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1 Introduction

This study attempts to model the (conditional) probability of winning a point on service

in professional tennis. The first question is whether points are independent and iden-

tically distributed. We show that this is not the case. More difficult are the questions

that follow: how can this dependence be captured and how are the points distributed?

We were fortunate in obtaining point-to-point data on four years of Wimbledon men’s

and ladies’ singles, 1992-1995, all together 88,883 points distributed over 481 matches.

There were a few matches in the data set that contained inconsistencies; these have been

deleted. The resulting data set has the unique property of being 100% clean. The data

contains not only the complete score sheet at point level, but also additional information:

ace, double fault, first service, second service. We only have data on Wimbledon, a fast

grass court, and our conclusions are restricted by this fact.

We model the (conditional) probability p of winning a point on service in four stages

of increasing complexity. The simplest estimate (stage 1) is obtained by taking a weight-

ed average of all service points (men and women separate). This leads to p̂ = 0.64 in

the men’s singles and p̂ = 0.56 in the ladies’ singles. In stage 2 we define the quality

Q of a player as a function of the player’s ranking and the current round within the

tournament. Quality can not be observed directly, but if we define p as a function of

the quality of both players, then p and Q can be estimated jointly. The second model

constitutes an enormous improvement over the (naive) first model.

Model 2 assumes that a match is determined by two probabilities, fixed throughout

one match. This is the simplest and almost universal assumption in the tennis literature.

In model 3 we deviate from the independent-and-identically-distributed (i.i.d.) assump-

tion by introducing first-order dynamics. The results show that there is dependence

between points, more so in the ladies’ singles than in the men’s singles.

Finally, in model 4, we introduce variables that explain the dependence, while we

also allow for non-identical distribution. These variables include “performance” vari-

ables that measure how well both players have been playing, relative to expectation,

in the previous points, games and sets, and “importance” variables that measure how

important the current point, game and set are. The performance variables relate to the

dependence of points, the importance variables to their non-identical distribution. In

addition there are many other variables of potential impact, typically relating to “com-



2

mentators’ wisdows” such as: it is an advantage to serve first in a set or to serve with

new balls, or real champions play their best tennis at the “big points”. These wisdoms

are included as explanatory variables and can thus be tested in our framework. Of the

thirteen hypotheses considered, only four survive statistical scrutiny in the men’s singles

and six in the ladies’ singles.

The literature on the statistical analysis of tennis is hampered by an almost complete

lack of data. Most papers are theoretical and contain no data at all. If some data are

available, they are either based on published match results (6-4, 6-3, 6-3 say) or occa-

sionally on a point-to-point analysis (often collected by hand) of one match, usually an

important final. The current paper is the first paper where a large data set is analyzed

at point level.

If we assume that two fixed probabilities govern a match (the probability that A wins

a point on service and the probability that B wins a point on service), then we can

calculate the probability of winning a game, a set, a tiebreak, a match. Of the many

papers in this category we mention Hsi and Burych (1971), Kemeny and Snell (1976),

Fischer (1980), Pollard (1983), and Alefeld (1984).

An interesting aspect of tennis and related sports such as squash and table tennis is

the scoring system and the sensitivity of winning a match to the scoring system.1 See

Maisel (1966), Schutz (1970), Carter and Crews’ (1974) and Croucher’s (1982) analysis

of the effect of the tiebreak on the duration of a match, Miles (1984), Pollard (1986,

1987, 1988), Riddle (1988, 1989) and the comments by Jackson (1989), and Collings and

Fellingham (1993).

The service and the first/second service strategy has been investigated by Gale (1971),

George (1973), Hannan (1976), Gillman (1985) and Norman (1985). As Gillman puts it:

“missing more serves may win more points”. Borghans (1995) shows that in the 1995

Sampras-Becker final Becker could have performed much better had he put more power

in his second service (thereby of course, increasing the number of double faults).

Almost without exception points are assumed to be independent and identically dis-

tributed. A notable recent exception is Jackson and Mosurski (1997), who investigate

1Also interesting is the sensitivity to the type of tournament: in tennis tournaments the top seed
wins much more frequently than in golf; see Laband (1990).



3

whether “getting slammed during your first set might affect your next”. In other words,

they challenge the independence assumption. In five preliminary papers (Magnus and

Klaassen (1998a-1998e)) we tested 21 tennis hypotheses, many of them relating to the

i.i.d. assumption. In basketball, dependence between points is known as the “hot hand”,

in baseball as “streaks”. Lindsey (1961) and Albright (1993) analyzed “streaks”, while

Simon (1971, 1977) noticed that of the 31 World Series (in baseball) played since World

War II until 1975, 18 have lasted seven games (the maximum). From this he concludes

there must be a “back-to-the-wall effect” where the team who is behind performs better,

thus challenging the i.i.d. assumption in baseball.

This paper challenges the i.i.d. assumption in tennis and proposes a model for the

conditional probability p of winning a point on service. In section 2 we discuss the

data and the representativeness of the sample. In section 3 we define the quality of a

player and estimate p as a function of the quality of two players. Section 4 discusses

first-order dynamics (model 3). The full model (model 4) is presented and discussed in

sections 5 and 6, where we also test the commentators’ wisdoms. In section 7 we analyze

two famous Wimbledon finals: Sampras-Becker (1995) and Graf-Novotna (1993) and

show that our preferred model characterizes these matches particularly well. Section 8

concludes the paper.

2 The data, sample representativeness, and service

characteristics

We have data on 481 matches played in the men’s singles (MS) and ladies’ singles (LS)

championships at Wimbledon from 1992 to 1995. This accounts for almost one half of

all singles matches played during these four years. For each of these matches we know

the exact sequence of points and also for each point whether it was decided through an

ace or a double fault. In Table 1 we provide a summary of the data.
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Number of . . . MS LS

Matches 258 223

Sets 950 503

Final sets 51 57

Games 9,367 4,486

Tiebreaks 177 37

Points 59,466 29,417

Sets in match 3.68 2.26

Games in non-final set 9.79 8.89

Games in final set 11.14 9.18

Tiebreaks in non-final set 0.20 0.08

Points in match 230.49 131.91

Points in game 6.12 6.46

Points in tiebreak 12.13 11.84

Table 1: Number of matches, sets, games, tiebreaks and points in the data set

We have slightly more matches for men than for women, but of course many more

sets, games and points in the men’s singles than in the ladies’ singles, because the men

play for three won sets and the women for two. The men play less points per game

(6.12) than the women (6.46), because the dominance of their service is greater; see

Magnus and Klaassen (1998a) for empirical evidence. But the women play less games

per set (scores like 6-0 and 6-1 are more common in the ladies’ singles than in the men’s

singles), because the difference between the seeded and the non-seeded players is much

greater; see Magnus and Klaassen (1998e).2 At Wimbledon 16 players are seeded out of

128. Both men and women play about 60 points per set. The men play on average 230

points per match, the women 132. A final set occurs in 20% of the men’s singles (5th

set) and in 26% of the ladies’ singles (3rd set). Tiebreaks occur in 20% of the sets in the

men’s singles and 8% in the ladies’ singles.3 In all analyses we treat men and women

completely separate.

All matches in our data set are played on one of the five “show courts”: Centre Court

and Courts 1, 2, 13 and 14. This causes an overrepresentation of matches in which

seeded players are involved. Matches between two non-seeded players are particularly

2At Wimbledon, 16 players out of 128 are seeded.
3At Wimbledon, the tiebreak comes into operation at 6-6 in every set, except the final set.
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underrepresented in our data set. For example, of the 152 first-round matches over four

years between two non-seeded players, only 34 (22%) were played on one of the show

courts in the men’s singles and only 24 (16%) in the ladies’ singles.

Round Sd-Sd Sd-NSd NSd-NSd Total

1 - - - 48 64 0.75 34 192 0.18 82 256 0.32

2 - - - 46 54 0.85 16 74 0.22 62 128 0.48

3 - - - 39 41 0.95 16 23 0.70 55 64 0.86

4 8 9 0.89 15 15 1.00 8 8 1.00 31 32 0.97

5 7 7 1.00 9 9 1.00 0 0 1.00 16 16 1.00

6 7 7 1.00 1 1 1.00 0 0 1.00 8 8 1.00

7 4 4 1.00 0 0 1.00 0 0 1.00 4 4 1.00

Total 26 27 0.96 158 184 0.86 74 297 0.25 258 508 0.51

Table 2a: Sample, population and representation, men’s singles

Round Sd-Sd Sd-NSd NSd-NSd Total

1 - - - 43 63 0.68 24 193 0.12 67 256 0.26

2 - - - 43 58 0.74 3 70 0.04 46 128 0.36

3 - - - 42 48 0.88 12 16 0.75 54 64 0.84

4 8 8 1.00 20 21 0.95 2 3 0.67 30 32 0.94

5 11 12 0.92 3 3 1.00 1 1 1.00 15 16 0.94

6 6 6 1.00 1 2 0.50 0 0 1.00 7 8 0.88

7 4 4 1.00 0 0 1.00 0 0 1.00 4 4 1.00

Total 29 30 0.97 152 195 0.78 42 283 0.15 223 508 0.44

Table 2b: Sample, population and representation, ladies’ singles

Tables 2a and 2b give detailed information about the lack of representativeness of the

sample, and provide “representation factors” (in bold). We distinguish between round (1

= first round, 7 = final round) and type (Sd-Sd = two seeded players, Sd-NSd = seeded

against non-seeded player, NSd-NSd = two non-seeded players). The first column in

each panel contains the number of matches in our sample, the second column the num-

ber of matches in the population, and the third column their ratio, the “representation

factor.”4 Apart from Tables 1 and 2, all calculations and estimating results in this paper

4In the ladies’ singles there are 63 rather than 64 seeded players over the four years, because Mary
Pierce (seeded 13) withdrew in 1993 at the last moment. She was replaced by Louise Field, an unseeded
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have been rescaled using the “representation factors” of Table 2.

Percentage of ... MS LS

Aces 8.2 3.1

(0.1) (0.1)

Double faults 5.5 5.5

(0.1) (0.1)

Points won on service 64.4 56.1

(0.2) (0.3)

Games won on service 80.8 63.4

(0.4) (0.7)

Table 3: Service characteristics

The service is one of the most important aspects of tennis, particularly on fast surfaces

such as the grass courts at Wimbledon. In Table 3 we provide four of its characteristics

(standard errors in brackets). The men serve almost three times as many aces as the

women, but about the same number of double faults.5 The probability of winning a point

on service is 64.4% (MS) and 56.1% (LS), respectively. The difference of 8.3%-points

with a standard error of 0.4% shows that the dominance of the service at point level

is significantly larger in the men’s singles than in the ladies’ singles, just as one would

expect.6 The service advantage is brought out even stronger when we calculate the

probability of winning a service game, which is 80.8% (MS) and 63.4% (LS), a difference

of 17.4%-points.7 This large difference makes the men’s singles very different from the

ladies’ singles.

Table 3 provides us with an initial (admittedly naive) estimate of p: the probability

of winning a point on service. We have

player.
5The percentage of aces is defined as the ratio of the number of aces (first or second service) to the

number of points served (rather than to the number of services).
6“Significant” always means statistically significant at the 5% level.
7This is what Alefeld (1984) calls the Verstärkungseffekt: any advantage at point level is amplified

at game level.



7

p̂0 = 0.644(MS), p̂0 = 0.561(LS). (1)

If we assume that in every game the points are independent and identically distributed

(i.i.d.), then, based on the probabilities in (1), we obtain estimates of g: the probability

of winning a service game:

ĝ0 = 0.820(MS), ĝ0 = 0.648(LS). (2)

Comparison with Table 3 shows that ĝ0 overestimates the observed game probabilities by

about 1.1-1.4%-points. This casts doubt on the validity of the i.i.d. assumption. We shall

model and test the dependence and the non-identical distribution of the observations

shortly, but first we need to define what we mean by “quality”.

3 The quality of a player

The probability of winning a point on service in (1) is a (weighted) average of all service

points and does not take account of differences in quality between two players. Suppose

we distinguish between two types of players: seeded (Sd) and non-seeded (NSd).

Sd-Sd Sd-NSd NSd-Sd NSd-NSd Total

MS 0.6682 0.6926 0.6098 0.6386 0.6445

LS 0.5685 0.6301 0.4998 0.5573 0.5599

Table 4: Points won on service for seeded and non-seeded players

Table 4 shows that the relative quality of the two players clearly matters a great deal.

But also the absolute quality matters: a seeded player scores more points on service than

a non-seeded player whoever the opponent. This is shown in Table 4 and it is plausible.

In this paper we require a definition of quality which is much finer than the mere dis-

tinction seeded/non-seeded. Our starting point is the ranking of a player on the ATP or
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WTA list as published just before Wimbledon. These two lists (ATP for the men, WTA

for the women) contain the official rankings based on performances over the last year,

including last year’s Wimbledon. The variable RANKi denotes the ranking of player i

on the list. As a result, RANKi can be 500 even though only 128 players take part in

the tournament.8

Let R denote the round of the match under consideration (R = 1, 2, . . . , 7). We now

transform the ranking RANKi into a variable R̄i as follows:

R̄i = 8−2 log(RANKi). (3)

The variable R̄i thus defined can be interpreted as “expected round”. If RANK = 1

(the top seed), then R̄ = 8. This means that we expect this player to reach “round 8”,

that is, to win round 7 (the final). If RANK = 4, then R̄ = 6. We expect this player

to reach round 6 (semi-final) and lose. If RANK = 128, then R̄ = 1. This player is

expected to lose in round 1. Players with RANK > 128 are not expected to play at

Wimbledon at all. Notice that R̄ can be negative, but this causes no problems.

The quality Qi of player i depends on the expected round R̄i (and hence on his/her

ranking) and also on the actual round R. This seems reasonable, because a lowly ranked

player, having survived the first two rounds, apparently has higher quality than we

thought. Thus motivated, we write

Qi = R̄i + δmax(R − R̄i, 0) + δ′min(R− R̄i, 0). (4)

The quality Qi equals the expected round R̄i plus two correction terms. First, a

“bonus” max(R− R̄i, 0) which measures extra quality when R > R̄i; secondly, a “malus”

min(R − R̄i, 0) which measures the potential often-heard effect that “top players must

grow into the tournament” and hence that seeded players might underperform in the

first few rounds.

8The main reason for not ranking the players 1, 2, . . . , 128 is that some low-ranked (British) players
receive a “wild card” and would thus be ranked too high. But the effect of this alternative definition is
very small.
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Equation (4) is graphically illustrated in Figure 1 for δ = 0.7684 and δ′ = 0.2000.

FIGURE 1

Since Qi is not observed, the parameters δ and δ′ can not be directly estimated. Qual-

ity can only be measured indirectly through matches, and in a match two players are

involved, say A and B. Let A be serving against B and define

QA,B = α0 + α1(QA −QB) + α2QA. (5)

The variable QA,B (also unobservable) measures the quality of A when A is serving and

B receiving. Notice that QA,B depends not only on the relative quality (QA −QB), but

also on the absolute quality QA (or QB). Let pA,B denote the probability that A wins a

point on service against B, and assume (for the moment) that all points are independent

and that pA,B is fixed throughout the match (but, of course, pA,B 6= pB,A). Assume also

that pA,B depends only on QA,B:

pA,B = Λ(QA,B), (6)

where Λ(·) is a monotonically increasing function that maps from the real line to the

0-1 interval. Many cumulative distribution functions could be used. Since the literature

on binary response models shows that estimation results are not very sensitive to the

specification of Λ, we choose the simple logistic distribution function,

Λ(x) =
ex

1 + ex
, (7)
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Figure 1: Quality as a function of round and expected round; δ=0.7684, δ′=0.2000.
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for our purpose. We can now estimate the unknown parameters α0, α1, α2, δ and δ′

without any further distributional or other assumptions. The model derived above is

known as the logit model. It is also possible to derive the logit model from a latent

variable model with errors that follow from an extreme value distribution.9 That the

logit model (like the probit model) can be derived in this way is one of its attractive

features. The results are presented in Table 5.

Table 5

The two columns in Table 5 labeled p̂0 relate to the special case where α1 = α2 = 0.

In that case pA,B = Λ(α0), a constant independent of the quality of A and B. The

estimates correspond to the initial naive estimates given in (1), since Λ(0.5949) = 0.6445

and Λ(0.2409) = 0.5599.

The columns labeled p̂00 relate to the logit model defined in (6). The “malus” coef-

ficient δ′ is not significantly different from zero, neither for the men nor for the women.

The idea that seeded players have to “grow into the tournament” (more so than non-

seeded players) is therefore not supported by the data. Setting δ′ = 0 in (4), we obtain

the following equation for the variable Q:

Q̂ =

 R̄, if R ≤ R̄,

R̄+ δ̂(R− R̄), if R > R̄,
(8)

with

δ̂ =

 0.7684 (men’s singles)

0.7143 (ladies’ singles).
(9)

For example, a player in the men’s singles with ranking 64 (R̄ = 2) who survives the

first two rounds receives a “bonus” in the third round of 0.7684, which corresponds to

an improvement in ranking from 64 to 38 (39 in the ladies’ singles). If he survives also

9See, among others, Domencich and McFadden (1975), McFadden (1984), and Train (1986).
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MS
p̂0 p̂00 p̂0t

round bonus δ — 0.7626 0.7684 0.7684
(0.1612) (0.1486) (—)

round malus δ′ — -0.0899 — —
(0.2935)

constant α0 0.5949 0.4909 0.4913 0.5064
(0.0087) (0.0210) (0.0209) (0.0306)

relative — 0.0347 0.0387 0.0440
quality α1 (0.0127) (0.0054) (0.0072)

absolute — 0.0362 0.0372 0.0349
quality α2 (0.0071) (0.0064) (0.0095)

average — — — 0.0091
weight w̄ (0.0011)

weight — — — -2.7823
correction αw (2.7821)

log L -37,302.36 -37,179.14 -37,179.19 -37,090.69

LS
p̂0 p̂00 p̂0t

round bonus δ — 0.8213 0.7143 0.7143
(0.1866) (0.1821) (—)

round malus δ′ — 0.4032 — —
(0.5355)

constant α0 0.2409 0.1842 0.1824 0.1722
(0.0118) (0.0279) (0.0279) (0.0351)

relative — 0.1485 0.0856 0.0868
quality α1 (0.1427) (0.0079) (0.0075)

absolute — 0.0242 0.0215 0.0238
quality α2 (0.0092) (0.0083) (0.0101)

average — — — 0.0141
weight w̄ (0.0029)

weight — — — -21.3774
correction αw (5.0687)

log L -19,878.05 -19,717.09 -19,717.32 -19,695.66

Table 5: Estimation results for Models 1-3
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the third round, his ranking improves to 22 (24 in the ladies’ singles).

In the remainder of this paper the quality variable Q̂, as given in (8) and (9), will be

treated as an exogenous variable indicating the quality of a player at the beginning of a

match. This makes sense theoretically and also has great practical advantages. In other

words, the coefficient δ̂ is fixed at the estimated values given in (9).

In (1) we obtained a first estimate for p, the probability of winning a point on service.

Table 5 yields a second attempt to estimate p:

p̂A,B = Λ(0.4913 + 0.0387(Q̂A − Q̂B) + 0.0372Q̂A) (10)

in the men’s singles, and

p̂A,B = Λ(0.1824 + 0.0856(Q̂A − Q̂B) + 0.0215Q̂A) (11)

in the ladies’ singles. The improvement in fit based on the loglikelihoods is spectacular.

As expected, quality difference is more important in the ladies’ singles than in the men’s

singles; the difference in strength is much greater in the ladies’ singles than in the men’s

singles; see Magnus and Klaassen (1998e). For a given quality difference, the quality of

the server appears to be more important in the men’s singles, although not significantly

so.

This concludes our analysis of pA,B , the probability that A wins a point on service

against B, at the beginning of the match. So far we have assumed that pA,B and pB,A,

once determined, remain fixed throughout the match and that all points are independent.

We shall now challenge both these assumptions.

4 First-order dynamics

We consider a match between two players A and B. We exclude tiebreaks and consider

first the points where A is serving and B receiving. (In an average match there will be
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111 such service points for each player in the men’s singles and 65 in the ladies’ singles.)

Let yt = 1 if point t is won by A, the server, and yt = 0 otherwise. Let p0t denote the

probability that A wins point t conditional on the information It−1 available after point

t − 1. To demonstrate that points in tennis are dependent, but without yet asking the

cause of this dependence, we postulate

p0t = Pr(yt = 1|It−1) = wyt−1 + (1− w)p0,t−1 (t = 2, 3, . . . , T ), (12)

where T is the total number of service points played by A (excluding tiebreaks) and p01

(the probability of winning the first point) equals pA,B , the probability defined in (6)

with unknown parameters α0, α1 and α2. Solving (12) yields

p0t = (1− w)t−1pA,B + w
t−1∑
j=1

(1− w)t−j−1yj. (13)

Equation (12) is a simple dynamic specification motivated by the idea that the proba-

bility of winning a point on service is not necessarily constant throughout a match and

that our initial estimate pA,B needs to be updated depending on the “form of the day”.

In this updating, more recent points are considered more important than points further

back. If w = 0, then p0t is constant throughout the match. But if 0 < w < 1, then the

impact of pA,B becomes smaller as t becomes larger. At w = 0.01, the impact of pA,B is

79% after 25 points, 61% after 50 points, and 37% after 100 points. The information set

It−1 thus consists of pA,B , w, and one specific weighted average of y1, . . . , yt−1.

We assume that the coefficient w is constant throughout one match, but that its value

will depend on both A and B. Thus, writing wA,B instead of w, we assume that

wA,B = 2w̄Λ(αw | pA,B − pB,A |). (14)

If A and B are equally strong at the beginning of the match, then wA,B = w̄. But
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if A is the stronger player “on paper” and starts badly, then we should allow for the

possibility that “quality will show in the end”, that is, wA,B < w̄. This occurs when

αw < 0. Keeping δ̂ fixed at 0.7684 (MS) and 0.7143 (LS), we can estimate the coefficients

α0, α1, α2, w̄, and αw. The results are presented in the last column of Table 5 (labeled

p̂0t). The hypothesis that w = 0 is strongly rejected. Hence, there is dependence between

points, more so in the ladies’ singles than in the men’s singles. The idea that “quality

will show in the end” is supported by the data in the ladies’ singles and marginally

supported in the men’s singles.

5 The full model

If points on service are not i.i.d., then what influences the probability of winning a point?

Does it matter who started to serve in the set? Are players affected by an ace or double

fault in the previous point? Do “real champions” play their best tennis at the “big

points” (and how should these be defined)? Is there an advantage in serving with new

balls?

All these and many other ideas will be transformed into explanatory variables and

tested. Again we keep δ̂ (the “bonus” parameter) fixed and we define 27 new regressors,

listed in Table 6: x1, . . . , x27. Our starting point is p0t, defined in (12), with w given in

(14). Let pt denote the probability that the server wins the t-th service point (disregard-

ing tiebreaks) conditional on It−1, the information available after point t − 1. Adding

the regressors linearly to the logit of p0t yields the logit of pt:

log

(
pt

1− pt

)
= log

(
p0t

1− p0t

)
+ x′tβ, (15)

which can be written explicitly as

pt = p0t + p0t (1− p0t) ·
exp (x′tβ)− 1

1 + p0t (exp (x′tβ)− 1)
. (16)

Hence, the conditional probability pt that the server wins the t-th service point is equal

to p0t plus a correction term which vanishes when β = 0.

When we estimate (16) we find that w̄ = 0.10 This is interesting because it shows

that the naive first-order dynamics of section 4 is made redundant by adding the new

10Putting w̄ = 0 makes αw unidentified. We return to this problem in section 6 under “big points”.
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regressors and that the causes of the dependence are well captured by the regressors.

We therefore put w̄ = 0 and estimate α1, α2, α3 and β1, . . . , β27. The information set

It−1 now consists of pA,B , pB,A, all past points y1, . . . , yt−1, and, in addition, one service

characteristic of point t − 1, namely whether the service was an ace, double fault or

neither. Points in different matches are assumed independent, but points within one

match are dependent and the likelihood is therefore written as a product of conditional

probabilities. The maximum likelihood results are given in Table 6 under “full model”.

For each regressor we indicate under “impact” whether the regressor has an effect within

the current game (S = short term), within the current set (M = medium term), or

during the whole match (L = long term). Of the 27 proposed additional regressors

more than one half turn out to have little or no effect. We apply an ad hoc model

simplification procedure, based on t-statistics, likelihood ratio tests, and common sense.

Interestingly, this simplification procedure is - unlike in many economic situations -

extremely robust. That is, we arrive at the same simplified model independent of the

order in which variables are deleted. Hence there is no need for a more sophisticated

model selection procedure. The final model after simplification is listed in Table 6 under

the heading “reduced”.

Table 6

Let us now explain the 3 quality regressors and the 27 new regressors, their im-

pact, significance, and relationship to well-known hypotheses in tennis.

“Quality” regressors. These three basic regressors determine the probability pA,B at

the beginning of the match. They are defined in (5) and the associated coefficients α0, α1

and α2 are all significant.11

Performance. We introduce eight “performance” regressors. These regressors measure

the actual performance of a player relative to the player’s “expected” performance, in

the short run, middle run and long run. The “expected” performance is always based on

p̂A,B and p̂B,A, the estimated probabilities at the beginning of the match. The additions

S and R in brackets refer to whether the performance is measured for the server S or

the receiver R.

11In the ladies’ singles, α̂2 is not significantly different from 0 in the full model, but it is significant
in the reduced model.
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regressor impact MS LS

full reduced full reduced

constant α0 0.5942 0.5809 0.3479 0.3498

quality (0.0711) (0.0397) (0.0931) (0.0541)

regressors relative quality α1 0.0456 0.0484 0.0996 0.0953

(0.0065) (0.0053) (0.0093) (0.0079)

absolute quality α2 0.0226 0.0246 0.0158 0.0228

(0.0085) (0.0071) (0.0119) (0.0085)

1 current game (S) S 0.0256 0.0543 0.0747 0.0893

(0.0260) (0.0157) (0.0298) (0.0189)

2 previous game (R) M -0.0032 — -0.0281 -0.0383

(0.0122) (0.0153) (0.0142)

3 previous service M 0.0165 — 0.0247 —

game (S) (0.0113) (0.0183)

performance 4 current set (S) M 0.0979 0.0977 0.1040 0.0916

(0.0234) (0.0187) (0.0253) (0.0212)

5 current set (R) M -0.0560 -0.0486 -0.0582 -0.0574

(0.0190) (0.0151) (0.0222) (0.0220)

6 previous set (S) L 0.0859 0.0886 0.0667 0.0743

(0.0134) (0.0129) (0.0185) (0.0150)

7 previous set (R) L -0.0124 — -0.0221 —

(0.0136) (0.0184)

8 whole match (S) L 0.0685 0.0737 -0.0048 —

(0.0232) (0.0195) (0.0589)

duration 9 duration (S) S 0.0278 0.0260 0.0153 —

(0.0115) (0.0109) (0.0173)

10 duration (R) S 0.0021 — 0.0112 —

(0.0162) (0.0204)

11 point in game S -0.1274 — -0.0254 —

(0.1189) (0.1285)

importance 12 game in set M -0.1189 -0.1429 -0.1712 -0.2565

(0.0867) (0.0753) (0.1267) (0.0942)

13 set in match L -0.1112 -0.1400 0.1914 0.1503

(0.0604) (0.0493) (0.0649) (0.0462)
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14 relative champions S 0.0972 — 0.4132 0.4728

(0.1440) (0.2130) (0.1773)

big points 15 absolute champions S 0.3688 0.3409 0.1941 —

(0.1844) (0.1066) (0.2031)

16 history on big L -0.3046 — -1.2597 —

points (0.7012) (0.7801)

after 17 ace S 0.1123 0.1118 -0.0691 —

(0.0387) (0.0386) (0.0786)

18 double fault S 0.0581 — -0.0013 —

(0.0420) (0.0571)

19 break-rebreak M -0.0350 — -0.1472 -0.1820

(0.0457) (0.0518) (0.0443)

breaks 20 break in server’s M 0.0262 — 0.0963 —

previous service (0.0436) (0.0577)

game

21 missed break points M -0.0370 — -0.1215 -0.1265

(0.0329) (0.0439) (0.0432)

first 22 in match S 0.1342 0.1361 0.0749 —

game (0.0646) (0.0545) (0.0734)

23 in new set S -0.0051 — -0.1357 -0.1826

(0.0384) (0.0601) (0.0507)

24 new balls dummy S 0.0647 — 0.0154 —

new balls (0.0349) (0.0494)

25 age of balls S 0.0071 — -0.0066 —

(0.0042) (0.0061)

26 server started set M 0.0001 — -0.0308 —

other (0.0196) (0.0265)

27 length match L -0.0067 — -0.0303 -0.0316

(0.0107) (0.0164) (0.0137)

loglikelihood -37,056.84 -37,064.41 -19,654.55 -19,660.91

Table 6: Estimation results for the full model and the reduced model
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In the short run, the effect within the current game is given by x1 = nA − n̄A, where

nA denotes the number of points won by server A in the current game and n̄A, the “ex-

pected” number of points won by server A in current game, is equal to p̂A,B× the number

of points played in the current game so far. In the first point of each game x1 = 0. In-

clusion of x1 has a significant positive effect on p. Hence, short-run dependence exists.

In the middle run, we similarly define the performance x2 of B, the current receiver,

in the previous game (not necessarily in the same set) and the performance x3 of A, the

current server, in his/her previous service game (not necessarily in the same set). The

estimated coefficients have the right sign, but the effect is marginal, except the receiver’s

previous game effect in the ladies’ singles.

Two other middle-run effects are given by x4 and x5 which define the performance

in the current set (excluding the current game) as the number of games won minus the

“expected” number of games won, both from the current server’s viewpoint and from

the current receiver’s viewpoint. They measure the form of both players in the set so far

and they turn out to be important regressors to include.

For the long-run effect we measure the performance in the previous set (x6 and x7)

in the same way as the performance in the current set (x4 and x5). The performance in

the match x8 is measured in terms of number of sets won relative to “expected” number

of sets won, excluding the current set.

The performance regressors attempt to measure the “form of the day” and are clear-

ly important in explaining p. Five of the eight regressors have coefficients significantly

different from 0, both in the men’s singles and in the ladies’ singles.

Duration. The two duration variables x9 (for the server) and x10 (for the receiver) mea-

sure the very short-run effect of consecutive points scored (0, 1, 2, 3, 4) in the current

game. For example, suppose the game developed as (1, 0, 0, 1, 1, 1), where 1(0) indicates

that the server won (lost) the point. Then, after two points, x9 = 0 and x10 = 1, while

after five points, x9 = 2 and x10 = 0. The effect of these variables is very small.

Both the performance and the duration variables relate to the question whether points

are independent. Clearly they are not. The next set of variables relate to the question

whether the points are identically distributed.
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Importance. Not all points are equally important. A point played at 30-40 in a game

is more important than a point played at 0-0. Similarly, a game played at 4-4 is more

important than a game played at 1-1. And the final set is more important than the first

set. We define the importance of a point in a game

x11 = Pr (A wins game|A wins currect point) - Pr (A wins game|A loses current

point).12

Similarly, the importance of a game in a set and of a set in the match are defined as

x12 = Pr (A wins set|A wins current game) - Pr (A wins set|A loses current game)

and

x13 = Pr (A wins match|A wins current set) - Pr (A wins match|A loses current set).

Importance, thus defined, has several attractive properties. First, it is symmetric: every

point is equally important to A as to B. Secondly, ceteris paribus, the importance of a

point in a set is simply x11 · x12, the importance of a game in the match is x12 · x13, and

the importance of a point in the match is x11 · x12 · x13. Given the rules of tennis and

assuming that the match is governed by two fixed probabilities pA,B and pB,A and that

all points are independent,13 we can calculate at each point the probability that A wins

the game, the set and the match.14 Hence we can also calculate the three importance

measures x11, x12 and x13. The empirical results support two interesting conclusions.

First, at important points - other things being equal - the receiver has the advantage,

not the server. (The only exception is the importance of the set-in-match variable in

the ladies’ singles.) Secondly, the importance of a point in a game turns out to have

12This definition of importance was first proposed by Morris (1977); see also Miles (1984).
13This requires a little explanation. We have just argued that points are not i.i.d. Nevertheless,

in defining “importance” we assume that points are i.i.d. We defend this by arguing that the i.i.d.
assumption serves well as a first-order approximation; the non-i.i.d.ness of the points is a second-order
effect and has therefore relatively little impact on the “importance” measures.

14We developed a computer program (in Pascal) that calculates these and many other probabilities
exactly. The program is flexible regarding the number of sets in a match, the number of games in a set
(what is the effect of shortening a set form 6 to 5 games won?), the number of points in a game (what is
the effect of shortening a game from 4 points won to 3?), assumptions about the tiebreak, and in many
other directions.



21

little effect. The game-in-set and set-in-match variables demonstrate that points are not

identically distributed.

6 Tennis hypotheses

In addition to the 13 regressors defined in Section 5, we introduce 14 further regressors.

Most of these regressors relate to one of many often-heard hypotheses (“Starting to serve

in a set is an advantage”, “serving with new balls is an advantage”).15 Already we have

encountered two hypotheses:

H1: (Seeded) players must grow into the tournament,

H2: Quality will show in the end.

Hypothesis H1 was tested by finding out whether δ′ > 0 (section 3). This turned out not

to be the case. H2 would be true if αw < 0 (section 4) and this appeared to be the case.

Big points. A “big point” is defined as a point where the point-in-match importance

(that is, x11 · x12 · x13) is high. The hypothesis we wish to test is

H3: Real champions play their best tennis at the big points.

We offer two interpretations to H3, one relative and one absolute. We define

x14 = (x11 · x12 · x13) · (R̄A − R̄B)

and

x15 = (x11 · x12 · x13) · R̄A,

where A is the server and B the receiver. R̄A and R̄B defined in (3), are simple trans-

formations of the ranking of the two players. Hence, if x14 has an effect (as it does in

15A more detailed analysis of each hypothesis can be found in Magnus and Klaassen (1998a-1998e).
In these papers we also consider some hypotheses that cannot be tested within the current framework,
such as “the seventh game is the most important game in the set” and “a player is as good as his/her
second service”.
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the ladies’ singles), then the bigger the difference in strength between the two players,

the larger is the advantage at big points for the better player. On the other hand, if

x15 has an effect (as it does in the men’s singles), then the better a player (independent

of his opponent), the larger the advantage at big points. So, H3 turns out to be true,

but not in the same way for men and women. There is one further point worth noting.

Since w̄ = 0, αw is unidentified; see section 4. We found in Table 5 that αw < 0 for

the women, but αw = 0 for the men and hence that H2 (Quality will show in the end)

is true for the women, but not for the men. This corresponds to β̂14 being significantly

different from 0 in the ladies’ singles, but not in the men’s singles.

Maybe there is a relationship between how well a player did at previous big points

in the match and how well he or she performs at a big point now. The variable x16

attempts to measure this phenomenon, but it has very little effect.

After. Typical examples of dependence occur when the point following a ace or double

fault is different than other points. We have

H4: An ace is worth more than one point,

H5: A double fault affects the next point as well.

The two regressors x17 and x18 are dummy variables taking the value 1 if an ace (double

fault) was served at the previous point in the same game, and 0 otherwise. Hypothesis

H4 says that in the point following an ace, the server has an increased probability of

winning the point. This is true for the men, but not for the women. The effect of a

double fault on the next point is negligible.16

Breaks. A “break” occurs when a game is won not by the server but by the receiver.

One break is often enough to decide the set; see Magnus and Klaassen (1998d). There

are three hypotheses relevant to this case.

H6: After breaking your opponent’s service, there is an increased chance that you

will lose your own service,

H7: After a break in your previous service game, you put extra effort in your current

service game,

16Hypotheses H4 and H5 are treated in more detail in Magnus and Klaassen (1998a).
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H8: After missing all break points in the previous game, there is an increased chance

that you will lose your own service.

Three dummy variables (x19, x20, x21) are introduced to capture this situation. We let

x19 = 1 if there is a break in the previous game, but no break in the game before that

(all within one set). This captures the idea of a sudden break. We let x20 = 1 if there

was a break two games ago (the server’s previous service game), not necessarily in the

same set. Finally, x21 = 1 if there were break points but no break in the previous game

of the same set.

The men don’t seem to be much affected by breaks and missed breakpoints. (We

found this also in section 4.) Generally, points in the men’s singles are less dependent

than in the ladies’ singles. For the women, however, H6 and H8 appear to be true.

First game. Casual observation tells us that

H9: Few breaks occur during the first few games in a match,

maybe because the receiver is trying to get used to the opponent’s service. We define

x22 = 1 if the current game is the first game of the match, x22 = 0 otherwise. Another

often-heard statement is

H10: In the first game of a new set, the server is in extra danger to lose his/her service.

We let x23 = 1 if the current game is the first game in a new set, but not in the first set.

We find that H9 holds in the men’s singles and H10 in the ladies singles.

New balls. All commentators and most spectators believe that

H11: Serving with new balls provides a slight advantage.

At Wimbledon six new balls are provided after the first seven games (to allow for the

preliminary warm-up) and then after every nine games. There are two ways we can test

this hypothesis. First we can define a dummy variable x24 which takes the value 1 in

each game with new balls (game 8, 17, ...), and 0 otherwise. From the data (almost
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90,000 points!) there is not enough evidence that new balls are an advantage. One

could argue that x24 does not take account of the slow decline of the balls. So we define

x25 = 0, 1, . . . , 8 depending on the age of the balls. In the first game of the match x24 = 2,

in game 7 x25 = 8, in game 8 x25 = 0, etcetera. If H11 were true than the coefficient

β25 should be negative. In the men’s singles, β̂25 > 0, although not significantly. We

conclude that there is no reason to believe that new balls have any effect.

Other. There are two other hypotheses that go round:

H12: There exists a psychological advantage to serve first in a set,17

H13: In long matches the dominance of the service decreases.

To test H12, we let x26 = 1 if current server started to serve in the current set. There is

no evidence that this provides any advantage. If anything, there is very slight evidence

of a disadvantage of serving first in the ladies’ singles. The next hypothesis, H13, is

based on the idea that the server gets tired and/or that the receiver gets accustomed

to his/her opponent’s service. We define x27 as the logarithm of the number of service

points played, including the current point. In the men’s singles the effect is negligible,

but in the ladies’ singles there is clear evidence that this effect occurs.

In the men’s singles there are only four of the thirteen hypotheses considered that

survive statistical scrutiny. These are: Quality will show in the end, real champions play

their best tennis at the big points, an ace is worth more than one point, and few breaks

occur during the first few games in a match. The rest is folklore.

In the ladies’ singles six of the thirteen hypotheses survive: quality will show in the

end, real champions play their best tennis at the big points, the break-rebreak effect, the

missed break points effect, the effect that more breaks occur in the first game of a new

set, and the decrease in service power.

7 Two match profiles

Our statistical analysis shows that p0t is better than p00 and that pt is better than p0t,

but it does not show how much impact the difference between the three probability func-

17Kingston (1976) and Anderson (1977) show - on theoretical grounds - that there should be no
advantage of serving first in a set.
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tions has on the analysis of a match. In this section we analyse two famous Wimbledon

finals: Sampras-Becker (1995) and Graf-Novotna (1993).18 The results in this section

can be interpreted as a sensitivity analysis.

The 1995 men’s singles final resulted in a 4-set victory for Sampras: 6-7, 6-2, 6-4, 6-2.

Sampras was seeded 2 (ATP rank 2), Becker was seeded 3 (ATP rank 4). As a result

the “expected” round R̄ was 7 for Sampras and 6 for Becker, and the quality Q was 7

for Sampras and 6.77 for Becker. Based on the quality of both players, the probability

p00 (winning a point on service) was

p̂00 = 0.6815(Sampras), p̂00 = 0.6757(Becker),

a very small difference. The second model (p0t) is given by the first-order equation (12)

with w = 0.0090. The third model (pt), our prefered model, is the “reduced model”

presented in Sections 5 and 6.

FIGURE 2

Sampras started to serve. He never lost his service game, while Becker was broken

five times. In Figure 2 we present for both players their match profile. On the horizontal

axis we plot the number of the point in the match (1, 2, . . . , 246); on the vertical axis,

the probability of winning the next service point conditional on everything known so far.

The light horizontal line is p̂00, the relatively smooth somewhat thicker line is p̂0t

(naive first-order dynamics), and the thick ragged line is p̂t (reduced model Table 6).

In the first set both players performed according to their pre-match expectation p00.

The turning point came in the second set when Sampras raised his game (and continued

at this higher level), while Becker dropped below his expected game. The top panel

shows that Sampras performed well on his service; the bottom panel shows that Beck-

er (from the third game in the second set onwards) did not perform so well on his service.

The spectacular 1993 ladies’ singles final between Graf and Novotna is plotted in

Figure 3. While the Sampras-Becker final was a fairly smooth match, this was certainly

18A lot has been written about the Sampras-Becker final, and in particular about Becker’s weak
second service; see Borghans (1995) and van Moorsel (1995).
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Figure 2: Three models for the probability of winning a point on service, Sampras-Becker

1995 Wimbledon final.
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not the case for the Graf-Novotna final. Eventually, Graf won 7-6, 1-6, 6-4. Graf’s

service was broken six times (twice in every set); Novotna’s service was broken five times

(twice in the first set, three times in the final set). After losing the first set in a close

tie-break, Novotna won the second set 6-1 and led Graf 4-1 in the final set. Then she

collapsed and lost five consecutive games and the championship.

FIGURE 3

Graf was seeded 1 (WTA rank 1) and Novotna was seeded 8 (WTA rank 9). Their

“expected” round R̄ was 8 and 4.83, respectively. Their quality Q was therefore 8 and

6.34, respectively, and their pre-match probabilities were

p̂00 = 0.6208(Graf), p̂00 = 0.5451(Novotna),

a substantial difference. Graf was the clear pre-match favourite.

These two probabilities are plotted in Figure 3 (the light horizontal line). The second

line plots p̂0t (with w = 0.0045) and the third (thick, ragged) plots p̂t. There were 210

points in the match.

Graf’s service games were a little below expectation in the first set and much below

expectation in the second set. In the third set her service recovered and became even

better than the pre-match expectation. It is clear that the first-order dynamics estimate

p̂0t is too smooth and is unable to model a “collapse”.

Novotna’s profile is very different than any of the other three. It is very ragged and

precisely what one would expect her profile to look like. Novotna performed a little

below expectation on service in the first set. In the second set her service games went

well, but the main reason for het 6-1 victory in that set is that Graf’s service did not go

well. The most striking feature of Figure 3 is that Novotna’s collapse halfway through

the final set is clearly visible. Also clearly visible is the fact that Graf’s victory is due

to the fact that Novotna started to play badly in her service games, not to the fact that

Graf played exceptionally well in her service games.
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Figure 3: Three models for the probability of winning a point on service, Graf-Novotna

1993 Wimbledon final.
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The profiles demonstrate that our final model p̂t picks up the relevant features of a

match which are not picked up by the simpler models p̂00 and p̂0t. In the simplest model

p̂00 is just a constant and in the first-order dynamics model p̂0t is too smooth. Only p̂t

appears to take account of all relevant features in the match.

8 Conclusions

The analysis performed here on 88,883 points (481 matches) at Wimbledon, 1992-1995,

shows that points in professional tennis are neither independent nor identially distribut-

ed. Casual observation would suggest that in amateur tennis there is more rather than

less dependence: one missed smash and the amateur looses the next few points as well.

This paper proposes a model that captures this dependence and non-identical distribu-

tion and, in addition, tests many of the well-known tennis “wisdoms”.

Even though we have been fortunate in being allowed to use a large data set (almost

90,000 points), we could have done more if more data had been available. If similar data

on the other three grand slam tournaments would be available, we could incorporate the

type of court and analyse its effect. If, in addition, data were available on ATP/WTA

tournaments, we could incorporate the history of matches between the same players and

possible design strategies for individual players against specific opponents.

With the current data set we hope to answer two further questions in future work.

First, we expect to obtain an optimal first/second service strategy. How difficult should

the first service be? What is the “optimal” number of double faults? (Not zero, of

course!) Secondly, we wish to obtain optimal forecasts for the probability of winning a

match, while the match is in progress.
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