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1 Introduction

A cooperative game with transferable utility is a pair hN, vi, where N =

{1, . . . , n} is a set of players and v : 2N → R is a characteristic function

satisfying v(∅) = 0. For any coalition S ⊆ N , v(S) is the worth of coalition

S, i.e. the members of S can obtain a total payoff of v(S) by agreeing to

cooperate.

A game hN, vi is called

• superadditive, if v(S∪T ) ≥ v(S)+v(T ) for all S, T ⊆ N with S∩T = ∅;

• convex, if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ⊆ N .

Clearly, each convex game is also superadditive. The class of convex

games was introduced by Shapley (1971) and has attracted a lot of attention

because the games in this class have very nice properties: for example, the

core of a convex game is the unique stable set and its extreme points can be

easily described; moreover, the Shapley value is in the barycenter of the core.

This importance explains also the existence of many characterizations of

convex games. For example, the above definition of convexity (that uses the

supermodularity property of the characteristic function) is equivalent to the

fact that for convex games the gain made when individuals or groups join

large coalitions is higher than when they join smaller coalitions. For these and

other characterizations of convex games that deal with the relation between

the core and the Weber set we refer the reader to Shapley (1971), Ichiishi

(1981), Curiel and Tijs (1991), and Curiel (1997).

The purpose of this note is to provide a new characterization (to the best

of our knowledge) of convex games that uses the notion of a marginal game.
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2 Motivation

Given a game hN, vi and a coalition T ⊆ N , the T -marginal game vT :

2N\T → R is defined by vT (S) := v(S ∪ T )− v(T ) for each S ⊆ N \ T .
Marginal games turned out to be very useful not only for proving the fact

that the core of a game is a subset of its Weber set (cf. Weber (1988)) but also

when constructing an appropriate algorithm for generating the constrained

egalitarian solution for convex games (cf. Dutta and Ray (1989)).

Two of the main questions one can ask with respect to the marginal games

hN \ T, vT i of an original game hN, vi are the following: (1) if the original
game is convex, are all its marginal games also convex?, and (2) if the original

game is superadditive, are all its marginal games also superadditive?

The answer of the first question is positive (and we show this when pro-

viding our characterization result), while the answer of the second question

is negative as exemplified below.

Example 1 Let N = {1, 2, 3} and v ({1}) = 10, v ({1, 2}) = 12, v ({1, 3}) =
11, v ({1, 2, 3}) = 121

2
, and v(S) = 0 for all other S ⊂ N . Clearly, the

game hN, vi is superadditive. Its {1}-marginal game is given by v{1}({2}) =
v ({1, 2}) − v ({1}) = 2, v{1}({3}) = 11 − 10 = 1, and v{1}({2, 3}) = 21

2
.

Since v{1}({2, 3}) = 21
2
< 3 = v{1}({2}) + v{1}({3}), the marginal game{2, 3} , v{1}® is not superadditive.

However, as we will show next, the superadditivity of each marginal game

hN \ T, vT i of an original game hN, vi pushes the game hN, vi to satisfy a
stronger property - that of convexity.

3



3 Result

Theorem 1 A game hN, vi is convex if and only if for each T ∈ 2N the

T -marginal game hN \ T, vT i is superadditive.

Proof. (i) Suppose hN, vi is convex and let T ⊆ N . Take S1, S2 ⊆ N \ T .
Then

vT (S1 ∪ S2) + vT (S1 ∩ S2)

= v (T ∪ S1 ∪ S2) + v (T ∪ (S1 ∩ S2))− 2v(T )
= v ((T ∪ S1) ∪ (T ∪ S2)) + v ((T ∪ S1) ∩ (T ∪ S2))− 2v(T )
≥ v(T ∪ S1) + v (T ∪ S2)− 2v(T )
= (v (T ∪ S1)− v(T )) + (v (T ∪ S2)− v(T ))

= vT (S1) + vT (S2),

where the inequality follows from the convexity of v. Hence, vT is convex

(and superadditive as well).

(ii) Suppose that for each T ∈ 2N the game hN \ T, vT i is superadditive.
Take S1, S2 ⊆ N . We have to prove that

v (S1 ∪ S2) + v (S1 ∩ S2) ≥ v(S1) + v (S2) .

If S1 ∩ S2 = ∅, then the assertion easily follows from the superadditivity

of the game hN \ ∅, v∅i = hN, vi and v(∅) = 0.
Suppose now S1 ∩ S2 6= ∅ and let T := S1 ∩ S2. Because hN \ T, vT i is

superadditive, we have that

vT (S1 \ T ) + vT (S2 \ T ) ≤ vT ((S1 ∪ S2) \ T )

iff

v(S1)− v(T ) + v(S2)− v(T ) ≤ v (S1 ∪ S2)− v(T )
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iff

v(S1) + v (S2) ≤ v (S1 ∪ S2) + v(T )

iff

v(S1) + v(S2) ≤ v(S1 ∪ S2) + v(S1 ∩ S2).

Having provided our characterization, we can answer immediately the

following question: “Under which conditions are all marginal games of a su-

peradditive original game superadditive?”

Corollary 1 Let hN, vi be a superadditive game. Then hN \ T, vT i is su-
peradditive for each T ∈ 2N if and only if hN \ T, vT i is convex for each
T ∈ 2N .
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