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Abstract

It is well-known that financial data sets exhibit conditional heteroskedasticity. GARCH
type models are often used to model this phenomenon. Since the distribution of the
rescaled innovations is generally far from a normal distribution, a semiparametric approach
is advisable. Several publications observed that adaptive estimation of the Euclidean
parameters is not possible in the usual parametrization when the distributionof the rescaled
innovations is the unknown nuisance parameter. However, there exists a reparametrization
such that the efficient score functions in the parametric model of the autoregression
parameters are orthogonal to the tangent space generated by the nuisance parameter, thus
suggesting that adaptive estimation of the autoregression parameters is possible. Indeed,
we construct adaptive and hence efficient estimators in a general GARCH in mean type
context including integrated GARCH models.

Our analysis is based on a general LAN Theorem for time-series models, published
elsewhere. In contrast to recent literature about ARCH models we do not need any moment
condition.

Keywords: LAN in time-series, semiparametrics, adaptivity, (integrated) GARCH (in
mean).

1 Introduction.

It is a well established empirical fact in financial economics that time-series like exchange
rates and stock prices exhibit conditional heteroskedasticity. Big shocks are clustered together.
The original paper of Engle (1982) proposes the ARCH model to incorporate conditional het-
eroskedasticity in econometric modeling of financial data sets. Bollerslev (1986) introduces the
GARCH model as a generalization of ARCH. This facilitates a parsimonious parametrization
which is particularly useful when shocks are important for a longer period (the idea corresponds
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to the generalization of AR to ARMA models). Several variations and extensions have been
proposed in the literature. Nelson (1991) proposes the exponential GARCH model to capture
the fact that the stock market is smoother in upward directions than in the opposite case (because
of the leverage effect). Gourieroux and Monfort (1992) suggest a nonparametric approach.
They do not restrict attention to conditional variances that depend only upon past squared
observations, but they try to estimate the functional form of the conditional heteroskedastic
variance from the data. Another important extension is the GARCH-M type model [cf. Engle,
Lilien, and Robins (1987)]. According to the Capital Asset Pricing Model one expects higher
returns due to risk premia if the asset is more risky. To model this phenomenon the conditional
variance is also included in the mean equation. Lots of applications have shown the strength
of the GARCH type of modeling. In this paper we do not refer to original application papers
but we want to draw attention to the monograph of Diebold (1988) and the survey paper of
Bollerslev, Chou, and Kroner (1992).

Despite the success of the GARCH history there are several topics that require attention.
In this paper we consider the distributional assumptions on the rescaled innovations. The
original formulations of GARCH type models assume that these residuals are standard normal.
Diebold (1988), however, shows that this assumption is often violated in empirical examples.
Typically, the innovations have fat-tailed distributions and they are also non-symmetric in
several applications. Drost and Werker (1995) provide an explanation for high kurtosis if the
observations arise from a GARCH data generating process in continuous time [see also Drost
and Nijman (1993) and Nelson (1990a)]. Diebold (1988) suggests that the errors will be ‘more
normal’ if the process is more and more aggregated. Despite the observed non-normality of
the error structure Weiss (1986) and Lee and Hansen (1994) have shown that Quasi Maxi-
mum Likelihood Estimation (QMLE), based upon the false assumption of normality, yields√
n-consistent estimators, see also Lumsdaine (1989). However, the efficiency loss may be

considerable. Therefore, several authors try to avoid efficiency loss, allowing the error structure
to belong to some flexible parametric family of distributions. Student t-distributions are very
popular, cf., e.g., Baillie and Bollerslev (1989). As a drawback of the introduction of such
parametric models of the innovation distribution we mention that the results of Weiss (1986)
and Lee and Hansen (1994) do not carry over to general error distributions. While QMLE
based upon the normal distribution yields

√
n-consistent estimators, QMLE based upon other

distributions (e.g., the student distributions) generally even fails to be consistent if the true
distribution is different.

In the approaches mentioned above, the stochastic error structure is still described by
some finite dimensional statistical model. To avoid the introduction of a wrong parametric
family of innovation distributions leading to inconsistent estimators and to be more flexible, a
semiparametric approach is to be preferred. We want to estimate the conditional heteroskedastic
character of the GARCH process but we do not want to restrict the class of error distributions too
much. Apart from some regularity conditions we will assume the distribution of the innovations
to be completely unknown. In passing we will consider the case of symmetrically distributed
innovations. At first sight, these types of estimation problems seem to be much harder than the
corresponding parametric ones and one would expect that optimal semiparametric estimators
are less precise asymptotically than optimal parametric estimators. For lots of interesting
econometric models this presumption turns out to be too pessimistic. Adaptive estimation
is often possible. Adaptive estimation is just a special instance of semiparametric efficient



estimation. Just as in parametric models, in semiparametric models an efficient estimator is an
asymptotically normal estimator with minimal variance. If this minimal variance is the same as
when the error distribution is known, one calls the efficient estimator adaptive since it adapts,
so to say, to the underlying error distribution. Typically, an estimator based on a (wrongly)
specified error distribution is not efficient in the semiparametric sense. For i.i.d. observations
a lot of adaptive and semiparametric results are available [cf., e.g., Bickel, Klaassen, Ritov,
and Wellner (1993) [BKRW(1993) from now on] and the survey papers of Robinson (1988)
and Newey (1990)]. Rigorous results are sparse in a time-series context. ARMA models
are considered in detail by Kreiss (1987a,b). Some results for GARCH are obtained in
Engle and González-Rivera (1991) and Steigerwald (1992) [see also Pötscher (1995) and
Steigerwald (1995)]. Linton (1993) discusses the semiparametric properties of ARCH models
in more detail. However, these papers impose rather high moment conditions. The parameter
estimates obtained in empirical work generally fail these moment conditions and, therefore,
the scope for application seems to be limited.

In Drost, Klaassen, and Werker (1994b) [henceforth DKW(1994b)] a general LAN Theorem
for time-series models is presented together with conditions guaranteeing the existence of
efficient estimators. We will apply these results to GARCH type models, including, e.g.,
I-GARCH and GARCH-M, thus avoiding severe moment conditions. We do not need the
existence of moments neither of the rescaled innovations in the GARCH model (admitting for
example Cauchy errors) nor of the observations (as is clear from the inclusion of integrated
GARCH models). Since we only assume the existence of a stationary solution of the GARCH
equations, our approach captures the models commonly used. A general LAN Theorem for
time-series models is also contained in Theorem 13, Section 4, of Jeganathan (1988). Based
hereon is his Theorem 17, Section 4, which yields adaptive estimators for ARMA-type location
models. However, this result is not directly applicable to GARCH scale models and, moreover,
it heavily leans on symmetry of the innovations.

To keep notation simple we restrict attention to the popular and most commonly used
GARCH(1,1) type models. This preserves the essential difficulty of GARCH (with respect to
ARCH) since both the AR and the MA part are present in the conditional variance equation. All
past observations show up (at an exponentially decaying rate). The statement of our theorem
with respect to GARCH(1,1) is easily generalized to the general case of GARCH(p,q).

The first semiparametric results in a GARCH context were only partially successful. Engle
and González-Rivera (1991) state “Monte Carlo evidence suggest that this semiparametric
method [i.e. the discrete maximum penalized likelihood estimation technique of Tapia and
Thompson (1978)] can improve the efficiency of the parameter estimates up to 50% over
QMLE, but it does not seem to capture the total potential gain in efficiency. In this sense we
say that the estimator is not adaptive in the class of densities with mean 0 and variance 1; that
is, the estimator is not fully efficient, and it does not achieve the Cramér-Rao lower bound.
The information matrix is not block-diagonal between the parameters of interest (the ones in
the mean and in the variance equation) and the nuisance parameters (the knots of the density).
If we choose the parametric form of the model with a conditional parametric density defined
by a shape parameter, this one being part of the parameters to estimate, we can show easily
that the expectation of the cross-partial derivatives of the log-likelihood function respects the
parameter of interest and the shape parameter is different from 0. In other words, the estimation
of the shape parameter affects the efficiency of the estimates of the parameters of interest”



(pp. 355–356). These statements imply that the finite dimensional parameter describing
the GARCH model (with the standardized error distribution as nuisance parameter) is not
adaptively estimable. This is not surprising since the classical GARCH formulation contains
a scale parameter, and in most models the variance is not adaptively estimable. Therefore the
scale parameter is often included into the (infinite dimensional) nuisance parameter. For the
GARCH model this procedure does not work: the scores w.r.t. the remaining autoregression
parameters are still not orthogonal to the tangent space. Hence, complete adaptive estimation
of the conditional heteroskedastic character is not possible in GARCH models. This explains
the efficiency loss observed by Engle and González-Rivera (1991). However, calculation of the
scores w.r.t. the parameters of the GARCH model shows that there are several orthogonality
relations between the score space and the tangent space generated by the unknown shape.
Linton (1993) and Drost, Klaassen, and Werker (1994a) [henceforth DKW(1994a)] obtain
along different lines a reparametrization of the ARCH and GARCH model respectively such
that the autoregression parameters are adaptively estimable and the location-scale parameters
generate the most difficult one-dimensional subproblems. So, knowledge of the shape of the
error distribution does not help to construct better estimators of the conditional heteroskedastic
character of the GARCH process. This resembles the regression model with unknown location
µ ∈ R, regression parameter β ∈ Rk and completely unknown error distribution, where the
regression parameter β is adaptively estimable if the location parameter is included into the
nuisance [see Bickel (1982)].

The paper is organized along the following lines. In Section 2 we state the LAN Theorem
for a large set of GARCH(1,1) type models, including all stationary classical GARCH models
such as, e.g., I-GARCH and GARCH-M. This LAN property is derived for the parametric
model with the shape of the innovations known, and it implies the Convolution Theorem of
Hájek (1970) which we will state next. This Convolution Theorem yields a bound on the
asymptotic performance of estimators in the parametric model and is valid, a fortiori, for the
semiparametric model as well. Section 3 is devoted to the construction of an estimator of the
autoregression parameters on the assumption that the shape of the innovations is unknown,
i.e. within the semiparametric model. This estimator happens to attain the bound from the
parametric Convolution Theorem and therefore is asymptotically efficient in the parametric
model and hence in the semiparametric model, since it does not use knowledge about the shape
of the innovations. Such an estimator, which attains the parametric bound in a semiparametric
model, is called adaptive. The proofs of these results are based on DKW(1994b) and most of
them are given in the Appendix.

A small simulation study is presented in Section 4. It turns out that the suggested optimal
estimator performs as expected: the estimator performs better than QMLE and the difference
with MLE (if the error distribution is known) becomes negligible when the sample size is
growing large. The empirical illustration in this section shows that the efficiency loss by using
QMLE may be considerable. Some conclusions are drawn in Section 5.

2 LAN and Convolution Theorem.

We consider a generalization of the reparametrized GARCH(p, q) model as given in Lin-
ton (1993), with p = 0, and motivated by adaptation arguments in DKW(1994a). For notational



simplicity, we take p = q = 1. In this manner the essential difficulty of an infinite number of
lags is retained. To obtain the corresponding results for the general case (with p, q ∈ IN fixed)
a careful replacement of coefficients by vectors suffices.

Let µ ∈ IR, σ > 0, α > 0, and β > 0 be parameters and let {εt : t ∈ Z} be an i.i.d.
sequence of innovation errors with location zero, scale one, and density g. Put ξt = µ + σεt
and note that ξt is a random variable with locationµ, scale σ, and density σ−1g({·−µ}/σ). We
introduce the following convention: random variables, like ε and ξ, denote a typical element
of the corresponding sequences {εt : t ∈ Z} and {ξt : t ∈ Z}.

Consider the model with observations

yt = h
1/2
t ξt = µh

1/2
t + σh

1/2
t εt, (2.1)

where the unobservable heteroskedasticity factors ht depend on the past via

ht = 1 + βht−1 + αy2
t−1 = 1 + ht−1(β + αξ2

t−1). (2.2)

Observe that the Euclidean parameter θ = (α, β, µ, σ)′ is identifiable. Throughout we assume
that equation (2.2) admits a stationary solution {ht : t ∈ Z}. A necessary and sufficient
condition is given by [Nelson (1990b), Theorem 2]

ASSUMPTION A
E ln{β + αξ2} < 0. (2.3)

Our semiparametric analysis treats the density g as an infinite dimensional nuisance parameter
and includes all strictly stationary GARCH models of type (2.1)–(2.2). These equations
contain, e.g., the classical Engle (1982)-Bollerslev (1986) GARCH model with a different
parametrization and with finite second moments (β + ασ2 < 1 and µ = 0), and the I-GARCH
model of Engle and Bollerslev (1986) (β + ασ2 = 1 and µ = 0). Furthermore, our model
resembles the GARCH-M model of Engle, Lilien, and Robins (1987). In the mean equation
(2.1) we have included the conditional standard deviation of yt while Engle, Lilien, and
Robins (1987) include a kind of conditional variance. More precisely stated, their model is
given by zt = δht + yt and µ = 0, i.e., zt = δht + σh

1/2
t εt. Inserting µ = 0 in (2.1) or

µ = δ = 0 in the GARCH-M model yields the classical GARCH model. Generally, risk
aversion is stronger pronounced in the original GARCH-M model than in our formulation.

Suppose that we observe y1, . . . , yn, and some starting value h01 initializing (2.2). It is not
needed that h01 arises from the stationary solution of (2.2). We are considering estimation of
θ, based on h01, y1, . . . , yn, in the presence of the infinite dimensional nuisance parameter g.
However, in this section we will fix the nuisance parameter g and in the resulting parametric
model we will derive a bound on the asymptotic performance of regular estimators of θ, a
so-called Convolution Theorem. To that end we choose local submodels and we will study
estimation of θ locally asymptotically. The above mentioned Convolution Theorem holds once
the log-likelihood ratios of the observed random variables are locally asymptotically normal
(LAN).

Observe that the model with the autoregression parameters α and β fixed too, corresponds
to the location-scale model for i.i.d. random variables since the information provided by the
observations h01, y1, . . . , yn is equal to the information contained in the i.i.d. random variables



ξ1, . . . , ξn. Consequently, the location-scale model is a parametric submodel of our time-
series model and it makes sense to assume that this submodel is regular, i.e. [see Hájek and
Šidák (1967)]

ASSUMPTION B The distribution of ε possesses an absolutely continuous Lebesgue density
g with derivative g′ and finite Fisher information for location

Il(g) =
∫
{g′/g}2g(ε)dε (2.4)

and for scale
Is(g) =

∫
{1 + εg′/g(ε)}2g(ε)dε. (2.5)

Moreover, the random variable ε has location zero and scale one.

To be able to derive an asymptotic lower bound we have to rely on semiparametric methods
as presented in, e.g., BKRW(1993) and DKW(1994a,b). So we fix θ at θ0 = (α0, β0, µ0, σ0)′

and choose local parametrizations θn = (αn, βn, µn, σn)′ and θ̃n = (α̃n, β̃n, µ̃n, σ̃n)′ such that
|θn − θ0| = O(n−1/2), |θ̃n − θ0| = O(n−1/2), and even

λn =
√
n(θ̃n − θn)→ λ, as n→∞. (2.6)

In the remainder expectations, convergences, etc. are implicitly taken under θn and g (unless
otherwise indicated).

To obtain a uniform LAN Theorem we consider the log-likelihood ratio Λn of h01, y1, . . . , yn
for θ̃n with respect to θn under θn (and g fixed). Observe that the residuals and the conditional
variances up to time t can be recursively calculated from θ and the observations h01, y1, . . . , yt:
with h1(θ) = h01, obtain for t = 1, 2, . . .

ξt(θ) = yt/h
1/2
t (θ), (2.7)

εt(θ) = {ξt(θ)− µ}/σ, (2.8)

ht+1(θ) = 1 + βht(θ) + αy2
t . (2.9)

Conditionally on h01 the density of y1, . . . , yn under θn is

n∏
t=1

σ−1
n h

−1/2
nt g(σ−1

n {h
−1/2
nt yt − µn}) =

n∏
t=1

σ−1
n h

−1/2
nt g({ξnt − µn}/σn) =

n∏
t=1

σ−1
n h

−1/2
nt g(εnt),

where hnt = ht(θn), ξnt = ξt(θn), and εnt = εt(θn).
To enhance the interpretation of this formula and to stress the link between the present

time-series model and the i.i.d. location-scale model we introduce the notation h̃nt = ht(θ̃n),

l{µ, σ}(x) = log g({x− µ}/σ) − log σ,(
Mnt

Snt

)
= n1/2σ−1

n h
−1/2
nt

(
µ̃nh̃

1/2
nt − µnh

1/2
nt

σ̃nh̃
1/2
nt − σnh

1/2
nt

)
, (2.10)



and ε̃nt = εt(θ̃n). With Λs
n the log-likelihood ratio for h01, the log-likelihood ratio Λn may be

written as

Λn = log

{
n∏
t=1

σ̃−1
n h̃

−1/2
nt g(ε̃nt)/

n∏
t=1

σ−1
n h

−1/2
nt g(εnt)

}
+ Λs

n

=
n∑
t=1

{
l{(µn, σn) + σnn

−1/2(Mnt, Snt)}(ξnt)− l{µn, σn}(ξnt)
}

+ Λs
n

=
n∑
t=1

{
l{(0, 1) + n−1/2(Mnt, Snt)}(εnt)− l{0, 1}(εnt)

}
+ Λs

n. (2.11)

This expression resembles the log-likelihood ratio statistic for the i.i.d. location-scale model
but here the deviationsMnt and Snt are random. In the i.i.d. case the LAN Theorem is obtained
with deterministic sequences. We will apply the results of DKW(1994b) which allow for such
random sequences.

To get rid of the starting condition in the log-likelihood ratio statistic we will use the
following regularity condition [compare assumption (A.3) of Kreiss (1987a) and Assumption A
of DKW(1994b)].

ASSUMPTION C The density ḡθ of the initial value h01 satisfies, under θn,

Λs
n = log{ḡθ̃n/ḡθn (h01)}

P→ 0, as n→∞. (2.12)

To make an appropriate expansion of Λn it will be handy to introduce the notation l̇nt for the
four-dimensional conditional score at time t. To be more precise, denote the two-dimensional
vector derivative of the conditional variance by

Ht(θ) =
∂

∂(α, β)
ht(θ) = βHt−1(θ) +

(
y2
t−1

ht−1(θ)

)
, (2.13)

with H1(θ) = 02. Define the (4× 2)-derivative matrix Wt(θ) [motivated by differentiation of
(Mnt, Snt) with respect to θ̃n at θn] by

Wt(θ) = σ−1

(
1
2
h−1
t (θ)Ht(θ)(µ, σ)

I2

)
, (2.14)

denote the location-scale score by (with l′ = g′/g)

ψt(θ) = −

(
l′(εt(θ))

1 + εt(θ)l′(εt(θ))

)
, (2.15)

and put
l̇t(θ) = Wt(θ)ψt(θ).

Then, the conditional score at time t may be denoted by l̇nt = l̇t(θn). Observe that l̇ is just
the heuristic score. An expansion of (2.11) shows that the log-likelihood ratio Λn may be
alternatively written as

Λn = λ′n−1/2
n∑
t=1

l̇nt −
1

2
n−1

n∑
t=1

{λ′ l̇nt}
2 +Rn. (2.16)

The LAN result for the parametric version of model (2.1)–(2.2) is stated in the following
theorem. The proof is deferred to Appendix A.



Theorem 2.1 (LAN) Suppose that Assumptions A–C are satisfied. Then the local log-
likelihood ratio statistic Λn, as defined by (2.11) and (2.16), is asymptotically normal. More
precisely, under θn,

Rn
P→ 0, Λn

D→ N
(
−

1

2
λ′I(θ0)λ, λ

′I(θ0)λ
)
, as n→∞, (2.17)

where I(θ0) is the probability limit of the averaged score products l̇ntl̇′nt.

We are now in a position to apply the Convolution Theorem of Hájek (1970); cf. Theorem 2.3.1,
p. 24, of BKRW(1993).

Theorem 2.2 (Convolution Theorem) Under the assumptions of the LAN Theorem 2.1 let
{Tn : n ∈ IN} be a regular sequence of estimators of q(θ), where q : IR4 → IRk is differentiable

with total differential matrix
◦
q. As usual, regularity at θ = θ0 means that there exists a random

k-vector Z such that for all sequences {θn : n ∈ IN}, with n1/2(θn − θ0) = O(1),

n1/2{Tn − q(θn)}
D
→ Z, as n→∞, (2.18)

where the convergence is under θn. Let l̃ =
◦
q (θ0)I(θ0)

−1 l̇(θ0) be the efficient influence function,
then, under θ0,(

n1/2{Tn − q(θ0)− n−1 ∑n
t=1 l̃t}

n−1/2∑n
t=1 l̃t

)
D
→

(
∆0

Z0

)
, as n→∞, (2.19)

where ∆0 and Z0 are independent and Z0 is N(0,
◦
q (θ0)I(θ0)−1

◦
q (θ0)′). Moreover, {Tn : n ∈

IN} is efficient if {Tn : n ∈ IN} is asymptotically linear in the efficient influence function, i.e.
if ∆0 = 0 (a.s.).

As a conclusion from the Convolution Theorem we obtain that a regular estimator θ̂n of θ
satisfies, under θ0,

√
n(θ̂n − θ0)

D
→ ∆0 + Z0,

i.e. the limit distribution of θ̂n is the convolution of the random vector ∆0 and a Gaussian
random vector with mean zero and variance the inverse of the information matrix I(θ0). Since
∆0 adds noise to the Gaussian vector Z0, it is clear that ∆0 = 0 would be preferred. This
motivates the usual terminology (as lower bound, etc.) because ∆0 = 0 is attainable in lots of
situations.

In the remainder of this paragraph we simplify exposition by supposing that the scores given
above are stationary such that we may restrict attention to just one specific element, compare
DKW(1994a). In this way it is easier to comprehend the specific adaptiveness features in
the GARCH model. These results are derived along the lines of Sections 2.4 and 3.4 of
BKRW(1993). This expository simplification will be suppressed again in the next section
when deriving a (semiparametric) efficient estimator. This optimal estimator satisfies the
properties obtained in I–IV below.

In a stationary setting the Fisher information matrix defined in the LAN Theorem 2.1
simplifies to

I(θ0) = El̇l̇′ = EWψψ′W ′ = EWIls(g)W
′,



where Ils(g) is the information matrix in the location-scale model,

Ils(g) = Eψψ′ =

(
E(l′)2 Eε(l′)2

Eε(l′)2 E(1 + εl′)2

)
.

If the location parameter µ is known to be zero, as in the classical GARCH case, this formula
simplifies even further to

I(θ0) = Is(g)EWsW
′
s, (2.20)

whereWs is the 3-dimensional subvector ofW concerning the relevant derivatives with respect
to the scale parameter σ and where Is(g) = E(1 + εl′)2 is the information for scale in the i.i.d.
scale model.

I. If g is known and if we want to estimate the autoregression parameter ν = (α, β)′

in the presence of the nuisance parameter η = (µ, σ)′ then we see that the efficient
influence function, as defined in the Convolution Theorem 2.2, equals

l̃ = (I2, 02×2)[El̇l̇
′]−1 l̇ = (I2, 02×2)I(θ0)

−1 l̇.

As in Proposition 2.4.1.A and formula (2.4.3), pp. 28,30, of BKRW(1993) we may
write

l̃ = [El∗1l
∗
1
′]−1l∗1, (2.21)

where the so-called efficient score function l∗1 of ν is obtained by the componen-
twise projection of l̇1, the first two elements of l̇, onto the orthocomplement of
[l̇2], the linear span of the last two components of l̇. Here the inner product is the
covariance and the orthocomplement is taken in the linear space spanned by all
components of l̇. It is easy to verify that

l∗1 =
1

2
σ−1{(H/h) − E(H/h)}(µ, σ)ψ (2.22)

and that l∗1 is orthogonal to l̇2 indeed, sinceH/h = Ht/ht depends on the past only
and is independent of the present innovation εt.

II. If g is unknown and if we want to estimate ν in the presence of the nuisance
parameters η and g then we obtain the same efficient influence function. To see
this note that the components of l∗1 as given in (2.22) are orthogonal to every
element of L0

2(ε) by the independence of present (ξ and ε) and past (h andH). By
(3.4.2) and Corollary 3.4.1.A, pp. 70,72, of BKRW(1993) we obtain

I(P0 | ν,Q) ≥ El∗1l
∗
1
′ (2.23)

for all regular parametric submodels Q of our semiparametric model P , i.e. the
information at P0 in estimation of ν within the parametric submodel Q equals
at least the information at P0 in estimation of ν within the parametric model,
studied in I, with g known. In other words, as far as estimation of ν is concerned,
no parametric model Q is asymptotically more difficult to first order (contains
less information) than the model from I. Consequently the semiparametric model



P itself is asymptotically to first order as difficult as the parametric model with
g known, i.e. the information matrix with respect to ν evaluated at P0 for the
semiparametric model P equals the lower bound in the parametric model with g
known (case I),

I(P0 | ν,P) = El∗1l
∗
1
′.

Once more, the efficient influence function is given by (2.21). Apparently, in-
troduction of the nuisance parameter g in the presence of the Euclidean nuisance
parameter η does not change the efficient influence function for ν. Hence, estima-
tion of ν is asymptotically as hard not knowing g as knowing g. One usually calls
this adaptivity. Observe, however, that the presence of the nuisance parameter η
is important to derive this result. If η is known adaptive estimation of ν is not
possible! The same conclusion applies if η is included into the “big” infinite di-
mensional nuisance parameter g. So, the nuisance parameter η is treated in another
way than the nuisance parameter g. Since location-scale parameters are almost
always present in econometric models a different treatment is not unreasonable
and the usage of the protected notion “adaptivity” is legalized. However, with
the comments above in mind, a more appropriate way of saying this is to call the
parameter ν η-adaptive, explicitly referring to the remaining nuisance parameters
present in the model. [Of course, a similar remark applies to, e.g., the non-
symmetric regression model as discussed in Bickel (1982), where the regression
parameter β is not fully adaptively estimable. In fact β is µ-adaptive.]

III. Estimation of the remaining parameter η is completely analogous to the location-
scale problem for i.i.d. variables. Obtain the well-known lower bound for η in
the semiparametric location-scale model. It suffices to construct a sequence of
estimators {η̂n, n ∈ IN} for η attaining this bound. Let θ̂n be some initial

√
n-

consistent estimator of θ, calculate ĥnt = ht(θ̂n) by plugging in θ̂n into (2.9)
and obtain the residuals ξ̂nt = ξt(θ̂n) = yt/ĥ

1/2
nt , similarly. If one proceeds as

if the ξ̂nt are i.i.d. observations from some location-scale model, one obtains a
semiparametric efficient estimator for η in our model (as is easily verified from
the Convolution Theorem 2.2 by choosing an appropriate function q). To be more
explicit, we assume that g has finite second moment and we define the location and
scale parameters by standardizing g via the equations Egε = 0, Egε2 = 1. Then
the square root of the sample variance is optimal for σ both in the symmetric and
non-symmetric case. The sample mean is optimal forµ if no symmetry is assumed
and under the assumption of symmetry one has to use an efficient estimator for
the symmetric location-problem [cf. Example 7.8.1, p. 400, of BKRW(1993)].
If one wants to avoid moment conditions on ε one may define the location-scale
parameter in another way, see the discussion of the M-estimator in Section 3.

IV. Finally, when estimating the whole Euclidean parameter θ, the efficient score is
simply obtained from II and III. Following the arguments leading to (2.23) in II,
this score function yields a lower bound indeed. Optimality of this bound follows
from III by choosing the most difficult direction from the location-scale problem.



Obvious substitutions in Theorems 2.1 and 2.2 show that the conclusions above are also valid
for the classical GARCH model with µ = Egξ = 0. An optimal estimator of σ in the
non-symmetric case is given then by the square root of [cf. Example 3.2.3, pp. 53–55, of
BKRW(1993)]

n−1
n∑
t=1

ξ̂2
nt − n

−1

∑n
t=1 ξ̂

3
nt∑n

t=1 ξ̂
2
nt

n∑
t=1

ξ̂nt.

In the symmetric case the limiting behavior of this estimator and the square root of the sample
variance are the same.

3 Adaptive Estimators.

In classical parametric models the Maximum Likelihood Estimator is asymptotically efficient,
typically. In semiparametric models such an estimation principle yielding efficient estimators
does not exist. However, there exist methods to upgrade

√
n-consistent estimators to efficient

ones by a Newton-Raphson technique, provided it is possible to estimate the relevant score
or influence functions sufficiently accurately. In Klaassen (1987) such a method based on
“sample splitting” is described for i.i.d. models. Schick (1986) uses both “sample splitting”
and Le Cam’s “discretization”, again in i.i.d. models. See, e.g., Section 7.8 of BKRW(1993)
for details. Schick’s (1986) method has been adapted to time-series models in Theorem 3.1 of
DKW(1994b). We assume the existence of such a preliminary,

√
n-consistent estimator.

ASSUMPTION D There exists a
√
n-consistent estimator θ̂n of θn (under θn and g).

For our GARCH model a natural candidate for such an initial estimator is the MLE based on the
assumption of normality of the innovations εt. One often calls this estimator the Quasi MLE.
Probably, this QMLE is

√
n-consistent under every density g with Egε4 < ∞; this has been

shown by Weiss (1986) for ARCH models and under restrictions by Lee and Hansen (1994)
for GARCH models, which are slightly different from ours, see also Lumsdaine (1989). The
additional moment condition on ε is needed there since a quadratic term appears in the score
function of the scale parameter. To avoid moment conditions altogether, one could use, e.g.,
another preliminary M-estimator, instead. Let χ : IR→ IR2 be a sufficiently smooth bounded
function with monotonicity properties. As an example we mention χ = (χ1, χ2)

′ with

χ1(x) =
2

1 + exp{−x}
− 1, x ∈ IR,

the location score function for the logistic distribution and

χ2(x) =
∫ x

0
2y

exp{−y}

(1 + exp{−y})2
dy − 1, x ∈ IR.

The M-estimator will solve the equations [cf. (2.7)–(2.9) and (2.13)–(2.14)]

n∑
t=1

Wt(θ)χ(εt(θ)) = 0. (3.1)



Use of this M-estimator implies that one standardizes g at location 0 and scale 1 by the equation
Egχ(ε) = 0; in the normal case with QMLE this yields µ as expectation and σ as standard
deviation.

To prove that estimation via (3.1) shows validity of Assumption D we have to prove existence
of this M-estimator and its

√
n-consistency. It should be possible to show existence along the

lines of Scholz (1971) by studying the 4 by 4 pseudo information matrix EWχχ′W ′; see
also Huber (1981), pages 138-139. Here we will not attempt to do this, since the situation is
much more complicated than the location-scale problem studied in the literature. At the cost
of some generality we suppose here that

√
n-consistent estimators α̂n and β̂n are given. The√

n-consistency of α̂n and β̂n together with the contiguity obtained from the LAN Theorem 2.1
implies that we may treat the parameters α and β as given. So, we are in fact in the i.i.d.
location-scale model and the M-estimators for µ and σ solving the latter two equations in (3.1)
are
√
n-consistent, see Huber (1981) and Bickel (1982). We conjecture that the proof of the

more general M-estimator solving (3.1) can be given along similar lines.
Here we will focus on efficient and hence adaptive estimation of the autoregression param-

eters α and β (cf. Subsections I–IV of Section 2); alternatively, in view of (2.14), note that the
score l̇nt satisfies the form discussed in Example 3.1 of DKW(1994b). In the Appendix we
verify the conditions of Theorem 3.1 in DKW(1994b), this yields the following theorem.

Theorem 3.1 Under Assumptions A–D adaptive estimators of α and β do exist.

To describe our adaptive estimator more accurately, let θ̂n = (α̂n, β̂n, µ̂n, σ̂n)′ be a
√
n-

consistent estimator of θ and compute Wt(θ̂n) via (2.13) and (2.14). Let ε̂n1, . . . , ε̂nn be the
residuals computed from h1, y1, . . . , yn and θ̂n using (2.8). Via a kernel estimate based on
ε̂n1, . . . , ε̂nn with the logistic kernel, say k(·), and bandwidth bn we estimate g(·) by

ĝn(·) =
1

n

n∑
t=1

1

bn
k

(
· − ε̂nt
bn

)

and subsequently ψ(·) by ψ̂n(·); here bn → 0 and nb4n → ∞. Now our estimator may be
written as

(α̂n, β̂n)
′ + (I2, 02×2)(

1

n

n∑
t=1

Wt(θ̂n)ψ̂n(ε̂nt)ψ̂n(ε̂nt)
′Wt(θ̂n)

′)−1

×
1

n

n∑
t=1

{
Wt(θ̂n)−

1

n

n∑
s=1

Ws(θ̂n)

}
ψ̂n(ε̂nt). (3.2)

With θ̂n the QMLE this is the estimator used in the simulations of Section 4. To prove that
such estimators are adaptive we need the following two technical modifications.

• Discretization. θ̂n is discretized by changing its value in (0,∞)× (0,∞)× IR× (0,∞)
into (one of) the nearest point(s) in the grid c√

n
(IN× IN× Z× IN). This technical trick

enables one to consider θ̂n to be non-random, and therefore independent of ε̂nt, yt, and
h1.

• Sample Splitting. The set of residuals ε̂n1, . . . , ε̂nn is split into two samples, which may
be viewed as independent now. For ε̂nt in the first sample, the second sample is used to



estimate ψ(·) by ψ̂n2(·) and ψ̂n(ε̂nt) in (3.2) is replaced by ψ̂n2(ε̂nt). Similarly for ε̂nt
in the second sample, the first sample is used to estimate ψ(·). In this way, again some
independence is introduced artificially to make the proof work.

This approach has been adopted in DKW(1994b). It should be emphasized that both tricks
are merely introduced as a technical device to make proofs work. Other approaches have also
been studied in the literature. Klaassen (1987) has shown that discretization may be avoided
at the cost of an extra sample splitting. Schick (1986) and Koul and Schick (1995) show that
sample splitting may be avoided at the cost of some extra conditions.

4 Simulations and an Empirical Example.

To enhance the interpretation and validity of the theoretical results of the previous sections we
present a small simulation experiment. Furthermore, a case study concerning some exchange
rate series is given.

We simulated several GARCH(1,1) series of length n = 1000, parameters (α, β, σ) =
(.3, .6, 1), (.1, .8, 1), and (.05, .9, 1) [the parameter µ is set to zero and is not estimated to
allow for a better comparison with previous simulation studies], and eight different innovation
distributions: normal, a balanced mixture of two standard normals with means 2 and −2,
respectively, double exponential, student distributions with ν = 5, 7, and 9 degrees of freedom,
and (skew) chi-squared distributions with ν = 6 and 12 degrees of freedom. These densities
are rescaled such that they have the required zero mean and unit variance.

It is the purpose of the simulations to evaluate the moderate sample properties of the
autoregression parametersα and β which are adaptively estimable, in principle. For each series
we estimated these parameters with MLE, QMLE, and a one-step semiparametric procedure.
For the latter estimation method we made two estimates: one under general assumptions on
the innovation distribution and one under the extra assumption of symmetry. The theoretical
results imply that there should be no difference between these two semiparametric methods
if the true underlying density is symmetric indeed but small sample properties may differ. In
the semiparametric part we used standardized logistic kernels with a bandwidth of h = .5.
Reasonable changes of the bandwidth, say .25 ≤ h ≤ .75, or another kernel like the normal
one do not alter the conclusions below.

In the first part of the simulation experiment we compared the ML estimator with the semi-
parametric ones (with the MLE as initial starting value). Asymptotically both semiparametric
estimators should behave as well as the MLE but one may expect that the small sample prop-
erties of the semiparametric estimators are worse due to the inherent problems of choosing
the bandwidth. These results are not reported here but they are comparable to those given in
Table 4.1, from which MLE can be compared with the semiparametric procedure with the less
efficient QMLE starting value.

Of course ML estimation is not feasible in practice since the underlying distribution is not
known. Therefore, we used the QMLE as starting point. Since µ vanishes for the situation
chosen here and ασ2 + β < 1, Theorems 2 and 3 of Lee and Hansen (1994) are applicable
and the QMLE is

√
n-consistent. This estimator has been improved by the one-step Newton

method. For convenience we also report the behavior of the unfeasible MLE in Table 4.1. The



α β α β α β
.300 .600 .100 .800 .050 .900
α̂ β̂ σ̂α σ̂β α̂ β̂ σ̂α σ̂β α̂ β̂ σ̂α σ̂β

N ML=QML .298 .593 .071 .056 .099 .786 .035 .073 .047 .891 .022 .051
1-step .298 .593 .072 .057 .098 .786 .036 .074 .047 .892 .022 .050
1-step(sym) .298 .593 .072 .056 .099 .786 .036 .073 .047 .891 .022 .051

DE ML .299 .592 .080 .070 .099 .782 .038 .083 .048 .885 .023 .061
QML .303 .588 .089 .079 .100 .776 .043 .094 .048 .880 .026 .073
1-step .294 .593 .085 .074 .097 .784 .040 .087 .046 .886 .024 .067
1-step(sym) .295 .592 .083 .073 .097 .783 .039 .086 .046 .885 .024 .065

NM ML .295 .595 .058 .041 .098 .790 .029 .054 .047 .898 .018 .030
QML .295 .595 .059 .042 .097 .790 .030 .054 .046 .897 .018 .032
1-step .295 .595 .060 .043 .098 .793 .030 .056 .047 .901 .018 .032
1-step(sym) .295 .595 .059 .042 .099 .793 .030 .056 .047 .901 .018 .032

t5 ML .295 .592 .076 .067 .100 .787 .036 .071 .048 .888 .021 .054
QML .296 .586 .098 .086 .101 .777 .047 .101 .048 .879 .027 .083
1-step .284 .594 .080 .071 .094 .791 .037 .081 .044 .890 .022 .064
1-step(sym) .285 .594 .079 .070 .095 .791 .037 .081 .045 .889 .022 .063

t7 ML .296 .595 .075 .060 .100 .782 .037 .079 .047 .885 .021 .063
QML .298 .592 .086 .070 .101 .776 .042 .094 .047 .882 .024 .076
1-step .291 .597 .078 .064 .096 .784 .038 .082 .045 .886 .022 .068
1-step(sym) .292 .597 .077 .063 .097 .783 .038 .082 .045 .886 .022 .068

t9 ML .298 .592 .076 .060 .098 .783 .037 .077 .047 .887 .022 .058
QML .300 .591 .083 .066 .099 .781 .040 .085 .048 .886 .024 .064
1-step .295 .593 .079 .062 .096 .785 .038 .080 .046 .889 .022 .057
1-step(sym) .295 .593 .077 .062 .096 .784 .038 .079 .046 .889 .022 .057

χ2
6 ML .297 .596 .042 .034 .099 .796 .020 .036 .050 .899 .012 .022

QML .299 .589 .091 .073 .101 .780 .042 .096 .048 .884 .024 .072
1-step .283 .603 .062 .051 .092 .801 .030 .061 .045 .898 .017 .047

χ2
12 ML .298 .596 .057 .045 .099 .794 .029 .048 .048 .893 .016 .036

QML .299 .592 .084 .064 .100 .782 .041 .079 .047 .881 .023 .071
1-step .289 .598 .065 .051 .095 .796 .032 .061 .045 .891 .018 .049

Table 4.1: Comparison of MLE, QMLE, and two semiparametric one-step estimators in the
GARCH(1,1) model with eight different standardized innovation distributions. Number of
observations n = 1000, true parameters (α, β) = (.3, .6), (.1, .8), and (.05, .9), respectively.
The sample means of 2500 independent replications and their sample standard deviations are
given.



mean values of the estimates in 2500 replications are given together with their sample standard
deviations.

To calculate the efficiency of the QMLE, observe that the asymptotic variance of the QMLE
is equal to the well-known variance formula A−1BA−1, where A is the expectation under
(α, β, σ, g) of the second derivative of the pseudo log-likelihood (with a wrongly specified
normal density) and B the expectation of the squared first derivative. WithWs as defined just
below (2.20), straightforward calculations show

A = 2EWsW
′
s,

B = (κ− 1)EWsW
′
s,

where κ =
∫
ε4g(ε)dε. Except for the normal distribution, the matrices A−1 and B−1 are

generally not equal. Since the asymptotic variance of the QMLE is equal to the lower bound
up to a constant, the asymptotic efficiency of each component of the QMLE is given by

4

(κ− 1)Is(g)
=

4∫
(ε2 − 1)2g(ε)dε

∫
(1 + εl′(ε))2g(ε)dε

≤ 1.

The latter inequality follows from Cauchy-Schwarz applied to the following identity

−2 = E(ε2 − 1)(1 + εl′(ε)) =
∫

(ε2 − 1)(1 + εl′(ε))g(ε)dε.

Since the lower bound for α and β does not change in the semiparametric setting, this expres-
sion also entails the loss in the semiparametric model and shows the (potential) gain of the
semiparametric estimator (3.2).

Except for the mixture distribution we can exactly calculate the efficiency of QMLE with
respect to MLE. For the standardized double exponential the relative efficiency is 4

5
, for stan-

dardized student distributions with ν degrees of freedom it is 1− 12
ν(ν−1)

, and for standardized

chi-squared distributions with ν degrees of freedom it is ν−4
ν+6

. For these heavy-tailed distribu-
tions the efficiency losses of QMLE with respect to MLE show up in Table 4.1 and we see that
the semiparametric methods regain most of the loss caused by the inefficient QMLE method.
For light-tailed alternatives, as in the mixture case, the situation is less clear cut. There the
efficiency is approximately .94 and the performance of the estimators is not much different.
For the normal distribution MLE and QMLE are of course equivalent. The use of the additional
symmetry information hardly improves the estimated standard deviation of the semiparametric
estimator (maximal .002), just as expected from our general theory. In empirical data sets one
often observes outlier type innovation distributions with high kurtoses. Therefore, it seems
worthwhile to apply the semiparametric estimation programs in these situations.

We conclude this section with a simple empirical example based on daily data. We applied
our estimation methods to fifteen logarithmic differenced exchange rate series for the period
January 1, 1980 to April 1, 1994 (n = 3719): Austrian Schilling (AS), Australian Dollar
(AD), Belgium Franc (BF), British Pound (BP), Canadian Dollar (CD), Dutch Guilder (DG),
Danish Kroner (DK), French Franc (FF), German Mark (GM), Italian Lire (IL), Japanese Yen
(JY), Norwegian Kroner (NK), Swiss Franc (SF), Swedish Kroner (SK), and Spanish Peseta
(SP), all with respect to US Dollar. These data are taken from Datastream. To facilitate the
interpretation of the autoregression parameters we have standardized the series such that the



estimates based on
original data bootstrap samples

α̂ β̂ σ̂α σ̂β α̂ β̂ σ̂α σ̂β
AD QMLE .129 .843 .075 .034 .116 .828 .044 .063

1-step .253 .867 .112 .844 .027 .024
AS QMLE .075 .891 .013 .016 .073 .888 .018 .018

1-step .113 .897 .072 .890 .014 .013
BF QMLE .068 .902 .011 .023 .068 .899 .019 .018

1-step .093 .906 .065 .903 .013 .014
BP QMLE .052 .932 .008 .013 .051 .931 .015 .012

1-step .055 .932 .050 .931 .012 .010
CD QMLE .138 .798 .042 .062 .139 .793 .032 .031

1-step .169 .809 .133 .797 .021 .021
DG QMLE .078 .888 .013 .016 .077 .886 .018 .018

1-step .107 .916 .076 .887 .015 .014
DK QMLE .067 .902 .011 .016 .065 .898 .015 .016

1-step .095 .920 .064 .901 .012 .014
FF QMLE .088 .873 .016 .017 .088 .869 .023 .022

1-step .119 .913 .085 .872 .017 .017
GM QMLE .073 .894 .012 .013 .073 .891 .017 .018

1-step .095 .925 .072 .893 .014 .015
IL QMLE .093 .869 .016 .031 .092 .864 .022 .020

1-step .109 .896 .090 .867 .019 .017
JY QMLE .059 .891 .017 .025 .060 .888 .016 .026

1-step .078 .912 .057 .891 .012 .021
NK QMLE .080 .907 .009 .014 .078 .906 .023 .015

1-step .092 .916 .075 .908 .017 .010
SF QMLE .059 .904 .012 .013 .058 .901 .014 .019

1-step .064 .922 .057 .903 .012 .015
SK QMLE .221 .754 .035 .119 .210 .751 .049 .038

1-step .185 .839 .209 .756 .032 .020
SP QMLE .106 .871 .014 .032 .104 .868 .027 .020

1-step .171 .912 .100 .870 .021 .014

Table 4.2: Comparison of QMLE and a semiparametric one-step estimator for several loga-
rithmic differenced daily exchange rate series. Observation period January 1, 1980 to April
1, 1994 (n = 3719). The first part of the table gives the estimates based on the original data
set. Estimated standard deviations are deleted for the semiparametric estimators. The sample
means and sample standard deviations of 500 bootstrap replications are given in the second
half of the table.



QMLE of σ is one. In all series both the QMLE method and the semiparametric procedure
estimate the persistence ασ2 +β less than one (for the semiparametric estimates this cannot be
inferred from Table 4.2 since the semiparametric estimate of σ is not constrained to be one).
The estimates based on the original data sets are given in the first four columns of Table 4.2. Of
course we used the variance formulaA−1BA−1 for the direct estimate of the standard deviation
of the QMLE. As described above, the parameter estimates produced by the semiparametric
procedure are not very sensitive to the choice of the bandwidth. However, it turns out that
the direct variance estimates change dramatically (even for small changes of the bandwidth).
Therefore, these estimates are not reliable and they have been deleted from the table.

For the simulation study above the situation was quite different since we estimated the
variance of the semiparametric one-step estimators from independent parameter estimates in
the replications. Here we have only one data set. Independent replications are not available.
This leads to the following paradox. On the one hand one may have the imprecise QML estimate
with quite large estimated standard deviations. So it may be possible that the hypotheses of
integrated GARCH or no conditional heteroskedasticity cannot be rejected. On the other side
one has the improved semiparametric estimate which allows for more powerful tests. But
since the estimated standard deviations are unreliable one can get any answer one wants by
changing the bandwidth. To avoid this paradox, we propose to use the bootstrap. I.e. simulate
replications of the original data set with the estimated parameter and the estimated innovation
distribution as inputs and proceed as in the case of simulations described above. Then we
have several parameter estimates available from which we calculate the straightforward sample
estimate of the variance. In this manner we only rely upon the parameter estimates and not on
direct estimates of the variance. Hence, the variability of the variance due to different bandwidth
choices is greatly reduced. Some simulation experiments show that this procedure works quite
well. We apply the bootstrap procedure to our data sets and we report the sample means and
sample standard deviations in the final four columns of Table 4.2. Observe that the estimated
standard deviations of the semiparametric estimators of the heteroskedastic parameters are
between four tenth (AD) and nine tenth (IL) of the estimated ones for the QMLE method.
This implies the efficiency of the QMLE method lies approximately in the interval (.15, .80)
in these special examples. The efficiency gain is also supported by the plots in Figure 4.1
of the nonparametric density estimates and the corresponding score estimates which are far
away from the normal density and score. Although these figures suggest some skewness of
the exchange rate densities, they are close to the densities of student tν-distributions with ν
between 4.1 and 5.4. If the true underlying density would be symmetric, we expect from
the simulation study that the symmetric nonparametric procedure performs slightly better in
moderate samples. However, in the exchange rate applications the latter procedure yields
somewhat larger standard deviations (.003 for AS and less than .002 for the others, these values
are not reported here). This indicates that the true densities are not fully symmetric and hence
the symmetric semiparametric approach may lead to wrong conclusions. Since the possible
moderate sample loss is very small it seems to be safer to use the ordinary non-symmetric
improvement.

Finally, we note that the simulation results of Table 4.1 show that all estimators, even the
unfeasible MLE, tend to underestimate the heteroskedasticity parameters. This negative bias
explains why in Table 4.2 on the average the bootstrap estimates are less in value than the
original estimates.
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Figure 4.1: Comparison of estimated densities and scores with tν-densities and scores for
several logarithmic differenced daily exchange rate series. Observation period January 1, 1980
to April 1, 1994 (n = 3719).
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Figure 4.1: (CONTINUED)



5 Conclusions.

In this paper we studied the semiparametric properties of (integrated) GARCH-M type models.
In this model, adaptive estimation is not possible. This fact is completely caused by a location-
scale parameter. After a suitable reparametrization of the model we showed that the estimation
problem of the parameters characterizing the conditional heteroskedastic character of the
process is equally difficult in cases where the innovation distribution is known or unknown,
respectively. In that sense we may call these parameters still adaptively estimable. This
property is derived in a general GARCH context avoiding moment conditions and including
integrated GARCH models. The simulations showed that this property is not only interesting
from a theoretical point of view. In moderate sample sizes withn = 1000 observations, usually
available in financial time-series, the semiparametric procedures work reasonably well. Most
of the loss caused by the QMLE method (instead of the infeasible MLE method) is regained by
the one-step estimator in case of the interesting group of heavy-tailed alternatives. Moreover,
the empirical example showed that the efficiency loss caused by the QMLE method may be
considerable.

It is clear from the exposition in this paper that the adaptivity results carry over to compli-
cated models with time dependent mean and variance structures, e.g., ARMA with GARCH
errors. The basic conditions given in DKW(1994b) do not seem to put serious restrictions
on the models. However, a complete verification of the technical details may be much more
demanding.

A Appendix.

PROOF OF THE LAN THEOREM 2.1: Since the general GARCH model (2.1)–(2.2) is a location-
scale model in which the location-scale parameter only depends on the past, our model fits
into the general time-series framework of DKW(1994b), especially Section 4. Therefore, it
suffices to verify the conditions (2.3′), (A.1), and (2.4) of DKW(1994b). In passing we also
prove (3.3′) of DKW(1994b) which we will need in the proof of Theorem 3.1. I.e., with the
notation introduced in (2.10), (2.14), and (2.15), and Ils(g) the expectation under θ of the
product ψ(θ)ψ(θ)′, we have to show, under θ0,

n−1
n∑
t=1

Wt(θ0)Ils(g)Wt(θ0)
′ P→ I(θ0) > 0, n−1

n∑
t=1

|Wt(θ0)|
21{n−1/2|Wt(θ0)|>δ}

P
→ 0, (A.1)

n−1
n∑
t=1

Wt(θ0)
P
→W (θ0), (A.2)

n−1
n∑
t=1

|Wt(θn)−Wt(θ0)|
2 P→ 0, (A.3)

and, under θn,
n∑
t=1

|n−1/2(Mnt, Snt)
′ −Wt(θn)

′(θ̃n − θn)|
2 P→ 0, (A.4)



for some positive definite matrix I(θ0) and some random matrix W (θ0). Together with their
Lemma A.1, these four relations yield the desired conclusions. We prepare the proof by
deriving some helpful results.

Although Wt(θ0) is not stationary under θ0, the following proposition shows that these
variables can be approximated by a stationary sequence.

Proposition A.1 Letht(θ),Ht(θ), andWt(θ) be given by (2.9), (2.13), and (2.14), respectively,
and let hst(θ), Hst(θ), and Wst(θ) be their corresponding stationary solutions under θ, i.e.

hst(θ) =
∞∑
j=0

j∏
k=1

{β + αξ2
t−k}, Hst(θ) =

∞∑
i=0

βihs,t−1−i(θ)

(
ξ2
t−1−i

1

)
,

Wst(θ) = σ−1

(
1
2
h−1
st (θ)Hst(θ)(µ, σ)

I2

)
.

Then, under θ0,

n−1
n∑
t=1

|Wt(θ0)−Wst(θ0)|
2 → 0 (a.s.), as n→∞. (A.5)

PROOF: We adopt the convention that empty sums are equal to zero while empty products
are equal to one. Iterating ht(θ) yields

ht(θ) = 1 + βht−1(θ) + αy2
t−1 = 1 + ht−1(θ){β + αξ2

t−1(θ)}

=
i−1∑
j=0

j∏
k=1

{β + αξ2
t−k(θ)}+ ht−i(θ)

i∏
k=1

{β + αξ2
t−k(θ)}, 0 ≤ i ≤ t− 1, (A.6)

and hence

ht−i(θ)/ht(θ) ≤
i∏

k=1

{β + αξ2
t−k(θ)}

−1, 0 ≤ i ≤ t− 1. (A.7)

Under θ, the calculated variables ξt(θ) simply are the true innovations ξt in (A.6) and (A.7).
For the stationary random variables hst(θ) we obtain similar relations,

hst(θ) =
i−1∑
j=0

j∏
k=1

{β + αξ2
t−k}+ hs,t−i(θ)

i∏
k=1

{β + αξ2
t−k}, 0 ≤ i,

hs,t−i(θ)/hst(θ) ≤
i∏

k=1

{β + αξ2
t−k}

−1, 0 ≤ i,

and hence, under θ, we obtain

|hst(θ)ht−i(θ)− ht(θ)hs,t−i(θ)| = |hs,t−i(θ)− ht−i(θ)|
i−1∑
j=0

j∏
k=1

{β + αξ2
t−k}

≤ ht(θ)|hs1(θ)− h1(θ)|
t−1−i∏
k=1

{β + αξ2
t−i−k}

= ht(θ)|hs1(θ)− h1(θ)|
i∏

k=1

{β + αξ2
t−k}

−1
t−1∏
k=1

{β + αξ2
k}, 0 ≤ i ≤ t− 1.



With C some generic constant only depending on θ we obtain, under θ,

|Wt(θ)−Wst(θ)| ≤ C|Ht(θ)/ht(θ) −Hst(θ)/hst(θ)|

≤ C
t−2∑
i=0

βi|
ht−1−i(θ)

ht(θ)
−
hs,t−1−i(θ)

hst(θ)
|

∣∣∣∣∣
(
ξ2
t−1−i

1

)∣∣∣∣∣+ C
∞∑

i=t−1

βi
hs,t−1−i(θ)

hst(θ)

∣∣∣∣∣
(
ξ2
t−1−i

1

)∣∣∣∣∣
≤ C|hs1(θ)− h1(θ)|

t−1∏
k=1

{β + αξ2
k}

t−2∑
i=0

i∏
k=1

β

β + αξ2
t−k

+ C
∞∑

i=t−1

i∏
k=1

β

β + αξ2
t−k

≤ C|hs1(θ)− h1(θ)|(t− 1)
t−1∏
k=1

{β + αξ2
k}+ C

t−1∏
k=1

β

β + αξ2
k

∞∑
i=−1

i∏
k=0

β

β + αξ2
−k

.

By (2.3) the right-hand side tends to zero (a.s.), as t → ∞. Cesàro’s Theorem completes the
proof of the proposition. 2

Intuitively it is clear that slight perturbations of the parameters yield solutions of equations (2.1)
and (2.2) that are close. The following proposition makes this more precise. Just as expected
from heuristic formal calculations, the leading term of h̃nt/hnt − 1 is a linear combination of
the components of Hnt/hnt which appears in the score l̇nt.

Proposition A.2 Let ht(θ) and Ht(θ) be given by (2.9) and (2.13), respectively, and define

Qt(θ) = Ht(θ)/ht(θ) =
t−2∑
i=0

βi
(

y2
t−1−i

ht−1−i(θ)

)
/ht(θ) =

t−2∑
i=0

βi
ht−1−i(θ)

ht(θ)

(
ξ2
t−1−i(θ)

1

)
,

Rt(θ, θ̃) = ht(θ̃)/ht(θ)− 1− (α̃− α, β̃ − β)Qt(θ).

Let θn and θ̃n satisfy the conditions just above (2.6). Put Qnt = Qt(θn) and Rnt = Rt(θn, θ̃n).
Then, under θn,

n−1
n∑
t=1

|Qnt|
2 = OP (1), n−1

n∑
t=1

|Qnt|
21{n−1/2|Qnt|>δ} → 0, (a.s.), as n→∞, (A.8)

n∑
t=1

R2
nt → 0, (a.s.), as n→∞. (A.9)

PROOF: By equation (A.7) we obtain

Qt(θ) ≤ β
−1

t−2∑
i=0

i+1∏
k=1

β

β + αξ2
t−k(θ)

(
ξ2
t−1−i(θ)

1

)
.

For n sufficiently large, this latter relation shows that, under θn, |Qnt| may be bounded by the
product of a constant only depending on θ0 and the stationary sequence

St =
∞∑
i=0

i∏
k=1

β0

β0 + 1
2
α0ξ2

t−k

.

Note that all moments of St exist. The relations concerning Qnt are easily obtained.



To prove the result concerning the remainder termRnt note that an explicit relationship for
the difference of ht(θ̃) and ht(θ) is given by [compare (2.3) of Kreiss (1987a)]

ht(θ̃)− ht(θ) =
t−2∑
i=0

β̃iht−1−i(θ)(α̃− α, β̃ − β)

(
ξ2
t−1−i(θ)

1

)
.

Hence, the remainder termRt(θ, θ̃) is given by

Rt(θ, θ̃) =
t−2∑
i=0

(β̃i − βi)
ht−1−i(θ)

ht(θ)
(α̃− α, β̃ − β)

(
ξ2
t−1−i(θ)

1

)
.

Choose c > 1 such that Ecβ0/(β0 + 1
2
α0ξ

2
1) < 1. By the mean value theorem, there exists a

β̃ni in between β̃n and βn such that, for n sufficiently large,

|β̃in − β
i
n| = |β̃n− βn|iβ̃

i−1
ni ≤ |β̃n − βn|ic

i−1βi−1
n , i ≥ 0.

Just as for Qnt, we may bound Rnt by the product of a constant times n−1 and the stationary
sequence

S∗t =
∞∑
i=0

i
i∏

k=1

cβ0

β0 + 1
2
α0ξ2

t−k

.

The proof of the proposition can be easily completed. 2

Now we are ready to prove (A.1)–(A.4). Define I(θ0) = Eθ0Ws1(θ0)Ils(g)Ws1(θ0)′ and
W (θ0) = Eθ0Ws1(θ0) (the existence of these quantities can be obtained along the lines of
the proof of Proposition A.2 since |Wst(θ0)| is bounded by the product of St and a constant
depending on θ0, only). Obviously the relations (A.1) and (A.2) hold true if Wt(θ0) is replaced
by the stationary ergodic sequenceWst(θ0). Consequently, Proposition A.1 implies the validity
of these relations for Wt(θ0) itself.

To prove (A.4) we will use Proposition A.2. Writing λn = (λ′1n, λ
′
2n)
′ with λ1n (λ2n) the

first (latter) two components of λn, and defining

χ(x) =
{
−1 + 2(

√
1 + x− 1)/x

}
1{x≥−1},

we see
n∑
t=1

|n−1/2(Mnt, Snt)
′ −Wt(θn)

′(θ̃n − θn)|
2 =

= σ−2
n n−1

n∑
t=1

∣∣∣∣(µ̃n, σ̃n)′ {1

2
(λ′1nQnt +

√
nRnt)χ(n−1/2λ′1nQnt +Rnt) +

1

2

√
nRnt

}

+n−1/2λ2n
1

2
λ′1nQnt

∣∣∣∣2 .
Together with Proposition A.2, Lemma 2.1 of DKW(1994b) [with Ynt = λ′1nQnt, Xnt =
λ′1nQnt +

√
nRnt, and the function φ = χ2 as above] yields (A.4).

Finally, we have to prove (A.3). Note that

|Wt(θn)−Wt(θ0)|
2 ≤ C|Qt(θn)−Qt(θ0)|

2 + C|Qt(θ0)|
2|θn − θ0|

2



and obtain contiguity of Pθn and Pθ0 from (A.1) and (A.4), and Theorem 2.1 of DKW(1994b).
Then the required result is easily obtained from

Qt(θ̃)−Qt(θ) =
t−2∑
i=0

(β̃i − βi)
ht−1−i(θ̃)

ht(θ̃)

(
ξ2
t−1−i(θ̃)

1

)
+ Qt(θ)

{
(θ1 − θ̃1)

′Qt(θ̃) +Rt(θ̃, θ)
}

−

 0∑t−2
i=0 β

i ht−1−i(θ̃)

ht(θ̃)

{
(θ1 − θ̃1)′Qt−1−i(θ̃) +Rt−1−i(θ̃, θ)

} 
along the lines of the proofs of the propositions above. This completes the proofs of the
theorems in Section 2. 2

PROOF OF THEOREM 3.1: It suffices to verify the conditions of DKW(1994b). These reduce
to (A.1)–(A.4) above, which are verified there, and the existence of an estimator ψ̂n(·), based
on ε1, . . . , εn, of ψ(·) = −(l′(·), 1 + ·l′(·))′, from (2.15), satisfying the consistency condition∫

|ψ̂n(x)− ψ(x)|2g(x)dx
P
→ 0, under g.

Indeed, such an estimator exists in view of Proposition 7.8.1, p. 400, of BKRW(1993) with
k = 0 and k = 1; see also Lemma 4.1 of Bickel (1982). The estimator ψ̂n(·) in Section 3 is
based on these constructions. 2
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ENGLE, R.F., and GONZÁLEZ-RIVERA, G. (1991), Semiparametric ARCH models,
Journal of Business and Economic Statistics, 9, 345–359.

ENGLE, R.F., LILIEN, D.M., and ROBINS, R.P. (1987), Estimating time varying
risk premia in the term structure: the ARCH-M model, Econometrica, 55,
391–407.

GOURIEROUX, C., and MONFORT, A. (1992), Qualitative threshold ARCH models,
Journal of Econometrics, 52, 159–199.
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