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Abstract

In this paper we study information sharing situations. For every information

sharing situation we construct an associated cooperative game, which we call an

information sharing game. We show that the class of information sharing games co-

incides with the class of cooperative games with a population monotonic allocation

scheme.
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1 Introduction

In this paper we combine two ¯elds of research in game theory, knowledge and cooperative

decision making. Knowledge is one of the areas in non-cooperative decision making that

has received a considerable amount of attention recently. However, less attention has

been paid to the relation between knowledge and cooperative decision making. In this

paper we will associate cooperative games with situations that deal with information

sharing. Our main result is that the resulting cooperative games exhaust the class of

cooperative games with a population monotonic allocation scheme.

The work of Aumann (1999a,b) has initiated a considerable amount of research deal-

ing with knowledge and information. Here, we follow Aumann (1999a) by assuming that

players do not have perfect information on the true state of the world. Additionally, we

assume that players have to make decisions, where the outcome of their decisions does

depend on the true state of the world. Sharing information between di®erent players

who have to make decisions and who have di®erent information might increase joint

(expected) pro¯ts. Such an information sharing situation naturally results in a cooper-

ative game with transferable utilities. The resulting game will be called an information

sharing game.

The approach taken in this paper falls under the general approach of associating

cooperative games with speci¯c (economic) situations. Such an approach was also taken

by Shapley and Shubik (1969). They studied the class of market games, i.e., games

that were derived from an exchange economy. Their main result states that the class

of market games coincides with the class of totally balanced games. Many similar and

related results have been derived since. Kalai and Zemel (1982b) showed such a relation

between °ow games and non-negative totally balanced games. Subsequently, in Kalai

and Zemel (1982a) they studied several generalized network problems that yield totally

balanced games. Non-negative balanced games were shown to be exhausted by °ow

games with committee control in Curiel et al. (1989). In van den Nouweland et al. (1993)

it is shown that monotonic cooperative games are spanning network games. Finally, we

mention economies with land. Legut et al. (1994) showed that every cooperative game

that results from an economy with land has a population monotonic allocation scheme

(cf. Sprumont (1990)). Reijnierse (1995) showed that a subclass of these games, in

which initial endowments of the players are disjoint parcels of land with veto control,

exhaust the class of games with a population monotonic allocation scheme. The current

paper is in the same style as these papers, dealing with information sharing games and

cooperative games with a population monotonic allocation scheme.

The set-up of this paper is as follows. Section 2 deals with preliminaries regarding
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cooperative games, population monotonic allocation schemes, and information partitions.

In section 3 we introduce information sharing situations and associate a cooperative game

with each information sharing situation, which we call an information sharing game. The

main result, which states that the class of cooperative games with a population monotonic

allocation scheme coincides with the class of information sharing games, can be found

in section 4. We conclude in section 5 with some remarks on assumptions that are made

in this paper and on possible generalizations to a setting without these assumptions.

2 Preliminaries

A cooperative game with transferable utility (TU-game) is a pair (N; v) where N =

f1; : : : ; ng denotes the set of players and v is a real-valued function on the family 2N of
all subsets of N with v(;) = 0. The function v is called the characteristic function of

the cooperative game (N; v).

Sprumont (1990) introduced population monotonic allocation schemes (PMAS): a

vector (yi;S)i2S;SµN is a population monotonic allocation scheme for the cooperative game

(N; v) if it satis¯es the following conditions:

(a)
P

i2S yi;S = v(S) for all S µ N .

(b) yi;S · yi;T for all S; T µ N with S µ T and all i 2 S.

Knowledge of a player can be modeled in several ways. Aumann (1999a) presents and

discusses ¯ve equivalent formalizations of the idea of knowledge: signal functions, in-

formation functions, information partitions, knowledge operators, and knowledge u¯elds

(universal ¯elds). Here we will concentrate on information partitions. The set of all

possible states of the world will be denoted by ­. For notational convenience and clarity

of exposition we will assume throughout this paper that j­j < 1.1 For example, if the
roll of a dice is studied the set of states of the world is the set of possible results of rolling

a dice, ­ = f1; 2; 3; 4; 5; 6g.
An information partition is a partition of ­. A player with some information partition

cannot distinguish between the states of the world that belong to the same partition

element. For example if a player will be told that the result of rolling a dice is odd or

even, his information partition is ff1; 3; 5g; f2; 4; 6gg. So, he cannot distinguish between
states 1, 3, and 5, nor can he distinguish between states 2, 4, and 6. Denote the set of

all partitions of ­ by ¦­. For all information partitions I 2 ¦­ and all ! 2 ­ we denote
the element of I containing ! by P (!; I). For every two information partitions, say I

1See section 5 for some remarks on assumptions made in this paper.
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and I¤, we call I a re¯nement of I¤ if every element of I is a subset of an element of I¤.

If I is a re¯nement of I¤ then we call I¤ a coarsening of I.

Consider two players, say 1 and 2, with information partitions I1; I2 2 ¦­, respec-

tively. Then, if !¤ is the true state of the world, player 1 knows that the true state of

the world is an element of P (!¤; I1), whereas player 2 knows that the true state of the

world is an element of P (!¤; I2). So, if they share their information they know that the

true state of the world belongs to P (!¤; I1) \ P (!¤; I2).
The joint information partition of these two players, if they share their information,

is the coarsest partition of ­ that is a re¯nement of both I1 and I2:

I1 _ I2 =
n
P1 \ P2

¯̄
¯ P1 2 I1; P2 2 I2; P1 \ P2 6= ;

o
:

The partition I1_I2 is called the join of I1 and I2. For a set of players S with information
partitions (Ii)i2S the join of their information partitions is de¯ned similarly:

_i2SIi =
n

\i2S Pi
¯̄
¯ Pi 2 Ii for all i 2 S;\i2SPi 6= ;

o
: (1)

We assume that all players have the same prior probability measure on the set of

possible states of the world. This common prior is denoted by ¼. Furthermore, we will

assume that every state occurs with positive probability. So, ¼(!) > 0 for all ! 2 ­. The
probability of an event A µ ­ is denoted by P ¼(A) =

P
!2A ¼(!). Of course, P

¼(­) = 1.

Once player i knows that the true state of the world is an element of Pi 2 Ii he can

deduce the posterior probabilities from prior probabilities by Bayesian updating:

P ¼(!jPi) =
P ¼(f!g \ Pi)
P ¼(Pi)

=

8
<
:

P ¼(f!g)
P ¼(Pi)

if ! 2 Pi;

0 otherwise.

3 The model

In this section we will introduce information sharing situations, which describe economic

agents who have to make decisions based on the information they have. The rewards

the players receive depend on their own choices and on the true state. We start with an

example that illustrates some notions we will encounter in this section. Subsequently,

we will formally describe information sharing situations. Finally, we will construct a

cooperative game for each information sharing situation.

Example 3.1 Consider a small hotel with 8 rooms, 4 on the bottom °oor and 4 on the

top °oor. On each °oor, two rooms are on the north side and two rooms on the south

side. Making additionally use of the east and west side uniquely describes each room in
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terms of directions and °oors. Three people are in the hotel. All three will sleep in the

hotel, but they also know that there is a monster in one of the rooms of the hotel. All

three people will get to know partial information about the hiding place of this monster.

Player 1 will get to know whether it is on the north or south side, player 2 whether it

is on the west or east side, and player 3 will know whether it is on the bottom or top

°oor. The three players have di®erent preferences. Player 1 wants to be as far away

from the monster as possible. Player 2 is interested only in being on a di®erent °oor

than the monster, while player 3 would like to catch the monster and, hence, wants to be

in the same room as the monster. It seems obvious that all players pro¯t from sharing

information. 3

An information sharing situation is a tuple (­;N; ¼; (Ii)i2N ; (Ai)i2N ; (ri)i2N). Here,

­ is a (¯nite) set describing all possible states, N = f1; : : : ; ng is the set of players,
and ¼ is a probability distribution over ­ describing the common prior of the players

with a positive probability for all states of the world. For a player i 2 N , Ii describes
a partition of ­. Two states are in the same partition element in Ii if player i cannot

distinguish between these states. The set Ai contains all actions of player i 2 N . We

will assume that Ai is ¯nite for all i 2 N . Finally, ri is a function that assigns to every
pair (!; ai) 2 ­£ Ai a reward ri(!; ai) 2 IR.

Example 3.2 Consider the situation described in example 3.1. We will de¯ne an in-

formation sharing situation describing this example. The set of states in the example

consists of all rooms in the hotel, representing the possible places of the monster. Each

room can be denoted by a binary code of length 3, where the ¯rst coordinate denotes

whether the room is on the north side (0) or south side (1) of the hotel. Similarly, the

second coordinate denotes whether the room is on the east side (0) or west side (1). The

third coordinate denotes whether the room is on the bottom °oor (0) or top °oor (1).

So, ­ = f0; 1g3 and, for example, 001 refers to the room that is in the north-east corner
of the top °oor. The three players are contained in player set N = f1; 2; 3g. Before-
hand, every player believes that all rooms have the same probability that it contains

the monster. Hence, the prior distribution assigns equal probabilities to all rooms, i.e.,

¼(!) = 1
8
for all ! 2 ­. For notational convenience we will denote the two elements of

the information partition of player 1 by N and S, where N contains all rooms on the

north side and S all rooms on the south side. Similarly, we introduce W and E for the
west and east side. Finally, we denote B and T for the rooms on the bottom and top
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°oor, respectively. Now, the information partitions of the players are easily described,

I1 =fN ;Sg; (2)

I2 =fE ;Wg; (3)

I3 =fB; T g: (4)

It remains to describe the possible actions and the reward functions of the players. Each

player chooses a room to sleep, implying that the action set of each player coincides

with the set of possible states, i.e., Ai = ­ for all i 2 N . Finally, the following reward
functions capture the preferences of the players,

r1(!; a) =36
3X

i=1

jai ¡ !ij; (5)

r2(!; a) =18ja3 ¡ !3j; (6)

r3(!; a) =

(
60 if a = !;

0 otherwise.
(7)

3

A player will get to know only the element of his information partition containing

the true state. This implies that a player will get to know the true state only if this

state is the single element of an information partition element. Together with the prior

probability distribution over the set of states the player can determine the posterior

probability distribution over the elements of the partition element, which is a conditional

distribution. Assuming risk-neutrality of the player, this player will choose the strategy

that maximizes his expected payo®. A priori, a player can already make up his mind

what his choice will be, for any possible element of his information set. The a-priori-

strategy of player i can formally be described by a function xi from the set of states ­

into the set of strategies Ai. Since a player cannot distinguish between states in the same

partition element, this function has to be constant on every element of his information

partition, i.e., on every Pi 2 Ii. The set of all such functions for player i will be denoted
by Xi(Ai; Ii). Since ­ is a ¯nite set it follows that Ii contains a ¯nite number of partition

elements. Together with the ¯niteness of Ai it follows that the set Xi(Ai; Ii) is ¯nite.

The (a-priori-)value of player i, notation vIi(fig), is de¯ned as his maximum expected

payo®, i.e.,

vIi(fig) = max
xi2Xi(Ai;Ii)

E¼[ri(:; xi(:))]; (8)

where E¼ represents the expected value with respect to prior distribution ¼. This max-

imum is well de¯ned by the ¯niteness of Xi(Ai; Ii).
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Example 3.3 Consider the information sharing situation of example 3.2. Player 1

knows whether the monster is in the north or the south side of the hotel. Given the

reward function of player 1, an optimal action of player 1 is to choose an arbitrary room

in the south side if the monster is in the north side and an arbitrary room in the north

side if the monster is in the south side. Then the average 'distance' between player 1

and the monster is 1
4
? 1 + 2

4
? 2 + 1

4
? 3 = 2. Hence, the expected payo® to player 1 is

vI1(f1g) = 2 ? 36 = 72. 3

For any information sharing situation we can determine the value of a player. How-

ever, players might have an incentive to cooperate with each other by sharing information.

Sharing information can result in higher joint pro¯ts for the players. We will construct

a cooperative game with each information sharing situation, representing the idea that

cooperation between the players consists of sharing information. Sharing information

between the players results in a re¯ned information partition for the players that share

the information. If players i and j share their information, both end up with information

partition Ii_Ij. With this information player i can expect value vIi_Ij (fig). So, together
players i and j can expect

vIi_Ij(fig) + vIi_Ij(fjg):

Obviously, this idea can be extended to every set of players. This results in a cooperative

game which we call the information sharing game (N; v·) associated with information

situation ·, where

v·(S) =
X

i2S
v_j2SIj (fig) for all S µ N:

Example 3.4 Denote the information sharing situation that was studied in examples

3.2 and 3.3 by ·. We already showed that v·(f1g) = 72. Now, consider coalition

f1; 3g. After players 1 and 3 have shared their information, player 1 knows not only
whether the monster is in the north or south side of the hotel, but also whether it is

on the bottom °oor or the top °oor. Hence, player 1 will choose the other side and

other °oor. Additionally, he will make an arbitrary choice between the east side and

the west side. Hence, the average distance between player 1 and the monster will be
1
2
? 2 + 1

2
? 3 = 21

2
, implying that the expected contribution of player 1 to v(f1; 3g) is

21
2
? 36 = 90. Since player 3 has a 50% chance of choosing the correct room it follows

that the expected contribution of player 3 to v·(f1; 3g) is 1
2
?0+ 1

2
?60 = 30. We conclude

that v·(f1; 3g) = 90 + 30 = 120.
Similar calculations for the other coalitions show that the information sharing game
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associated with · is described by

v·(T ) =

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

0 if T = ;;
72 if T = f1g;
9 if T = f2g;
15 if T = f3g;
99 if T = f1; 2g;
120 if T = f1; 3g;
48 if T = f2; 3g;
186 if T = N:

(9)

3

4 Population monotonic allocation schemes

In this section we show that the class of information sharing games coincides with the

class of cooperative games that have a population monotonic allocation scheme. Firstly,

consider the following example.

Example 4.1 Consider example 3.4. It is easily checked that (v_j2SIj (fig))i2S; SµN
is a population monotonic allocation scheme for the game (N; v·). This population

monotonic allocation scheme is represented in table 1.

1 2 3

f1g 72 * *

f2g * 9 *

f3g * * 15

f1,2g 90 9 *

f1,3g 90 * 30

f2,3g * 18 30

N 108 18 60

Table 1: A population monotonic allocation scheme for the game (N; v·) in example 4.1.

According to this population monotonic allocation scheme player 2, for example, re-

ceives 18 if coalition f2; 3g would happen to result. 3
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Example 4.1 describes a direct way to determine a population monotonic allocation

scheme in an information sharing game, using the structure of the underlying information

sharing situation. The following theorem shows that this holds in general.

Theorem 4.1 Let · = (­; N; ¼; (Ii)i2N ; (Ai)i2N ; (ri)i2N) be an information sharing sit-

uation and (N; v·) the associated information sharing game. Then (v_j2SIj (fig))i2S; SµN
is a population monotonic allocation scheme for the game (N; v·).

Proof: We will check that (v_j2SIj(fig))i2S; SµN satis¯es the conditions in the de¯nition
of population monotonic allocation schemes.

(a) Let S µ N . Then
P

i2S v
_j2SIj(fig) = v·(S) by de¯nition of v·(S).

(b) Let S; T µ N with S µ T . Then _j2SIj is coarser than _j2T Ij , i.e., every
element of _j2SIj is partitioned in one or more elements of _j2T Ij , since _j2T Ij =
(_j2SIj) _ (_j2TnSIj). This implies that every function that is constant on every
element of _j2SIj is also constant on every element _j2T Ij :

Xi(Ai;_j2SIj) µ Xi(Ai;_j2T Ij) for all i 2 S:

Hence, for all i 2 S it holds that

v_j2SIj (fig) = max
xi2Xi(Ai;_j2SIj)

E¼[ri(:; xi(:))]

· max
xi2Xi(Ai;_j2T Ij)

E¼[ri(:; xi(:))]

= v_j2T Ij (fig):

This completes the proof. 2

Theorem 4.1 implies that every information sharing game has a PMAS. In the fol-

lowing theorem we will deal with the the reverse question, i.e., is every game with a

PMAS an information sharing game? We show that this question can be answered in

the a±rmative.

Theorem 4.2 Let (N; v) be a cooperative game with a population monotonic allocation

scheme. Then there exists an information sharing situation · such that v· = v.

Proof: Let (yi;S)i2S; SµN be a population monotonic allocation scheme for (N; v). De¯ne

the information sharing situation · = (­;N; ¼; (Ii)i2N ; (Ai)i2N ; (ri)i2N) in the following

way.
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1) The set ­ is the collection of all maps ! : 2N ! 2N that satisfy !(S) µ S for every

S 2 2N . A state of the world ! can be seen as a mechanism that assigns to every

coalition a selected subgroup.

2) The prior probability distribution ¼ is de¯ned by ¼(!) = 1=j­j for every ! 2 ­.
So ¼ assigns equal probabilities to all states in ­.

3) In order to de¯ne the information partition Ii of player i 2 N we introduce the

equivalence relation »i on ­: ! »i !
0 if for all S µ N with i 2 S we have i 2 !(S)

i® i 2 !0(S). The information partition Ii consists of all equivalence classes of »i.

The information partition Ii can be interpreted as follows: player i only knows for

every coalition to which he belongs whether he is part of the selected subgroup or

not.

4) The action set Ai of player i 2 N is de¯ned by Ai = fS µ N j i 2 Sg £ f0; 1g.
An action a = (a1; a2) of player i consists of a choice of a coalition a1 to which he

belongs together with a guess a2 whether the size of the selected subgroup !(a1)

is even (a2 = 0) or odd (a2 = 1).

5) The reward function ri of player i 2 N is de¯ned by

ri(!; a) =

(
yi;a1 if j!(a1)jmod 2 = a2;
2yi;fig ¡ yi;a1 otherwise

for every ! 2 ­ and a 2 Ai. So, player i receives yi;a1 if he guesses correctly

whether the size of the selected subgroup of the coalition which he chose (a1) is

even or odd. Otherwise, he receives the smaller amount 2yi;fig ¡ yi;a1 .

In order to show that v· = v it su±ces to prove for every S µ N , i 2 S that v_j2SIj (fig) =
yi;S. Since then we have, for every S µ N ,

v·(S) =
X

i2S
v_j2SIj (fig) =

X

i2S
yi;S = v(S):

So, let S µ N , i 2 S. Let P 2 _j2SIj . Note that, for every T µ S, the selected subgroup

does not depend upon ! 2 P , i.e. for every !; !0 2 P we have !(T ) = !0(T ). We will

show that the maximal conditional expected reward for player i, conditional upon P ,

equals yi;S. Thereby we distinguish three cases.

First, consider the action a¤ = (a¤1; a
¤
2) 2 Ai with a¤1 = S and a¤2 = j!(S)jmod 2 for some

! 2 P . Note that a¤2 is well-de¯ned since !(S) = !0(S) for every !; !0 2 P . Clearly,

ri(!; a
¤) = yi;S for every ! 2 P , so the conditional expected reward for player i, if he

chooses action a¤, equals yi;S.

Secondly, consider action a = (a1; a2) with a1 µ S. Keep in mind that !(a1) = !
0(a1)
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for every !; !0 2 P . If a2 = j!(a1)jmod 2 for every ! 2 P then ri(!; a) = yi;a1 for every
! 2 P and hence the conditional expected reward for player i, if he chooses action a,

equals yi;a1 · yi;S. If a2 6= j!(a1)jmod 2 for every ! 2 P then ri(!; a) = 2yi;fig ¡ yi;a1 for
every ! 2 P and hence the conditional expected reward for player i, if he chooses action
a, equals 2yi;fig ¡ yi;a1 · yi;a1 · yi;S.

Thirdly, consider an action a = (a1; a2) 2 Ai with a1 6µ S. Let j 2 a1nS. With every
! 2 ­ we can associate !0 2 ­, ! 6= !0 in the following way: !0(T ) = !(T ) for every
T 6= a1, !0(a1) = !(a1)nfjg if j 2 !(a1) and !0(a1) = !(a1)[fjg if j =2 !(a1). Note that
!0 »i ! for every i 2 Nnfjg. In particular !0 »i ! for every i 2 S. Therefore, we have
! 2 P i® !0 2 P . Moreover, j!(a1)j is even i® j!0(a1)j is odd. Since (!0)0 = ! for every
! 2 ­ it follows that for half of the states ! 2 P we get ri(!; a) = yi;a1 and for the other
half of the states ! 2 P we get ri(!; a) = 2yi;fig ¡ yi;a1. So, the conditional expected

reward for player i, if he chooses action a, equals 1
2
yi;a1 +

1
2
(2yi;fig ¡ yi;a1) = yi;fig · yi;S.

We conclude that the maximal conditional expected reward for player i equals yi;S. Since

this is true for every P 2 _j2SIj we get

v_j2SIj(fig) = yi;S:

This ¯nishes the proof. 2

5 Remarks

We conclude in this section with some remarks on assumptions made in the paper. For

several reasons we have assumed ¯niteness of several sets in our model. Firstly, because of

notational convenience and clarity of exposition. Extending to a setting with ­ possibly

being in¯nite demands for the use of a ¾-algebra of subsets of ­, a probability measure

on this ¾-algebra, and a reward function that is bounded and measurable with respect

to this ¾-algebra. In our opinion this will distract attention from the main ideas in this

paper, though extending our model in this direction is very well possible.

Secondly, non-¯niteness of the number of actions of a player would demand for a

slight change in the model, by taking the supremum rather than the maximum in (8)

or by making some additional assumptions on Ai and ri, e.g., compactness of Ai and

continuity of ri. Again we note that such a generalization is possible.

We remark that for details on extensions as described above, the interested reader can

turn to Brânzei et al. (2000), who introduce a model that is similar to our model, but with

one decision maker only. Brânzei et al. (2000) do not make any ¯niteness-assumptions.
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