these polytopes cannot be computed directly though, unless the player

with an arbitrary number of pure strategies has exactly one criterion.

Notation For a finite set F , the number of elements of F is denoted by |F | and

∆(F ) denotes the set of probability vectors on F . For an element x ∈ ∆(F ),

the carrier of x is the set {i ∈ F | xi > 0}. The element ei of ∆(F ) denotes

the probability vector that puts all weight on i ∈ F . For two vectors x, y ∈ IRn

〈x, y〉 :=
∑n
i=1 xi · yi is the inner product of x and y, and if xi < yi holds for all
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i = 1, . . . , n we say that y dominates x. We write x ≤ y if xi ≤ yi for all i = 1, . . . , n.

2. Preliminaries

In a (two-person multicriteria) game the first player has a finite set M of pure

strategies and player two has a finite set N of pure strategies. The players are

supposed to choose their strategies simultaneously. Given their choices m ∈ M and

n ∈ N , player one has a finite set S of criteria to evaluate the pure strategy pair

(m,n). For each criterion s ∈ S the evaluation is a real number (As)mn ∈ IR. Of

course we also have an evaluation (Bt)mn ∈ IR for each criterion t ∈ T of player two.

Thus the game is specified by the two sequences

A := (As)s∈S and B := (Bt)t∈T

of M ×N-matrices

As := [(As)mn](m,n)∈M×N and Bt := [(Bt)mn](m,n)∈M×N.

Despite the fact that the players may have more than one criterion, we will refer to A

and B as payoff matrices. The game is denoted by (A,B). The players of the game

are also allowed to use mixed strategies. Given such mixed strategies p ∈ ∆(M)

and q ∈ ∆(N) for players one and two resp, the vectors

pAq := (pAsq)s∈S and pBq := (pBtq)t∈T

are called payoff vectors (for players one and two, resp.).

BEST REPLIES AND EQUILIBRIA

In the context of bimatrix games (games in which each of the two players has exactly

one criterion) the equilibrium concept of Nash is one of the best known ways to solve
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these games. A very convenient way to define equilibria, certainly when one wants

to analyze their structure, is by means of best replies.

An analogous approach can be used in the case of multicriteria games. Shapley

(1959) first introduced the notion of equilibrium for this type of games. His definition

is a direct generalization of the equilibrium concept for strategic form games with

only one criterion. In order to describe this definition we need to generalize the

notion of a best reply.

Definition 1. Let q ∈ ∆(N) be a strategy of player two. A strategy p ∈ ∆(M)

of player one is called a best reply of player one against q if there is no other strategy

p′ ∈ ∆(M) such that the payoff vector p′Aq dominates the payoff vector pAq. The

set of best replies of player one against q is denoted by BR1(q).

It almost goes without saying that we also can define best replies against a strategy

p and the set BR2(p) for player two. Now the definition of equilibrium runs as

follows.

Definition 2. A strategy pair (p∗, q∗) is called an equilibrium if p∗ is a best reply

of player one against q∗ and q∗ is a best reply of player two against p∗.

Remark It is also possible to define a more restrictive notion of equilibrium based

on the dominance relation on IRn defined by ”x dominates y if xi ≥ yi for all i, and

at least one of these inequalities is strict”. Since this relation does not necessarily

yield a closed set of equilibria (see e.g. Borm, Tijs, and van den Aarssen (1988)), we

decided to use the weaker version. Nevertheless, proofs similar to the ones presented

in this paper show that also in this case we can find a decomposition of the set of

equilibria into a number of relative interiors of polytopes.
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3. Stability regions and structure

In case of bimatrix games, the proof that the set of equilibria is a finite union of

polytopes is based on the fact that this set of equilibria can be chopped up in a

finite number of sets. Then each of these sets can easily be shown to be a polytope.

It turns out to be worthwhile to execute this procedure for multicriteria games as

well.

SHAPLEY’S RESULT

First of all we need the result of Shapley (1959). Essentially Shapley (1959) provides

a link between best replies and linear programs. In order to describe this link we

need to introduce some terminology.

Recall that for each criterion t ∈ T the real number eiBtej is the payoff of player

two according to his criterion t and Bt is the matrix whose entry on place i, j is

this number eiBtej. Now suppose that player two decides to assign a weight µt ≥ 0

to each criterion t ∈ T available to him (we assume that
∑
t∈T µt equals one). The

vector µ = (µt)t∈T is called a weight vector. According to the criterion associated

with this weight vector the evaluation of the outcome (ei, ej) is the real number

∑
t∈T

µteiBtej = ei

(∑
t∈T

µtBt

)
ej.

So, given the weight vector (µt)t∈T , player two in effect uses the matrix

B(µ) :=
∑
t∈T

µtBt

to calculate his payoff. With this terminology, the result of Shapley (1959) can be

rephrased as follows.
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Lemma 1. Let p be a strategy of player one and let q be a strategy of player two.

Then the following two statements are equivalent.

(i) q is a best reply of player two against p

(ii) there exists a weight vector µ := (µt)t∈T such that q is a best reply of player two

against p according to the criterion associated with B(µ).

In words, the Lemma states that q is a best reply of player two against p if and only

if player two can assign to each criterion t ∈ T a non-negative weight µt such that

the resulting weighted criterion is maximal in q, given that player one plays p.

THE STRUCTURE OF THE SET OF EQUILIBRIA

In this section we will construct a decomposition of the set of equilibria of the game

(A,B) into a finite number of sets that are easier to handle. This decomposition is

in fact the multicriteria equivalent of the technique that is used to prove that the

set of equilibria of a bimatrix game is a finite union of polytopes. In order to give

the reader some background concerning the line of reasoning employed here, we will

first give an informal discussion of this technique.

Suppose that we have a bimatrix game and a subset I of the set of pure strategies

of player one. Then we can associate two areas with this set, one in the set of mixed

strategies of player one and one in the set of mixed strategies of player two. For

player one, this is the set ∆(I) of mixed strategies that put all weight exclusively on

the pure strategies in I , and for player two this is the set U(I) of mixed strategies

of player two against which (at least) all strategies in ∆(I) are best replies. (Such

a set U(I) is called a stability region.) Obviously we can do the same for a subset

J of the set of pure strategies of player two.

Now the crucial point is that (for a bimatrix game) all these sets ∆(I), ∆(J), U(I),
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and U(J) are polytopes (and for each of these polytopes it is even possible to find

a describing system of linear inequalities). So, also the set

(∆(I)∩ U(J))× (∆(J)∩ U(I))

is a polytope. Moreover there is only a finite number of such sets and it can be

shown that their union equals the set of equilibria of the given bimatrix game.

Although the sets U(I) and U(J) not necessarily need to be polytopes in the mul-

ticriteria case, we can still carry out this procedure for two person multicriteria

games.

To this end, let v be an element of IRn and let P be a polytope in IRn. The vector

v is said to attain its maximum over P in the point x ∈ P if

〈v, x〉 ≥ 〈v, y〉 for all y ∈ P.

Then we have the following well-known Lemma.

Lemma 2. Let v be a vector in IRn. Further, let P be a polytope in IRn and let

F be a face of P . If v attains its maximum over P in some relative interior point x

of F , then it also attains its maximum over P in any other point of F .

Now let I be a subset of M . Slightly abusing notation we write ∆(I) for the set

of strategies p ∈ ∆(M) whose carrier is a subset of I . Further, the stability region

U(I) (of player two) is defined as

U(I) := {q ∈ ∆(N) | ∆(I) ⊂ BR1(q)}.

Similarly we can define sets ∆(J) and U(J) for a subset J of N .
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Theorem 1. The set of equilibria of the game (A,B) equals the union over all

I ⊂M and J ⊂ N of the sets

(∆(I)∩ U(J))× (∆(J)∩ U(I)) .

Proof. (a) Assume that a strategy pair (p∗, q∗) is an element of a set (∆(I) ∩

U(J)) × (∆(J) ∩ U(I)) for some subset I of M and subset J of N . We will only

show that p∗ is a best reply against q∗.

Since q∗ is an element of U(I), we know that any strategy in ∆(I) is a best reply

against q∗. However, p∗ is an element of ∆(I) by assumption. Hence, p∗ is a best

reply against q∗.

(b) Conversely, let (p∗, q∗) be an equilibrium. Take I = C(p∗) and J = C(q∗). We

will show that p∗ is an element of ∆(I)∩ U(J).

Obviously p∗ is an element of ∆(I). So we only need to show that p∗ is also an

element of U(J). In other words, we need to show that each strategy q ∈ ∆(J) is a

best reply against p∗. To this end, take a q ∈ ∆(J). Since q∗ is a best reply against

p∗ we know by Lemma 1 that there exists a weight vector µ = (µt)t∈T such that q∗

is a best reply against p∗ according to the criterion associated with B(µ). In other

words, the vector p∗B(µ) attains its maximum over ∆(N) in q∗. However, since q∗

is an element of the relative interior of ∆(J), p∗B(µ) must also attain its maximum

in q by Lemma 2. Hence, q is a best reply against p∗ according to B(µ), and, again

by Lemma 1, q is a best reply against p∗. /

Clearly the sets ∆(I) and ∆(J) are polytopes for all subsets I of M and J of N . So,

from the previous Theorem it follows that the set of equilibria of the game (A,B)

is a finite union of polytopes as soon as the sets U(I) and U(J) are polytopes.

Unfortunately this need not be the case. In the next section we will provide a
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counterexample.

4. An Example

We will give a fairly elaborate analysis of the counterexample. This is done because

the calculations involved in the determination of best replies and stability regions

for this game are exemplary for such calculations in general.

There are two players in the game. Both players have three pure strategies. The

pure strategies of player one are called T,M, and B, the pure strategies of player

two are called L,C, and R. Further, player one has two criteria and player two has

only one criterion. The payoff for player two according to his criterion is always

zero. The payoff matrix A of player one is
(1, 1) (0, 0) (0, 0)

(0, 0) (4, 0) (0, 0)

(0, 0) (0, 0) (0, 4)

 .
Player one is the row player and player two is the column player. The first digit in

an entry gives the evaluation by player one of the occurence of that particular entry

according to his first criterion. The second digit gives the evaluation according to

his second criterion.

Since player two is completely indifferent it is immediately clear that a strategy pair

(p∗, q∗) is an equilibrium if and only if p∗ is an element of BR1(q∗). In other words,

the set of equilibria equals the graph of the best reply correspondence BR1. In order

to calculate this graph we will first compute the areas in the strategy space of the

second player where the best reply correspondence BR1 is constant. In other words,

we need to compute the stability regions of player two.

First of all note that if player two plays strategy q = (qL, qC, qR) and player one

plays his pure strategy eT , the payoff for player one is eTAq = (qL, qL). This is a
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point on the line x = y when plotted in the xy-plane. Similarly, eMAq = (4qC , 0)

is a point on the line y = 0 and eBAq = (0, 4qR) is a point on the line x = 0. Now

there are five possible situations as is depicted below.

-
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In situation I both eMAq and eBAq are dominated by eTAq. In situation II eTAq

dominates eBAq, but does not dominate eMAq. (Situation III is the symmetric

situation with the roles of the second and third pure strategy of player one inter-

changed.) In situation IV eTAq is itself undominated and dominates neither eMAq

nor eBAq, and V depicts the situation in which eTAq is dominated by some convex

combination of eMAq and eBAq.

Now if we calculate exactly where in the strategy space of player two these five
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situations occur we get the picture below. The boldface Roman numbers in the

various areas in this picture correspond to the Roman numbers assigned to the

situations depicted above. Notice that an area in the strategy space of player two

corresponding to one of the five situations above is necessarily of full dimension by

the graphics above. Further, one cannot jump from situation V to situations I, II

or III without crossing the area where situation IV occurs (except on the boundary

of the strategy space).

I

II III

IV

V
R C

L

Stability regions of player two

(4
5
, 0, 1

5
) (4

5
, 1

5
, 0)

The boundary line between areas I and II and areas III, IV and V is given by the

equality qL = 4qR. Similarly, qL = 4qC is the boundary between areas I and III and

areas II, IV and V.

Finally, it can be seen in the graphics above that the boundary between area V

and the others is exactly the set of strategies where eTAq is an element of the line

segment between eMAq and eBAq. This means that it is the set of strategies for
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which (qL, qL) satisfies the linear equation qRx+ qCy = 4qCqR. Hence it must be the

set of strategies that satisfy the quadratic equation

qLqR + qLqC = 4qCqR

(except the solution (qL, qC, qR) = (1, 0, 0) of this equation). This gives us enough

information to write down the stability regions of player two.

U({T}) = I ∪ II ∪ III ∪ IV

U({M}) = II ∪ IV ∪V

U({B}) = III ∪ IV ∪V

U({T,M}) = II ∪ IV

U({T,B}) = III ∪ IV

U({M,B}) = V

U({T,M,B}) = IV ∩V

Note the essential differences with the structure of stability regions for bimatrix

games. For a bimatrix game we would for example have the equality

U({M,B}) = U({M}) ∩ U({B}).

The example shows that this is no longer true for multicriteria games. In this case

the set

U({M}) ∩ U({B}) = IV ∪V

subdivides into the areas IV, on whose relative interior

∆({T,M})∪∆({T,B})
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is the set of best replies, and V, on whose relative interior the set of best replies is

indeed ∆({T,M,B}). An area like IV simply cannot occur for bimatrix games.

The second essential difference, and the main one in this section, is the fact that

U({T,M,B}) is a quadratic curve. This means that the subset

∆({T,M,B})× U({T,M,B})

of the set of equilibria cannot be written as a finite union of polytopes. This con-

cludes the example.

5. Multicriteria games of size 2× n

The previous example shows that, in case at least one of the players has more than

one criterion, the set of equilibria may have a quadratic component as soon as both

players have at least three pure stategies. So, in the multicriteria case it is necessary

to have (at least) one player who has exactly two pure strategies to guarantee that

the set of equilibria is indeed a finite union of polytopes. So assume w.l.o.g. that

player one’s set of pure strategiesM equals {T,B}. In this section we will show that

this assumption is also sufficient, i.e., under this assumption the set of equilibria is

indeed a finite union of polytopes. A complication though is that we only have a

polyhedral description of those polytopes when player two has only one criterion.

STABILITY REGIONS OF PLAYER TWO

In this special case the analysis of the dominance relation on the possible payoff

vectors for player one for a fixed strategy q of player two is quite straightforward.

Since player one has only two pure strategies eT and eB, the set of possible payoff

vectors is a line segment (or a singleton in case eTAq = eBAq) in IRS. Given this

observation it is easy to check
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Lemma 3. The following two statements are equivalent.

(i) eTAq is dominated by pAq for some p ∈ ∆(M)

(ii) eTAq is dominated by eBAq.

Given this lemma we can show that each stability region of player two is a finite

union of polytopes. Two cases are considered.

Case 1. For |I | = 1. Assume for the moment that I = {T}. Then

U(I) = {q ∈ ∆(N) | ∆({T}) ⊂ BR1(q)}

= {q ∈ ∆(N) | eT ∈ BR1(q)}

= {q ∈ ∆(N) | eTAq is not dominated by pAq for any p ∈ ∆(M)}

= {q ∈ ∆(N) | eTAq is not dominated by eBAq}

=
⋃
s∈S

{q ∈ ∆(N) | eTAsq ≥ eBAsq}

where the fourth equality follows from the previous Lemma. Clearly this last ex-

pression is a finite union of polytopes. By the same line of reasoning we get that

U({B}) is a finite union of polytopes.

Case 2. For I = {T,B}. Using Lemma 3 it is easy to check that U(I) is the set

of strategies q for which eTAq does not dominate eBAq and eBAq does not dominate

eTAq. So, U(I) = U({T})∩U({B}). Thus, since both U({T}) and U({B}) are finite

unions of polytopes as we saw in Case 1, U(I) is also a finite union of polytopes.

STABILITY REGIONS OF PLAYER ONE

Now that we have come this far, the only thing left to prove is that the stability

region

U(J) = {p ∈ ∆(M) | ∆(J) ⊂ BR2(p)}
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is a finite union of polytopes for each set J ⊂ N of pure strategies of player two. In

order to do this we need to do some preliminary work.

Let the subset V (J) of ∆(M)× IRT be defined by

V (J) := {(p, µ) | ∆(J) is included in the set of best replies against p

according to the criterion B(µ)}

= {(p, µ) | ∆(J) is included in the set of strategies where

the vector pB(µ) attains its maximum over ∆(N)}.

Note that we allow pB(µ) to attain its maximum in points outside ∆(J) as well. We

only require that ∆(J) is indeed a subset of the set of points where pB(µ) attains

its maximum over ∆(N).

Further, let the projection π: IR2× IRT → IR2 be defined by

π(p, v) := p for all (p, v) ∈ IR2 × IRT .

Now we can prove

Lemma 4. The stability region U(J) equals the projection π (V (J)) of the set

V (J).

Proof. (a) Let p be an element of U(J). We will show that p is also an element

of π (V (J)).

Let q∗ be an element of the relative interior of ∆(J). Since p is an element of U(J)

we know that q∗ is a best reply to p. Then we know, by Lemma 1, that there is

a weight vector µ = (µt)t∈T such that the vector pB(µ) attains its maximum over

∆(N) in q∗. So, since q∗ is a relative interior point of ∆(J), pB(µ) also attains its

16



maximum over ∆(N) in any other point of ∆(J) by Lemma 2. Therefore (p, µ) is

an element of V (J) and p = π(p, µ) is an element of π (V (J)).

(b) Conversely, let p = π(p, µ) be an element of π (V (J)) and let q be an element of

∆(J). Then we know that the vector pB(µ) attains its maximum over ∆(N) in q.

Again by Lemma 1, this means that q is a best reply against p. Hence, since q was

chosen arbitrarily in ∆(J), p is an element of U(J). /

Now it is straightforward to show

Theorem 2. For a multicriteria game of size 2×n the stability region U(J) is a

finite union of polytopes.

Proof. Observe that the set V (J) is the collection of points (p, µ) ∈ IR2× IRT that

satisfy the system of polynomial (in)equalities

pi ≥ 0 i = 1, 2

p1 + p2 = 1

µt ≥ 0 for all t ∈ T∑
t∈T

µt = 1∑
t∈T

µtpBtej ≥
∑
t∈T

µtpBtek for all j ∈ J and k ∈ N.

Therefore, V (J) is a semi-algebraic set. Furthermore, by the previous Lemma, U(J)

is the set of vectors p ∈ IR2 such that there exists a µ ∈ IRT for which

(p, µ) ∈ V (J).

Hence, by the Theorem of Tarski and Seidenberg (see e.g. Blume and Zame (1994)

for a clear discussion of this Theorem) U(J) is also a semi-algebraic set. Further,
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U(J) is compact, since V (J) is compact and π is continuous. So, U(J) is the union

of a finite collection {Sα}α∈A of sets Sα in ∆(M) and each Sα is described by a finite

number of polynomial inequalities

pα,k(x) ≥ 0 (k = 1, . . . ,m(α)).

However, ∆(M) is a line segment in IR2. So the set of points in ∆(M) that satisfies

one particular inequality is the finite union of (closed) line segments (singletons also

count as line segments). So, since each Sα is the intersection of such finite unions,

Sα is itself the finite union of closed line segments. Therefore, since U(J) is the

finite union over all sets Sα, it is the finite union of closed line segments. Hence,

U(J) is a finite union of polytopes. /

THE CASE |T | = 1

In this case we have a complete polyhedral description of the polytopes involved in

the union. Notice that we already know that the sets ∆(I) and ∆(J) are polytopes,

and the sets U(I) and U(J) are finite unions of polytopes. We will now show that

a polyhedral description of all these polytopes can be found.

For the polytopes ∆(I), ∆(J) this polyhedral description is trivial. For U(I) we

saw in Case 1 below Lemma 3 that it is the finite union of polytopes of the form

{q ∈ ∆(N) | eTAsq ≥ eBAsq}.

So, in Case 1 the polytopes involved in the union are already given by linear in-

equalities. This implies that also in Case 2 we can find the linear inequalities that

describe the polytopes involved. Finally, for J ⊂ N , we get

U(J) = {p ∈ ∆(M) | ∆(J) ⊂ BR2(p)}

= {p ∈ ∆(M) | pBej ≥ pBek for all j ∈ J and k ∈ N}.
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The assumption that |T | = 1 is used in the second equality. The last expression in

the display now shows that U(J) is itself a polytope that can be written as the solu-

tion set of a finite number of linear inequalities. This concludes the argumentation.
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