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Abstract

Itiswell-knownthat financia datasetsexhibit conditional heteroskedasticity. GARCH
type models are often used to model this phenomenon. Since the distribution of the
rescaled innovationsisgenerally far fromanormal distribution, asemiparametric approach
is advisable. Severa publications observed that adaptive estimation of the Euclidean
parametersisnot possiblein the usual parametrization when thedistributionof therescaled
innovationsisthe unknown nuisance parameter. However, there exists areparametrization
such that the efficient score functions in the parametric model of the autoregression
parameters are orthogonal to the tangent space generated by the nuisance parameter, thus
suggesting that adaptive estimation of the autoregression parameters is possible. Indeed,
we construct adaptive and hence efficient estimators in a general GARCH in mean type
context including integrated GARCH models.

Our analysisis based on a general LAN Theorem for time-series models, published
elsewhere. In contrast to recent literature about ARCH model swe do nhot need any moment
condition.

Keywords: LAN in time-series, semiparametrics, adaptivity, (integrated) GARCH (in
mean).

1 Introduction.

It is a well established empirical fact in financial economics that time-series like exchange
rates and stock prices exhibit conditional heteroskedasticity. Big shocks are clustered together.
The original paper of Engle (1982) proposes the ARCH model to incorporate conditional het-
eroskedasticity in econometric modeling of financial datasets. Bollerdev (1986) introducesthe
GARCH model as a generalization of ARCH. This facilitates a parsimonious parametrization
whichisparticularly useful when shocks areimportant for alonger period (theideacorresponds
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to the generalization of AR to ARMA models). Several variations and extensions have been
proposed in the literature. Nelson (1991) proposes the exponential GARCH model to capture
thefact that the stock market issmoother in upward directionsthan in the opposite case (because
of the leverage effect). Gourieroux and Monfort (1992) suggest a nonparametric approach.
They do not restrict attention to conditional variances that depend only upon past squared
observations, but they try to estimate the functional form of the conditional heteroskedastic
variance from the data. Another important extension isthe GARCH-M type model [cf. Engle,
Lilien, and Robins (1987)]. According to the Capital Asset Pricing Model one expects higher
returnsdueto risk premiaif the asset ismorerisky. To model this phenomenon the conditional
variance is also included in the mean equation. Lots of applications have shown the strength
of the GARCH type of modeling. In this paper we do not refer to original application papers
but we want to draw attention to the monograph of Diebold (1988) and the survey paper of
Bollerdev, Chou, and Kroner (1992).

Despite the success of the GARCH history there are several topics that require attention.
In this paper we consider the distributional assumptions on the rescaled innovations. The
original formulationsof GARCH type model s assume that these residual s are standard normal .
Diebold (1988), however, shows that this assumption is often violated in empirical examples.
Typically, the innovations have fat-tailed distributions and they are also non-symmetric in
severa applications. Drost and Werker (1995) provide an explanation for high kurtosisif the
observations arise from a GARCH data generating process in continuous time [ see also Drost
and Nijman (1993) and Nelson (1990a)]. Diebold (1988) suggests that the errorswill be * more
normal’ if the process is more and more aggregated. Despite the observed non-normality of
the error structure Weiss (1986) and Lee and Hansen (1994) have shown that Quas Maxi-
mum Likelihood Estimation (QMLE), based upon the false assumption of normality, yields
\/n-consistent estimators, see also Lumsdaine (1989). However, the efficiency loss may be
considerable. Therefore, several authorstry to avoid efficiency loss, allowing theerror structure
to belong to some flexible parametric family of distributions. Student ¢-distributions are very
popular, cf., e.qg., Baillie and Bollerdev (1989). As a drawback of the introduction of such
parametric models of the innovation distribution we mention that the results of Weiss (1986)
and Lee and Hansen (1994) do not carry over to genera error distributions. While QMLE
based upon the normal distribution yields /n-consistent estimators, QM LE based upon other
distributions (e.g., the student distributions) generally even fails to be consistent if the true
distribution is different.

In the approaches mentioned above, the stochastic error structure is still described by
some finite dimensional statistical model. To avoid the introduction of a wrong parametric
family of innovation distributions leading to inconsistent estimators and to be more flexible, a
semiparametric approachisto bepreferred. Wewant to estimatethe conditional heteroskedastic
character of the GARCH processbut we do not want to restrict the class of error distributionstoo
much. Apart from someregularity conditionswe will assumethe distribution of theinnovations
to be completely unknown. In passing we will consider the case of symmetrically distributed
innovations. At first sight, these types of estimation problems seem to be much harder than the
corresponding parametric ones and one would expect that optimal semiparametric estimators
are less precise asymptotically than optimal parametric estimators. For lots of interesting
econometric models this presumption turns out to be too pessimistic. Adaptive estimation
is often possible. Adaptive estimation is just a special instance of semiparametric efficient



estimation. Just asin parametric models, in semiparametric models an efficient estimator isan
asymptotically normal estimator with minimal variance. If thisminimal varianceisthesame as
when the error distribution is known, one calls the efficient estimator adaptive since it adapts,
so to say, to the underlying error distribution. Typically, an estimator based on a (wrongly)
specified error distribution is not efficient in the semiparametric sense. For i.i.d. observations
alot of adaptive and semiparametric results are available [cf., e.g., Bickel, Klaassen, Ritov,
and Wellner (1993) [BKRW(1993) from now on] and the survey papers of Robinson (1988)
and Newey (1990)]. Rigorous results are sparse in a time-series context. ARMA models
are considered in detail by Kreiss (1987a,b). Some results for GARCH are obtained in
Engle and Gonzalez-Rivera (1991) and Steigerwald (1992) [see also Potscher (1995) and
Steigerwald (1995)]. Linton (1993) discusses the semiparametric properties of ARCH models
in more detail. However, these papers impose rather high moment conditions. The parameter
estimates obtained in empirical work generally fail these moment conditions and, therefore,
the scope for application seems to be limited.

In Drogt, Klaassen, and Werker (1994b) [henceforth DKW/(1994b)] ageneral LAN Theorem
for time-series models is presented together with conditions guaranteeing the existence of
efficient estimators. We will apply these results to GARCH type models, including, e.g.,
I-GARCH and GARCH-M, thus avoiding severe moment conditions. We do not need the
existence of moments neither of the rescaled innovations in the GARCH model (admitting for
example Cauchy errors) nor of the observations (as is clear from the inclusion of integrated
GARCH models). Since we only assume the existence of a stationary solution of the GARCH
equations, our approach captures the models commonly used. A general LAN Theorem for
time-series models is also contained in Theorem 13, Section 4, of Jeganathan (1988). Based
hereonishis Theorem 17, Section 4, which yieldsadaptive estimatorsfor ARMA-typelocation
models. However, thisresult isnot directly applicableto GARCH scale modelsand, moreover,
it heavily leans on symmetry of the innovations.

To keep notation simple we restrict attention to the popular and most commonly used
GARCH(1,1) type models. This preserves the essential difficulty of GARCH (with respect to
ARCH) since boththe AR and the MA part are present in the conditional variance equation. All
past observations show up (at an exponentially decaying rate). The statement of our theorem
with respect to GARCH(1,1) is easily generalized to the general case of GARCH(p,q).

Thefirst semiparametric resultsin a GARCH context were only partially successful. Engle
and Gonzéalez-Rivera (1991) state “Monte Carlo evidence suggest that this semiparametric
method [i.e. the discrete maximum penalized likelihood estimation technique of Tapia and
Thompson (1978)] can improve the efficiency of the parameter estimates up to 50% over
QMLE, but it does not seem to capture the total potential gain in efficiency. In this sense we
say that the estimator is not adaptive in the class of densities with mean 0 and variance 1; that
is, the estimator is not fully efficient, and it does not achieve the Cramér-Rao lower bound.
The information matrix is not block-diagonal between the parameters of interest (the onesin
the mean and in the variance equation) and the nuisance parameters (the knots of the density).
If we choose the parametric form of the model with a conditional parametric density defined
by a shape parameter, this one being part of the parameters to estimate, we can show easily
that the expectation of the cross-partial derivatives of the log-likelihood function respects the
parameter of interest and the shape parameter isdifferent from0. In other words, the estimation
of the shape parameter affects the efficiency of the estimates of the parameters of interest”



(pp. 355-356). These statements imply that the finite dimensional parameter describing
the GARCH model (with the standardized error distribution as nuisance parameter) is not
adaptively estimable. Thisis not surprising since the classical GARCH formulation contains
ascale parameter, and in most models the variance is not adaptively estimable. Therefore the
scale parameter is often included into the (infinite dimensional) nuisance parameter. For the
GARCH model this procedure does not work: the scores w.r.t. the remaining autoregression
parameters are still not orthogonal to the tangent space. Hence, compl ete adaptive estimation
of the conditional heteroskedastic character is not possible in GARCH models. This explains
the efficiency loss observed by Engle and Gonzalez-Rivera(1991). However, calculation of the
scores w.r.t. the parameters of the GARCH model shows that there are severa orthogonality
relations between the score space and the tangent space generated by the unknown shape.
Linton (1993) and Drost, Klaassen, and Werker (1994a) [henceforth DKW(1994a)] obtain
along different lines a reparametrization of the ARCH and GARCH model respectively such
that the autoregression parameters are adaptively estimable and the location-scale parameters
generate the most difficult one-dimensional subproblems. So, knowledge of the shape of the
error distribution does not help to construct better estimators of the conditional heteroskedastic
character of the GARCH process. Thisresemblesthe regression model with unknown location
i € R, regression parameter 3 € R* and completely unknown error distribution, where the
regression parameter (3 is adaptively estimable if the location parameter is included into the
nuisance [ see Bickel (1982)].

The paper is organized along the following lines. In Section 2 we state the LAN Theorem
for alarge set of GARCH(1,1) type models, including all stationary classical GARCH models
such as, e.qg., I-GARCH and GARCH-M. This LAN property is derived for the parametric
model with the shape of the innovations known, and it implies the Convolution Theorem of
Haek (1970) which we will state next. This Convolution Theorem yields a bound on the
asymptotic performance of estimators in the parametric model and is valid, afortiori, for the
semiparametric model aswell. Section 3 is devoted to the construction of an estimator of the
autoregression parameters on the assumption that the shape of the innovations is unknown,
i.e. within the semiparametric model. This estimator happens to attain the bound from the
parametric Convolution Theorem and therefore is asymptotically efficient in the parametric
model and hence in the semiparametric model, since it does not use knowledge about the shape
of theinnovations. Such an estimator, which attains the parametric bound in a semiparametric
model, is called adaptive. The proofs of these results are based on DKW/(1994b) and most of
them are given in the Appendix.

A small simulation study is presented in Section 4. It turns out that the suggested optimal
estimator performs as expected: the estimator performs better than QMLE and the difference
with MLE (if the error distribution is known) becomes negligible when the sample size is
growing large. The empirical illustration in this section shows that the efficiency loss by using
QMLE may be considerable. Some conclusions are drawn in Section 5.

2 LAN and Convolution Theorem.

We consider a generalization of the reparametrized GARCH(p, ¢) model as given in Lin-
ton (1993), withp = 0, and motivated by adaptation argumentsin DKW(1994a). For notational



simplicity, we take p = ¢ = 1. Inthis manner the essential difficulty of an infinite number of
lagsisretained. To obtain the corresponding results for the general case (withp, ¢ € IN fixed)
a careful replacement of coefficients by vectors suffices.

Let p € R, 0 > 0,a > 0,and 8 > 0 be parameters and let {¢; : ¢ € Z} beani.i.d.
sequence of innovation errors with location zero, scale one, and density g. Put & = u + oe;
and notethat &; isarandom variablewith location i, scae s, and density o 'g({- — u} /o). We
introduce the following convention: random variables, like e and £, denote atypical element
of the corresponding sequences {¢; : t € Z} and {&; : t € Z}.

Consider the model with observations

= h'’6 = phy + o, (2.1)
where the unobservable heteroskedasticity factors h; depend on the past via
he =14 Bhi 1 +ay? | =14 he (B4 a€? ). (2.2)

Observe that the Euclidean parameter 6 = («, 3, i, o)’ isidentifiable. Throughout we assume
that equation (2.2) admits a stationary solution {h; : t € Z}. A necessary and sufficient
condition is given by [Nelson (1990b), Theorem 2]

ASSUMPTION A
EIn{B + af®} < 0. (2.3

Our semiparametric analysis treats the density ¢ asan infinite dimensional nuisance parameter
and includes all strictly stationary GARCH models of type (2.1)—«2.2). These equations
contain, e.g., the classical Engle (1982)-Bollerdev (1986) GARCH model with a different
parametrization and with finite second moments (3 + ao? < 1 and 1 = 0), and the I-GARCH
model of Engle and Bollerdev (1986) (5 + ao? = 1 and p = 0). Furthermore, our model
resembles the GARCH-M model of Engle, Lilien, and Robins (1987). In the mean equation
(2.1) we have included the conditional standard deviation of y; while Engle, Lilien, and
Robins (1987) include a kind of conditional variance. More precisely stated, their model is
givenby z; = dh, +y and = 0, i.e, 2, = Shy + ohy/%e;. Inserting u = 0 in (2.1) or
i =60 = 0 in the GARCH-M model yields the classical GARCH model. Generaly, risk
aversion is stronger pronounced in the original GARCH-M model than in our formulation.

Suppose that we observe i, . . ., y,, and some starting value ho; initializing (2.2). It is not
needed that hy; arises from the stationary solution of (2.2). We are considering estimation of
6, based on ho1, y1, - . ., Yn, in the presence of the infinite dimensional nuisance parameter g.
However, in this section we will fix the nuisance parameter g and in the resulting parametric
model we will derive a bound on the asymptotic performance of regular estimators of 6, a
so-called Convolution Theorem. To that end we choose local submodels and we will study
estimation of 6 locally asymptotically. The above mentioned Convolution Theorem holdsonce
the log-likelihood ratios of the observed random variables are locally asymptotically normal
(LAN).

Observe that the model with the autoregression parameters o and (3 fixed too, corresponds
to the location-scale model for i.i.d. random variables since the information provided by the
observations hg1, y1, . . . , y» iISequal to the information contained in thei.i.d. random variables



&, ..., &, Consegquently, the location-scale model is a parametric submodel of our time-
series model and it makes sense to assume that this submodel is regular, i.e. [see Hgjek and
Sidak (1967)]

AssSUMPTION B Thedistribution of e possesses an absolutely continuous L ebesgue density
g with derivative ¢’ and finite Fisher information for location

= / {d'/9}g(e)de (2.4)
and for scale
= [{1+eg/9(e)Pole)de. (25)
Moreover, the random variable ¢ has location zero and scale one.
To be able to derive an asymptotic lower bound we have to rely on semiparametric methods
as presented in, e.g., BKRW(1993) and DKW(1994a,b). So we fix 6 at 0y = (o, Bo, 1o, o0)’

and choose local parametrizations 6,, = (an, Bn, pin, 0s)" @d 0, = = (Qn, By, fin, G,,)" such that
0, — 0| = O(n=Y/2),10,, — 6| = O(n~'/?), and even

An = V10, — 0,) = A, asn — 0. (2.6)

In the remainder expectations, convergences, etc. are implicitly taken under 6,, and g (unless
otherwise indicated).

Toobtainauniform LAN Theorem we consider thelog-likelihoodratio A, of ko1, y1, - - -, Y
for 6,, with respect to 6,, under 6,, (and g fixed). Observe that the residuals and the conditional
variances up to timet can be recursively calculated from# and the observations hoy, y1, - . . , y::
with hy(0) = hoy, Obtainfort =1,2,. ..

&0) = w/h0), (2.7)
e(0) = {&(0) —u}/o, (2.8)
hip(0) = 14 Bhy(0) + ay;. (2.9)

Conditionally on hg; the density of 44, ..., y, under 6, is
H Jilh 1/2 71{h;t1/2yt — n}) = H Jilh 1/2 9{&ne — tin}/on) = H Jilh 2 9(Ent),

Whereh nt — ht( ) gnt = gt( ) and Ent = €t(8n).
To enhance the interpretation of this formula and to stress the link between the present
time-seriesmodel and thei.i.d. location-scale model we introduce the notation h,,; = h(6,,),

Hu,o}(z) =logg({z — p}/o) —logo,

~ 51/2 1/2
( ]‘SW,:: ) = n1/20'71h 1/2 ( lfnh1/2 MnZ?;Q ) ) (2.10)

onhyy” — onhy)



and &, = €:(0,,). With A2 thelog-likelihood ratio for h¢y, the log-likelihood ratio A,, may be
written as

A, = log {H G bt Pg(En)/ 11 Unlhnt1/29(8nt)} + A,
t=1 t=1

— ; {l{(ﬂn,an) + 0,0 Y2 (Mg, o) Hént) — Z{Mmﬁn}(&nt)} +A

= Z {l{(()? 1) + nil/Q(Mnty Snt)}(gnt) - l{07 1}(5nt)} + Afz (211)
t=1
This expression resembles the log-likelihood ratio statistic for thei.i.d. location-scale model
but herethe deviations M,,; and S,,; arerandom. Inthei.i.d. casethe LAN Theorem is obtained
with deterministic sequences. We will apply the results of DKW(1994b) which alow for such
random sequences.
To get rid of the starting condition in the log-likelihood ratio statistic we will use the
following regularity condition [compare assumption (A.3) of Kreiss (1987a) and Assumption A
of DKW(1994b)].

AssSUMPTION C The density g, of theinitial value hy; satisfies, under 6,,,
A = log{Gs. /o, (hor)} = 0, asn — oo. (2.12)

To make an appropriate expansion of A,, it will be handy to introduce the notation /,,, for the
four-dimensional conditional score at timet. To be more precise, denote the two-dimensional
vector derivative of the conditional variance by

9 _ yt{l
8(()é7ﬁ)llt(¢9) = BH; 1(0) + ( he1(6) ) ; (2.13)

with H,(6) = 0,. Definethe (4 x 2)-derivative matrix W;(6) [motivated by differentiation of
(M, Sni) With respect to 6, at 6,,] by

Wt(ﬁ) — 0_71 ( %hil(e)Ht(e)(u7 U) ) , (214)

Ht(e) =

I
denote the location-scale score by (with!’ = ¢'/g)

I (e(6)
() = - ( L+ 2O (=4(6) ) ’ 219

lt(e) = Wt(9)¢t(9)~
Then, the conditional score at time ¢ may be denoted by I,,, = i;(6,,). Observe that [ is just
the heuristic score. An expansion of (2.11) shows that the log-likelihood ratio A,, may be
alternatively written as

and put

A, = Nn~1/? Zlnt — %nl Z{A'int}Q + R,. (2.16)
t=1 t=1

The LAN result for the parametric version of model (2.1)—2.2) is stated in the following
theorem. The proof is deferred to Appendix A.



Theorem 2.1 (LAN) Suppose that Assumptions A—C are satisfied. Then the local log-
likelihood ratio statistic A,,, as defined by (2.11) and (2.16), is asymptotically normal. More
precisely, under 6,,,

R, 50, A, B N <—%/\’I(90)/\, XI(HO)/\> asn— oo, 2.17)

where I(6,) isthe probability limit of the averaged score products /,,.1",,.

Wearenow in apositionto apply the Convol ution Theorem of Hgjek (1970); cf. Theorem 2.3.1,
p. 24, of BKRW(1993).

Theorem 2.2 (Convolution Theorem) Under the assumptions of the LAN Theorem 2.1 let
{T,, : n € N} bearegular sequence of etimatorsof ¢(6), where g : R* — R” isdifferentiable
with total differential matrix ¢. Asusual, regularity at = 6, means that there exists a random
k-vector Z such that for all sequences {0, : n € N}, withn'/2(,, — 6y) = O(1),

n'{T, — q(6,)} B Z, asn — oo, (2.18)

where the convergenceisunder 6,,. Let] :5(90)1 (Ao) "1 (8) betheefficient influence function,
then, under 6,,

1/2 . -1 T

( AT nql(/eg)zn nl} i b} ) 2 ( ?g ) , asn — 00, (2.19)
t=1

where A, and Z, are independent and 7, is N(O,&(@O)I(eo)*l 5(90)’). Moreover, {T,, : n €

IN} isefficient if {7, : n € IN} isasymptotically linear in the efficient influence function, i.e.

if Ag =0 (as).

As a conclusion from the Convolution Theorem we obtain that a regular estimator én of 6
satisfies, under 6,,

Va0, —60) B Ag + Z,

i.e. the limit digtribution of 4, is the convolution of the random vector A, and a Gaussian
random vector with mean zero and variance the inverse of the information matrix 7(6,). Since
A, adds noise to the Gaussian vector Zy, it is clear that Ay = 0 would be preferred. This
motivates the usual terminology (as lower bound, etc.) because A, = 0 is attainable in lots of
situations.

Inthe remainder of thisparagraph we simplify exposition by supposing that the scores given
above are stationary such that we may restrict attention to just one specific element, compare
DKW(1994a). In this way it is easier to comprehend the specific adaptiveness features in
the GARCH model. These results are derived along the lines of Sections 2.4 and 3.4 of
BKRW(1993). This expository ssimplification will be suppressed again in the next section
when deriving a (semiparametric) efficient estimator. This optimal estimator satisfies the
properties obtained in -1V below.

In a stationary setting the Fisher information matrix defined in the LAN Theorem 2.1
simplifiesto

1(80) = Ell' = EWyp /W' = EW L,(9)W',



where I;5(g) isthe information matrix in the location-scale model,
_ ,_ ([ EW)? Ee(l)?
Ils(g) - E¢¢ - ( Eg(ll)Q E(l +€ll)2 .

If the location parameter 1 is known to be zero, asin the classical GARCH case, thisformula
simplifies even further to
1(6) = L(g) EW, W, (2.20)

where W isthe 3-dimensional subvector of 1 concerning the relevant derivativeswith respect
to the scale parameter o and where I(g) = E(1 +¢l’)? istheinformation for scale in thei.i.d.
scale model.

l. If g isknown and if we want to estimate the autoregression parameter v = (v, 3)’
in the presence of the nuisance parameter n = (u, o)’ then we see that the efficient
influence function, as defined in the Convolution Theorem 2.2, equals

[ = (I3, 0052) [EII') 7Y = (I, 0952) I (60) 1.

Asin Proposition 2.4.1.A and formula(2.4.3), pp. 28,30, of BKRW/(1993) we may
write .
[ =BG, (2.21)

where the so-called efficient score function I} of v is obtained by the componen-
twise projection of [;, the first two elements of {, onto the orthocomplement of
(5], the linear span of the last two components of /. Here the inner product is the
covariance and the orthocomplement is taken in the linear space spanned by all
components of I. It is easy to verify that

I = 5o H{(H/h) — B(H/R)} (1, 0)0 (222)

and that % is orthogonal to [, indeed, since H/h = H, /h, depends on the past only
and is independent of the present innovation ;.

I1. If ¢ is unknown and if we want to estimate v in the presence of the nuisance
parameters n and g then we obtain the same efficient influence function. To see
this note that the components of /] as given in (2.22) are orthogonal to every
element of L () by theindependence of present (¢ and €) and past (h and H). By
(3.4.2) and Corollary 3.4.1.A, pp. 70,72, of BKRW/(1993) we obtain

ol Z .
(R | v, Q) > ELL (2.23)

for al regular parametric submodels ) of our semiparametric model P, i.e. the
information at P in estimation of v within the parametric submodel Q equals
at least the information at P, in estimation of v within the parametric model,
studied in I, with g known. In other words, as far as estimation of v is concerned,
no parametric model Q is asymptotically more difficult to first order (contains
less information) than the model from I. Consequently the semiparametric model



P itself is asymptotically to first order as difficult as the parametric model with
g known, i.e. the information matrix with respect to v evaluated at P, for the
semiparametric model P equals the lower bound in the parametric model with g
known (case ),

I(Py | v,P) = ElJIY.

Once more, the efficient influence function is given by (2.21). Apparently, in-
troduction of the nuisance parameter ¢ in the presence of the Euclidean nuisance
parameter n does not change the efficient influence function for . Hence, estima-
tion of v isasymptotically as hard not knowing g as knowing g. One usually calls
this adaptivity. Observe, however, that the presence of the nuisance parameter n
is important to derive this result. If  is known adaptive estimation of v is not
possible! The same conclusion appliesif n isincluded into the “big” infinite di-
mensional nuisance parameter g. So, the nuisance parameter n istreated in another
way than the nuisance parameter g. Since location-scale parameters are amost
always present in econometric models a different treatment is not unreasonable
and the usage of the protected notion “adaptivity” is legalized. However, with
the comments above in mind, a more appropriate way of saying thisisto call the
parameter v n-adaptive, explicitly referring to the remaining nuisance parameters
present in the model. [Of course, a similar remark applies to, e.g., the non-
symmetric regression model as discussed in Bickel (1982), where the regression
parameter 3 is not fully adaptively estimable. In fact 3 is u-adaptive.]

Estimation of the remaining parameter 7 is completely analogous to the location-
scale problem for i.i.d. variables. Obtain the well-known lower bound for 7 in
the semiparametric location-scale model. It suffices to construct a sequence of
edimators {7,,n € IN} for  attaining this bound. Let 6, be some initial /n-
consistent estimator of 6, calculate h,, = h(6,,) by plugging in 6,, into (2.9)
and obtain the residuals &, = &(6,) = v /h%, similarly. If one proceeds as
if the ént are i.i.d. observations from some location-scale model, one obtains a
semiparametric efficient estimator for » in our model (asis easily verified from
the Convolution Theorem 2.2 by choosing an appropriate function ¢). To be more
explicit, we assumethat ¢ hasfinite second moment and we define the location and
scale parameters by standardizing g viathe equations E,e = 0, E,e? = 1. Then
the square root of the sample variance is optimal for o both in the symmetric and
non-symmetric case. The sample meanisoptimal for . if no symmetry is assumed
and under the assumption of symmetry one has to use an efficient estimator for
the symmetric location-problem [cf. Example 7.8.1, p. 400, of BKRW(1993)].
If one wants to avoid moment conditions on £ one may define the location-scale
parameter in another way, see the discussion of the M-estimator in Section 3.

Finally, when estimating the whole Euclidean parameter 6, the efficient score is
simply obtained from Il and 111. Following the arguments leading to (2.23) in |1,
this score function yields alower bound indeed. Optimality of this bound follows
from 111 by choosing the most difficult direction from the location-scal e problem.



Obvious substitutions in Theorems 2.1 and 2.2 show that the conclusions above are also valid
for the classical GARCH model with ¢ = E,6 = 0. An optimal estimator of ¢ in the
non-symmetric case is given then by the square root of [cf. Example 3.2.3, pp. 53-55, of
BKRW/(1993)] X
IRy IR DAY S AN
n-1 2 -1 4et=15nt -
T L

In the symmetric case the limiting behavior of this estimator and the square root of the sample
variance are the same.

3 Adaptive Estimators.

In classical parametric modelsthe Maximum Likelihood Estimator is asymptotically efficient,
typically. In semiparametric models such an estimation principle yielding efficient estimators
does not exist. However, there exist methods to upgrade /n-consistent estimators to efficient
ones by a Newton-Raphson technique, provided it is possible to estimate the relevant score
or influence functions sufficiently accurately. In Klaassen (1987) such a method based on
“sample splitting” is described for i.i.d. models. Schick (1986) uses both “sample splitting”
and Le Cam’s “discretization”, again in i.i.d. models. See, e.g., Section 7.8 of BKRW(1993)
for details. Schick’s (1986) method has been adapted to time-seriesmodelsin Theorem 3.1 of
DKW/(1994b). We assume the existence of such a preliminary, 1/n-consistent estimator.

ASSUMPTION D There exists a y/n-consistent estimator 0, of 0, (under 6,, and g).

For our GARCH model anatural candidatefor such aninitial estimator isthe MLE based onthe
assumption of normality of the innovationse;. One often calls this estimator the Quas MLE.
Probably, this QVILE is y/n-consistent under every density g with E,e* < oo; this has been
shown by Weiss (1986) for ARCH models and under restrictions by Lee and Hansen (1994)
for GARCH models, which are dightly different from ours, see also Lumsdaine (1989). The
additional moment condition on ¢ is needed there since a quadratic term appears in the score
function of the scale parameter. To avoid moment conditions altogether, one could use, e.g.,
another preliminary M-estimator, instead. Let x : R — RR* be a sufficiently smooth bounded
function with monotonicity properties. As an example we mention y = (x1, x2)’ with

2

=—— -1, 2R,
1+ exp{—z} v

x1(z)

the location score function for the logistic distribution and

o exp{—y} B
X2(7) —/0 2y(1+exp{—y})2dy 1, z € R.

The M-estimator will solve the equations [cf. (2.7)—(2.9) and (2.13)—<2.14)]

ilwtw)x(st(e» o, 3.1)



Use of this M-estimator impliesthat one standardizes g at location 0 and scale 1 by the equation
Ey;x(e) = 0; in the normal case with QMLE this yields ;. as expectation and o as standard
deviation.

To provethat estimation via(3.1) showsvalidity of Assumption D wehaveto proveexistence
of this M-estimator and its y/n-consistency. It should be possible to show existence along the
lines of Scholz (1971) by studying the 4 by 4 pseudo information matrix EW xx'W’; see
also Huber (1981), pages 138-139. Here we will not attempt to do this, since the situation is
much more complicated than the location-scale problem studied in the literature. At the cost
of some generality we suppose here that /n-consistent estimators &,, and 8, are given. The
\/n-consistency of &,, and (3, together with the contiguity obtained from the LAN Theorem 2.1
implies that we may treat the parameters o and 3 as given. So, we are in fact in the i.i.d.
location-scale model and the M-estimators for 1 and o solving the latter two equationsin (3.1)
are \/n-consistent, see Huber (1981) and Bickel (1982). We conjecture that the proof of the
more general M-estimator solving (3.1) can be given along similar lines.

Here we will focus on efficient and hence adaptive estimation of the autoregression param-
eters o and G (cf. Subsections |-V of Section 2); alternatively, in view of (2.14), note that the
score [,,; satisfies the form discussed in Example 3.1 of DKW(1994b). In the Appendix we
verify the conditions of Theorem 3.1 in DKW/(1994b), thisyields the following theorem.

Theorem 3.1 Under Assumptions A—D adaptive estimators of o and 3 do exist.

To describe our adaptive estimator more accurately, let 6, = (Gn, Bn, fin, 6n)" be a /n-
consistent estimator of 6 and compute Wt(én) via(2.13) and (2.14). Let ¢,,1,...,é,, bethe
residuals computed from hq, 41, ..., y, and 6,, using (2.8). Via a kernel estimate based on
€n, - -, Enn With the logigtic kernel, say k(-), and bandwidth b,, we estimate g(-) by

n

~ 1 1 : _ént
gn(r) = = —Fk ( )
n; by, by,

and subsequently +(-) by qﬁn(-); here b, — 0 and nb® — oco. Now our estimator may be
written as

S LGRS ACA) SN (32

With 6,, the QMLE thisis the estimator used in the simulations of Section 4. To prove that
such estimators are adaptive we need the following two technical modifications.

e Discretization. 6, isdiscretized by changing itsvaluein (0, co) x (0, 00) X R x (0, o0)
into (one of) the nearest point(s) in the grid ﬁ(]N x N x Z x IN). Thistechnical trick
enables one to consider 4, to be non-random, and therefore independent of £, y;, and
hi.

e Sample Splitting. The set of resduasé, ., . . . , £n, 1SSPlit into two samples, which may
be viewed as independent now. For &, in the first sample, the second sample is used to



estimate 1(-) by ¥,2(-) and ¥, (¢,) in (3.2) is replaced by v),,2(¢,:). Similarly for £,
in the second sample, the first sampleis used to estimate ¢(-). In this way, again some
independence is introduced artificially to make the proof work.

This approach has been adopted in DKW/(1994b). It should be emphasized that both tricks
are merely introduced as atechnical device to make proofswork. Other approaches have also
been studied in the literature. Klaassen (1987) has shown that discretization may be avoided
at the cost of an extra sample splitting. Schick (1986) and Koul and Schick (1995) show that
sample splitting may be avoided at the cost of some extra conditions.

4 Simulationsand an Empirical Example.

To enhance the interpretation and validity of the theoretical results of the previous sections we
present a small simulation experiment. Furthermore, a case study concerning some exchange
rate seriesis given.

We simulated several GARCH(1,1) series of length n = 1000, parameters (a, 3,0) =
(.3,.6,1), (.1,.8,1), and (.05,.9,1) [the parameter 1 iS set to zero and is not estimated to
allow for a better comparison with previous smulation studies], and eight different innovation
distributions: normal, a balanced mixture of two standard normals with means 2 and —2,
respectively, double exponential, student distributionswith v = 5, 7, and 9 degrees of freedom,
and (skew) chi-sguared distributions with v = 6 and 12 degrees of freedom. These densities
are rescaled such that they have the required zero mean and unit variance.

It is the purpose of the simulations to evaluate the moderate sample properties of the
autoregression parametersa and 5 which are adaptively estimable, in principle. For each series
we estimated these parameters with MLE, QMLE, and a one-step semiparametric procedure.
For the latter estimation method we made two estimates. one under general assumptions on
the innovation distribution and one under the extra assumption of symmetry. The theoretical
results imply that there should be no difference between these two semiparametric methods
if the true underlying density is symmetric indeed but small sample properties may differ. In
the semiparametric part we used standardized logistic kernels with a bandwidth of h = .5.
Reasonable changes of the bandwidth, say .25 < h < .75, or another kernel like the normal
one do not alter the conclusions below.

In the first part of the simulation experiment we compared the ML estimator with the semi-
parametric ones (with the MLE asinitial starting value). Asymptotically both semiparametric
estimators should behave as well asthe MLE but one may expect that the small sample prop-
erties of the semiparametric estimators are worse due to the inherent problems of choosing
the bandwidth. These results are not reported here but they are comparable to those given in
Table 4.1, from which MLE can be compared with the semiparametric procedure with the less
efficient QMLE starting value.

Of course ML estimation is not feasible in practice since the underlying distribution is not
known. Therefore, we used the QMLE as starting point. Since p vanishes for the situation
chosen here and ac? + 3 < 1, Theorems 2 and 3 of Lee and Hansen (1994) are applicable
and the QMLE is \/n-consistent. This estimator has been improved by the one-step Newton
method. For convenience we also report the behavior of the unfeasible MLE in Table 4.1. The



Q I} Q I} Q I}
300 .600 100 .800 .050 .900
Q 16} 0o 03 o 16} o 03 Q 16} o 03
N ML=QML || .298 .593 | .071 .056 | .099 .786 | .035 .073 || .047 .891 | .022 .051
1-step 298 593 |.072 .057 | .098 .786 | .036 .074 || .047 .892 | .022 .050
1-step(sym) || .298 .593 | .072 .056 || .099 .786 | .036 .073 || .047 .891 | .022 .051
DE ML 299 592 .080 .070 | .099 .782 | .038 .083 || .048 .885|.023 .061
QML 303 .588 |.089 .079 || .100 .776 | .043 .094 || .048 .880 | .026 .073
1-step 294 593 |.085 .074 | .097 .784 | .040 .087 || .046 .886 | .024 .067
1-step(sym) || .295 .592 | .083 .073 | .097 .783 | .039 .086 || .046 .885 | .024 .065
NM ML 205 595 |.058 .041 | .098 .790 | .029 .054 || .047 .898|.018 .030
QML 205 595 |.059 .042 | .097 .790 | .030 .054 || .046 .897 | .018 .032
1-step 205 595 |.060 .043 | .098 .793 | .030 .056 || .047 .901 | .018 .032
1-step(sym) || .295 .595 | .059 .042 | .099 .793 | .030 .056 || .047 .901 | .018 .032
ts ML 295 592 (.076 .067 | .100 .787 | .036 .071 || .048 .888|.021 .054
QML 296 .586 |.098 .086 || .101 .777 | .047 .101 || .048 .879 | .027 .083
1-step 284 594 |.080 .071 | .094 .791|.037 .081 || .044 .890 | .022 .064
1-step(sym) || .285 .594 | .079 .070 | .095 .791 | .037 .081 | .045 .889 | .022 .063
tr ML 296 595 |.075 .060 | .100 .782 | .037 .079 || .047 .885|.021 .063
QML 298 592 (.086 .070 | .101 .776 | .042 .094 || .047 .882|.024 .076
1-step 291 597 | .078 .064 || .096 .784 | .038 .082 || .045 .886 | .022 .068
1-step(sym) || .292 .597 | .077 .063 || .097 .783 | .038 .082 || .045 .886 | .022 .068
ty ML 298 592 | .076 .060 || .098 .783 | .037 .077 || .047 .887 | .022 .058
QML 300 .591 |.083 .066 | .099 .781|.040 .085 | .048 .886 | .024 .064
1-step 295 593 |.079 .062 | .096 .785|.038 .080 || .046 .889 | .022 .057
1-step(sym) || .295 .593 | .077 .062 || .096 .784 | .038 .079 || .046 .889 | .022 .057
Xz ML 297 596 | .042 .034 | .099 .796 | .020 .036 || .050 .899 | .012 .022
QML 299 589 |.091 .073 | .101 .780 | .042 .096 || .048 .884 | .024 .072
1-step 283 603 |.062 .051 | .092 .801|.030 .061 || .045 .898 | .017 .047
X1, ML 298 596 | .057 .045 | .099 .794 | .029 .048 || .048 .893 | .016 .036
QML 299 592 |.084 .064 | .100 .782|.041 .079 || .047 .881|.023 .071
1-step 289 598 |.065 .051 | .095 .796 | .032 .061 || .045 .891|.018 .049

Table 4.1: Comparison of MLE, QMLE, and two semiparametric one-step estimators in the
GARCH(1,1) model with eight different standardized innovation distributions. Number of
observations n = 1000, true parameters (o, 3) = (.3,.6), (.1
The sample means of 2500 independent replications and their sample standard deviations are

given.

,.8), and (.05,.9), respectively.




mean values of the estimatesin 2500 replications are given together with their sample standard
deviations.

To calculate the efficiency of the QMLE, observe that the asymptotic variance of the QMLE
is equa to the well-known variance formula A~1BA~!, where A is the expectation under
(o, B,0,9) of the second derivative of the pseudo log-likelihood (with a wrongly specified
normal density) and B the expectation of the squared first derivative. With IV, as defined just
below (2.20), straightforward cal cul ations show

A = 2EW.W/,
B = (k—1)EW,W,

where k = [e*g(e)de. Except for the normal distribution, the matrices A~! and B~! are
generaly not equal. Since the asymptotic variance of the QMLE is equal to the lower bound
up to a constant, the asymptotic efficiency of each component of the QMLE is given by

4 4

(= DLg) (& —12ge)de J(1+ V(@) Pge)de —

The latter inequality follows from Cauchy-Schwarz applied to the following identity

2= B - 1)1 +el'(e)) = / (€2 — 1)(1 + el'())g(e)de.

Since the lower bound for oo and 3 does not change in the semiparametric setting, this expres-
sion also entails the loss in the semiparametric model and shows the (potential) gain of the
semiparametric estimator (3.2).

Except for the mixture distribution we can exactly calculate the efficiency of QMLE with
respect to MLE. For the standardized double exponential the relative efficiency is % for stan-
dardized student distributions with v degrees of freedomitis1 — % and for standardized
chi-sguared distributions with v degrees of freedomiitis % For these heavy-tailed distribu-
tions the efficiency losses of QMLE with respect to MLE show up in Table 4.1 and we see that
the semiparametric methods regain most of the loss caused by the inefficient QMLE method.
For light-tailed alternatives, as in the mixture case, the situation is less clear cut. There the
efficiency is approximately .94 and the performance of the estimators is not much different.
For thenormal distribution MLE and QMLE are of course equivalent. The use of the additional
symmetry information hardly improvesthe estimated standard deviation of the semiparametric
estimator (maximal .002), just as expected from our general theory. In empirical data sets one
often observes outlier type innovation distributions with high kurtoses. Therefore, it seems
worthwhile to apply the semiparametric estimation programs in these situations.

We conclude this section with a simple empirical example based on daily data. We applied
our estimation methods to fifteen logarithmic differenced exchange rate series for the period
January 1, 1980 to April 1, 1994 (n = 3719): Austrian Schilling (AS), Australian Dollar
(AD), Belgium Franc (BF), British Pound (BP), Canadian Dollar (CD), Dutch Guilder (DG),
Danish Kroner (DK), French Franc (FF), German Mark (GM), Italian Lire (IL), Japanese Yen
(JY), Norwegian Kroner (NK), Swiss Franc (SF), Swedish Kroner (SK), and Spanish Peseta
(SP), all with respect to US Dollar. These data are taken from Datastream. To facilitate the
interpretation of the autoregression parameters we have standardized the series such that the



estimates based on
original data bootstrap samples
& I6; 0o 0p & 16 o 0p
AD QMLE || .129 .843|.075 .034 || .116 .828|.044 .063
1-step || .253 .867 112 844 | .027 .024
AS QMLE | .075 .891|.013 .016 || .073 .888|.018 .018
1-step || .113 .897 072 .890 | .014 .013
BF QMLE || .068 .902 | .011 .023 || .068 .899 | .019 .018
1-step | .093 .906 065 .903|.013 .014
BP QMLE || .052 .932|.008 .013| .051 .931|.015 .012
1-step || .055 .932 050 .931|.012 .010
CD QMLE || .138 .798 | .042 .062 | .139 .793|.032 .031
1-step | .169 .809 A33 797 | .021 .021
DG QMLE || .078 .888|.013 .016 | .077 .886|.018 .018
1-step || .107 .916 076 .887 |.015 .014
DK QMLE || .067 .902 | .011 .016 | .065 .898 | .015 .016
1-step | .095 .920 064 901 |.012 .014
FF  QMLE || .088 .873|.016 .017 | .088 .869 | .023 .022
1-step | .119 .913 085 .872|.017 .017
GM OQMLE | .073 .894|.012 .013 | .073 .891|.017 .018
1-step || .095 .925 072 .893|.014 .015
IL  QMLE | .093 .869|.016 .031 || .092 .864 | .022 .020
1-step | .109 .896 090 .867|.019 .017
JY OQMLE]| .059 .891|.017 .025 | .060 .888|.016 .026
1-step || .078 .912 057 .891|.012 .021
NK QMLE || .080 .907 | .009 .014 || .078 .906 | .023 .015
1-step || .092 .916 075 .908 | .017 .010
SF QMLE | .059 .904 | .012 .013 | .058 .901 |.014 .019
1-step || .064 .922 057 .903|.012 .015
SK  QMLE || .221 .754 | .035 .119| .210 .751|.049 .038
1-step | .185 .839 209 .756 | .032 .020
SP  QMLE || .106 .871|.014 .032 | .104 .868 | .027 .020
1-step || .171 912 100 .870|.021 .014

Table 4.2: Comparison of QMLE and a semiparametric one-step estimator for several loga-
rithmic differenced daily exchange rate series. Observation period January 1, 1980 to Apiril
1, 1994 (n = 3719). The first part of the table gives the estimates based on the original data
set. Estimated standard deviations are del eted for the semiparametric estimators. The sample
means and sample standard deviations of 500 bootstrap replications are given in the second
half of the table.



QMLE of o isone. In al series both the QMLE method and the semiparametric procedure
estimate the persistence ao? + 3 less than one (for the semi parametric estimates this cannot be
inferred from Table 4.2 since the semiparametric estimate of ¢ is not constrained to be one).
The estimates based on the original data sets are given in thefirst four columnsof Table4.2. Of
course we used the variance formula A~ BA~! for thedirect estimate of the standard deviation
of the QMLE. As described above, the parameter estimates produced by the semiparametric
procedure are not very sensitive to the choice of the bandwidth. However, it turns out that
the direct variance estimates change dramatically (even for small changes of the bandwidth).
Therefore, these estimates are not reliable and they have been deleted from the table.

For the simulation study above the situation was quite different since we estimated the
variance of the semiparametric one-step estimators from independent parameter estimates in
the replications. Here we have only one data set. Independent replications are not available.
Thisleadstothefollowing paradox. Ontheonehand onemay havetheimprecise QML estimate
with quite large estimated standard deviations. So it may be possible that the hypotheses of
integrated GARCH or no conditional heteroskedasticity cannot be rejected. On the other side
one has the improved semiparametric estimate which allows for more powerful tests. But
since the estimated standard deviations are unreliable one can get any answer one wants by
changing the bandwidth. To avoid this paradox, we propose to use the bootstrap. 1.e. smulate
replications of the original data set with the estimated parameter and the estimated innovation
distribution as inputs and proceed as in the case of simulations described above. Then we
have several parameter estimates avail abl e from which we cal cul ate the strai ghtforward sample
estimate of the variance. Inthis manner we only rely upon the parameter estimates and not on
direct estimatesof thevariance. Hence, thevariability of thevariance dueto different bandwidth
choicesis greatly reduced. Some simulation experiments show that this procedure works quite
well. We apply the bootstrap procedure to our data sets and we report the sample means and
sample standard deviations in the final four columns of Table 4.2. Observe that the estimated
standard deviations of the semiparametric estimators of the heteroskedastic parameters are
between four tenth (AD) and nine tenth (IL) of the estimated ones for the QMLE method.
This implies the efficiency of the QMLE method lies approximately in the interval (.15, .80)
in these special examples. The efficiency gain is also supported by the plots in Figure 4.1
of the nonparametric density estimates and the corresponding score estimates which are far
away from the normal density and score. Although these figures suggest some skewness of
the exchange rate densities, they are close to the densities of student ¢, -distributions with v
between 4.1 and 5.4. If the true underlying density would be symmetric, we expect from
the simulation study that the symmetric nonparametric procedure performs dightly better in
moderate samples. However, in the exchange rate applications the latter procedure yields
somewhat larger standard deviations (.003 for AS and less than .002 for the others, these values
are not reported here). Thisindicates that the true densities are not fully symmetric and hence
the symmetric semiparametric approach may lead to wrong conclusions. Since the possible
moderate sample loss is very small it seems to be safer to use the ordinary non-symmetric
improvement.

Finally, we note that the simulation results of Table 4.1 show that all estimators, even the
unfeasible MLE, tend to underestimate the heteroskedasticity parameters. This negative bias
explains why in Table 4.2 on the average the bootstrap estimates are less in value than the
original estimates.



AD t(4.1) AD t(4.1)

Figure 4.1: Comparison of estimated densities and scores with t,-densities and scores for
severa logarithmic differenced daily exchange rate series. Observation period January 1, 1980
to April 1, 1994 (n = 3719).
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5 Conclusions.

In this paper we studied the semiparametric properties of (integrated) GARCH-M type models.
In thismodel, adaptive estimation is not possible. Thisfact iscompletely caused by alocation-
scale parameter. After a suitable reparametrization of the model we showed that the estimation
problem of the parameters characterizing the conditional heteroskedastic character of the
process is equally difficult in cases where the innovation distribution is known or unknown,
respectively. In that sense we may call these parameters still adaptively estimable. This
property is derived in a general GARCH context avoiding moment conditions and including
integrated GARCH models. The simulations showed that this property is not only interesting
from atheoretical point of view. In moderate sample sizeswithn = 1000 observations, usually
available in financial time-series, the semiparametric procedures work reasonably well. Most
of theloss caused by the QM LE method (instead of the infeasible MLE method) is regained by
the one-step estimator in case of the interesting group of heavy-tailed alternatives. Moreover,
the empirical example showed that the efficiency loss caused by the QMLE method may be
considerable.

It is clear from the exposition in this paper that the adaptivity results carry over to compli-
cated models with time dependent mean and variance structures, e.g., ARMA with GARCH
errors. The basic conditions given in DKW/(1994b) do not seem to put serious restrictions
on the models. However, a complete verification of the technical details may be much more
demanding.

A Appendix.

PrROOF OF THE LAN THEOREM 2.1: Sincethe general GARCH model (2.1)—(2.2) isalocation-
scale model in which the location-scale parameter only depends on the past, our model fits
into the general time-series framework of DKW/(1994b), especially Section 4. Therefore, it
suffices to verify the conditions (2.3), (A.1), and (2.4) of DKW(1994b). In passing we also
prove (3.3) of DKW/(1994b) which we will need in the proof of Theorem 3.1. |.e., with the
notation introduced in (2.10), (2.14), and (2.15), and I;5(g) the expectation under 6 of the
product v (6)1(8)’, we have to show, under 6,

n S Wi(00)Lis(9)Wi(60) 5 1(06) > 0, 0™ S [WilB0) P L 1r2iwion) o3 — 0, (AD)

t=1 t=1

n! znj W, (60) 5 W (6y), (A.2)
n! f) (W, (6,) — Wi(60)]> 5 0, (A.3)

and, under 6,,,
S Y2 (Mg, Sur)' — Wil8,)' (6 — 6,))2 2 0, (A.4)
t=1



for some positive definite matrix I(6,) and some random matrix W (6,). Together with their
Lemma A.l, these four relations yield the desired conclusions. We prepare the proof by
deriving some helpful results.

Although W;(6,) is not stationary under 6,, the following proposition shows that these
variables can be approximated by a stationary sequence.

Proposition A.1 Let h,(6), H,(6),and W,(6) begivenby (2.9), (2.13), and (2.14), respectively,
and let hs(0), Hy(6), and W, (6) betheir corresponding stationary solutions under 6, i.e.

=Y [I{6+ gl .}, Ha(0) = Z:ﬂih&tilﬂ,(g) ( §t7117¢ ) 7

Jj=0k=1
W) = o ( Lhal () Ho(0) (1, 0) ) |
I
Then, under 6,
n~ Y [Wi(bo) — Wa(6o)|” — 0 (as.), as n — oo. (A5)
t=1

ProOF: We adopt the convention that empty sums are equal to zero while empty products
are equal to one. Iterating h;(6) yields

he(0) = 1+ Bhe1(0) + ayfy = 1+ he 1 (0){8 + &, (0)}
- 3T H{maa (00} b () T8+ a8 (0}, 0<i<t—1, (AS)
j=0k k=1
and hence
ha— z( /ht <H{B+a§t k( )}7170§i§t—1- (A7)

Under 6, the calculated leab|$§t( ) simply are the true innovations &, in (A.6) and (A.7).
For the stationary random variables i (#) we obtain similar relations,

i—1 J 7
ha(0) = > TI{8+ a&ly} + hsys(0) [[{8+ &y}, 0 <1,
J=0k=1 k=1
hors(0)/ha(6) < T[{B+a€, )", 0<i,

by
Il

1
and hence, under 6, we obtain

-1

Bt s(0) = he(Ohass(0)] = hei(8) — hes(8)] S T[ {8+ €l 1}

7=0 k=1

.

t—1—1

< () |hs(0) 0)] H {B+ g i}

= h(0)|ha(0) |H{ﬂ+o¢§t e 1H{ﬁ+o¢§k} 0<i<t—1.



With C' some generic constant only depending on 6 we obtain, under 6,
(Wi (0) — Wa(0)] < C|Ht( )/he(6) (0)/hst(0)]
1 ht 1—2 ) st 1- ’L 5,52 st 1- ’L( ) é't 1—
< — —i i i
< ox.o! \( ro 3 ot

1=t—1

t— 7

< Clha(6 |H{5+O‘5k}znﬂ+ o 03 Hma@k

=0 k=1 i=t—1 k=1

< Clhsi(0) — ha(0)](t — 1) H{ﬂ+a§k}+CH5+ aE? Z Hﬂ—i—ozﬁQ '

i=—1 k=0

By (2.3) theright-hand side tends to zero (a.s.), ast — oco. Cesaro’s Theorem completes the
proof of the proposition. O

Intuitively itisclear that dight perturbationsof the parametersyield solutions of equations(2.1)
and (2.2) that are close. The following proposition makes this more precise. Just as expected
from heuristic formal calculations, the leading term of - /hnt — 1isalinear combination of
the components of H,,; /h,; which appearsin the score I

Proposition A.2 Let h,(6) and H,(9) be given by (2.9) and (2.13), respectively, and define

Q:(0) = Hy(0)/hi (0 Zﬂl< htytl 11(’) )/ht Zﬂlht 1-i(0) <§t 111( ) >,

Ry(0,0) = he(0)/he(0) — 1 — (6 — a, B — B)Qu(6).

Let 6, and 6, satisfy the conditionsjust above (2.6). Put Q,; = Q;(6,,) and R,y = R,(0,, 6,,).
Then, under 4,,,

n! Z |Qnt| = OP Z |Qnt|21{n71/2|Qnt|>6} — 0, (a.s.), as n — o9, (A8)

Y R2, — 0, (as.), asn — oo, (A9

PROOF: By equation (A.7) we obtain
1t ~TT s ( &1-i(0) )
T llsam| )

For n sufficiently large, this latter relation shows that, under 6,,, |Q..:| may be bounded by the
product of aconstant only depending on 6, and the stationary sequence

3l | P

i=0 k= 150"‘ Oéogt k

Note that all moments of S; exist. The relations concerning (),,; are easily obtained.



To prove the result concerning the remainder term R,,; note that an explicit relationship for
the difference of h,(6) and h,(6) is given by [compare (2.3) of Kreiss (1987a)]

ht(é) - ht(e) - Z(:)Blhtlz(ﬁ)(& — 0573 — ﬂ) ( 57?111(8) ) ]

Hence, the remainder term R,(6, 6) is given by

Choose ¢ > 1 such that Ecf,/ (8o + 50&;) < 1. By the mean value theorem, there exists a
(3, in between 3,, and 3,, such that, for n sufficiently large,

8L — Bi| = |Bn — BuliBist < |Bn — Balic™ 857", i > 0.

Just asfor @,.;, we may bound R, by the product of a constant times» ! and the stationary
sequence

% kl_Il Bo + 050515 k
The proof of the proposition can be easily compl eted. 0

Now we are ready to prove (A.1)—«(A.4). Define I(6y) = Eg,Ws1(00)I11s(9)Ws1(0o)" and
W(6y) = Ep,Ws1(6o) (the existence of these quantities can be obtained along the lines of
the proof of Proposition A.2 since |IW(6y)| is bounded by the product of S, and a constant
depending on 6,, only). Obvioudly therelations (A.1) and (A.2) hold trueif 1W;(6y) isreplaced
by the stationary ergodic sequence W, (6,). Consequently, Proposition A.1impliesthevalidity
of these relations for 1W;(6,) itself.

To prove (A.4) we will use Proposition A.2. Writing A, = (\},,, Ab,,)" With Ay, (A2,) the
first (latter) two components of \,,, and defining

x(@) = {—1+2(VT+2—1)/2| 1>,

we see

Z |n71/2 Mnt7 Snt) Wt(en)l(én - 0n)|2 -

n

= o2 Z

t=1

1 2
+n71/2/\2n 5 /\Iln Qnt

~ ~ \/ 1 / — / 1
(,U/ny Jn) _(Aannt + \/ﬁRnt)X(n 1/2A1nQnt + Rnt) + _\/ﬁRnt
2 2

Together with Proposition A.2, Lemma 2.1 of DKW(1994b) [with Y, = N, Qnt, Xow =
N, Qnt + +/nR,:, and the function ¢ = x? as above] yields (A.4).
Finally, we have to prove (A.3). Note that

[We(0) — Wi (00)|* < C|Q1(0n) — Qel6o)|* + ClQ:(00)|*|6 — bol”



and obtain contiguity of P, and P, from (A.1) and (A.4), and Theorem 2.1 of DKW/(1994b).
Then the required result is easily obtained from

Q) - Qo) = (5 - @i>%<ﬁflli<e>>

+ Qu0) {(61 — 61)Qu(6) + Ru(6,6)}

0
(Z: ﬂzhthl(ez(e {(91—91) Qt 1— ,L( )+Rt 1— 1(9 9)} )

along the lines of the proofs of the propositions above. This completes the proofs of the
theoremsin Section 2. O

PROOF OF THEOREM 3.1: It sufficesto verify the conditions of DKW(1994b). These reduce
to (A.1)—(A.4) above, which are verified there, and the existence of an estimator «,,(-), based
oney,...,e,, Of (-) = —('(-), 1+ -I'(+)), from (2.15), satisfying the consistency condition

/Wn z)*g(z)dz £ 0, under g.

Indeed, such an estimator exists in view of Proposition 7.8.1, p. 400, of BKRW(1993) with
k=0and k = 1; see dso Lemma 4.1 of Bickel (1982). The estimator v,,(-) in Section 3 is
based on these constructions. O
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