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Abstract

We present an algorithm to determine both a lower and an upper bound
for the finite-time probability of ruin for a risk process with constant interest
force. We split the time horizon into smaller intervals of equal length and
consider the probability of ruin in case premium income for a time interval
is received at the beginning (resp. end) of that interval, which yields a lower
(resp. upper) bound. For both bounds we present a renewal equation which
depends on the distribution of the present value of the aggregate claim amount
in a time interval. This distribution is determined through a generalization of
Panjer’s (1981) recursive method.
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1 Introduction

Although risk processes with compounding assets have recently received considerable

attention (e.g. Sundt and Teugels (1995), Gjessing and Paulsen (1997), Paulsen

(1998)), efficient algorithms for determining finite-time probabilities of ruin for a

risk process with constant interest force are scarce. Dickson and Waters (1999)

divide the time period under consideration into smaller intervals, and provide a

recursive algorithm to determine the probability of ruin in case any claims are paid

at the end of an interval. As mentioned by the authors, a drawback of their method

is that it yields an underestimate of the probability of ruin, and that the accuracy of

the approximations is difficult to assess as a result of the absence of exact values or

good approximations of ruin probabilities for models with a strictly positive interest

rate in the literature.

In this paper we present an algorithm that yields both a lower and an upper

bound to the probability of ruin for the case with constant positive interest force. As

in Dickson and Waters (1999) we discretize the time horizon, but instead of assuming

that claims are paid at the end of an interval, we consider the cases where premium

income is received at the beginning (resp. end) of an interval. We then derive renewal

equations for the two resulting ruin probabilities. In order to solve these renewal

equations we use the generalized version of Panjer’s (1981) recursive method derived

in Boogaert and De Waegenaere (1990). The combined result of lower and upper

bounds that converge to the actual ruin probability makes it possible to assess the

ruin probability with high accuracy.

The organization of this paper is as follows. Section 2 presents the lower and

upper bounds to the probability of ruin. Section 3 describes the renewal equation

that allows to determine both bounds recursively. In Section 4, numerical results

are stated, and Section 5 concludes.

2 The risk process under interest force

The risk process with a constant interest rate is an extension of the classical risk

process. It is assumed that claims arrive according to a Poisson process {Nt : t ≥ 0}
with rate λ (λ > 0). Let Tn (n ∈ N) denote the arrival time of the n-th claim. The

claim sizes {Xn : n ∈ N} are nonnegative and i.i.d. and independent of the claim

arrival process. The initial surplus of the insurance company at time t = 0 is k

(k ≥ 0) and premiums are received continuously over time at rate p (p ≥ 0).

Both starting capital and premium income grow with a constant, deterministic,

and continuous interest rate γ (γ ≥ 0). So the present value of an amount x ∈ R
at time t is given by xe−γt. The surplus Zt of the company at time t is for the case
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with interest given by:

Zt := keγt+p(t)−
Nt∑
i=1

eγ(t−Ti)Xi, t ≥ 0, (1)

where p(t) denotes the value at time t of the aggregate premium income over [0, t].

In order to approximate the probability of ruin, it is more convenient to consider

the present value of the surplus, which is given by:

Z̃t := k + pc(t) −
Nt∑
i=1

e−γTiXi

= k + pc(t) − S̃t, t ≥ 0,

where S̃t denotes the present value of the aggregate claim amount up to time t, and

pc(t) :=




pt if γ = 0, t ≥ 0,

p
γ
(1 − e−γt) if γ > 0, t ≥ 0.

denotes the present value of the premiums received over [0, t].

The probability of ruin in the interval [0, T ] for initial surplus k and given present

value premium income function pc(.) is denoted by:

P (k, T, pc(.)) := Pr(inf{t ≥ 0 : k+pc(t)−S̃t < 0} < T ), k, T ≥ 0. (2)

For the case where γ = 0, one has pc(t) = pt, for all t ≥ 0, and several methods

exist to approximate or calculate the probability of ruin in a certain time interval,

finite or infinite (e.g. De Vylder and Goovaerts, 1988).

In order to determine upper and lower bounds for P (k, T, pc(.)) in case γ > 0,

we consider the probability of ruin for two other present value premium income

functions defined as follows: For h > 0

pb(h, t) := ph

i−1∑
j=0

e−γjh for all t ∈ ( (i − 1)h, ih ],

pe(h, t) := ph

i−1∑
j=1

e−γjh for all t ∈ [ (i − 1)h, ih ),

and pb(h, 0) := 0.

Hence,

• pb(h, t) equals the present value of the total premium amount at time t when

an amount ph is received just after the beginning of each time interval of length

h,
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Figure 1: Present value premium income functions pc(t) (solid line), pb(h, t) (dashed

line) and pe(h, t) (dotted line).

• pe(h, t) equals the present value of the total premium amount at time t when

an amount ph is received at the end of each time interval of length h.

Since clearly, for a fixed but arbitrary h > 0 one has:

pe(h, t) ≤ pc(t) ≤ pb(h, t), for all t ≥ 0, (3)

it follows that for every T ≥ 0, and h > 0:

P (k, T, pb(h, .)) ≤ P (k, T, pc(.)) ≤ P (k, T, pe(h, .)). (4)

Therefore, the ruin probabilities for the present value premium income functions

pb(h, .) and pe(h, .) can be used to determine lower and upper bounds for the prob-

ability of ruin for pc(.).

Since pb(h, .) is increasing in h, and pe(h, .) is decreasing in h, it follows that

P (k, T, pb(h, .)) is decreasing in h, and P (k, T, pe(h, .)) is increasing in h, and con-

sequently, one obtains better approximations as h gets smaller. Figure 1 shows the

present value premium income functions pc(t), pb(h, t) and pe(h, t) as a function of

the time t. We see that pb(h, t) and pe(h, t) are strictly above, respectively below,

pc(t) for t > 0.

The following theorem shows how the bounds in (4) can be sharpened by using

present value premium income functions that result from multiplying pb(h, .) and

pe(h, .) by the factor

rb(h) :=




1−e−γh

γh
if γ > 0,

1 if γ = 0,
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Figure 2: Present value premium income functions pc(t) (solid line), rb(h) pb(h, t)

(dashed line) and re(h) pe(h, t) (dotted line).

and

re(h) :=




eγh−1
γh

if γ > 0,

1 if γ = 0,

respectively. Note that rb(h) ≤ 1 and re(h) ≥ 1. Furthermore, we have that

rb(h) pb(h, nh) = re(h) pe(h, nh) = pc(nh) for all n ∈ N0 (see Figure 2).

Theorem 1. We have the following lower bound and upper bound for P (k, T, pc(.)):

P
(
k, T, rb(h) pb(h, .)

)
≤ P (k, T, pc(.)) ≤ P

(
k, T, re(h) pe(h, .)

)
, (5)

for all k, T ≥ 0 and h > 0.

Proof. It is sufficient to show that for all γ ≥ 0 and h > 0, pc(.) satisfies

re(h) pe(h, t) ≤ pc(t) ≤ rb(h) pb(h, t), t ≥ 0. (6)

For γ = 0 the result immediately follows from (3). Assume that γ > 0 and let t > 0

be given, and take i such that t ∈ ((i − 1)h, ih]. Then

pc(t) ≤ pc(ih) =
p

γ
(1 − e−γih) =

p

γ
(1 − e−γh)

i−1∑
j=0

e−γjh

=
1 − e−γh

γh
pb(h, t) = rb(h) pb(h, t).

For t = 0 one has pc(0) = rb(h) pb(h, 0) = 0.
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Similarly, let t ≥ 0 and i be such that t ∈ [(i − 1)h, ih). Then

pc(t) ≥ pc((i − 1)h) =
p

γ
(1 − e−γ(i−1)h)

=
p

γ
(1 − e−γh)

i−2∑
j=0

e−γjh =
p

γ
(eγh − 1)

i−1∑
j=1

e−γjh

=
eγh − 1

γh
pe(h, t) = re(h) pe(h, t).

This concludes the proof.

In order to calculate the upper and lower bounds in (5), we take h such that

exactly N (N ∈ N) intervals of length h fit into the larger interval [0, T ], i.e.,

h := T/N, T > 0, N ∈ N. (7)

The following theorem shows that, due to the structure of the present value premium

income functions pb(h, .) and pe(h, .), the continuous time ruin probability in (5) can

be written as discrete time ruin probabilities.

Theorem 2. For h given by (7) define

Q(k, n, c) := 1 − Pr
(
S̃h ≤ k + c, S̃2h ≤ k + c + ce−γh, . . . ,

S̃nh ≤ k + c + ce−γh + · · · + ce−(n−1)γh
)
, (8)

for n ∈ {1, 2, . . . , N}, k, c ∈ R and γ ≥ 0.

Then, for all p, k ≥ 0 and γ ≥ 0:

(i) P (k, T, rpb(h, .)) = Q(k,N, rph) r > 0,

(ii) P (k, T, rpe(h, .)) = Q(k − rph,N, rph) r > 0,

(iii) P (k, T, pc(.)) satisfies:

Q
(
k,N, pl

) ≤ P (k, T, pc(.)) ≤ Q
(
k−pu, N, pu

)
. (9)

where

pl := ph rb(h) =




p(1 − e−γh)/γ if γ > 0,

ph if γ = 0,

and

pu := ph re(h) =




p(eγh − 1)/γ if γ > 0,

ph if γ = 0.
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Proof.

(i) This is a trivial consequence of the fact that, given p̃(t) = r pb(h, t) for all

t ≥ 0, one has for every i = 1, 2, . . . , N :

min
{

Z̃t : t ∈ ((i−1)h, ih]
}

= Z̃ih,

when Z̃t = k + p̃(t) − S̃t. Consequently, ruin occurs at some t ∈ [0, T ] if and

only if ruin occurs at some time t ∈ {ih : i = 1, 2, . . . , N}, i.e.,

P (k, T, r pb(h, .)) = Pr
(∃i ∈ {1, 2, . . . , N} : Z̃ih < 0

)
= 1 − Pr(S̃h ≤ k + rph, S̃2h ≤ k + rph + rphe−γh, . . . ,

S̃Nh ≤ k + rph + · · · + rphe−γ(N−1)h)

= Q(k,N, rph).

(ii) Given p̃(.) = r pe(h, .), i.e., a premium amount rph is received at the end of

the period, we have for all i = 1, . . . , N :

Z̃t ≥ Z̃ih−rphe−γih, for all t ∈ [(i − 1)h, ih) ,

when Z̃t = k + p̃(t) − S̃t. Hence, if the surplus becomes negative at a certain

time t ∈ [(i−1)h, ih), then it will be negative just prior to the premium income

at time ih. Since the probability of a claim arrival exactly at time ih is zero,

the surplus just prior to the premium income at time ih is, with probability 1,

equal to Z̃ih − rphe−γih. This yields

P (k, T, rpe(h, .)) = Pr
(∃i ∈ {1, 2, . . . , N} s.t. Z̃ih − rphe−γih < 0

)
= 1 − Pr

(
S̃h ≤ k, S̃2h ≤ k + rphe−γh, . . . ,

S̃Nh ≤ k + rphe−γh + · · · + rphe−(n−1)γh
)

= Q(k − rph,N, rph).

(iii) Follows immediately by combining (6) and (i) with r = rb(h), and by combin-

ing (6) and (ii) with r = re(h).

In the next section, we show how, for given values of k, N and c, Q(k,N, c) can

be computed recursively.
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3 Renewal equation for Q(., ., .)

An essential property of the classical risk process (γ = 0) is the fact that, since

the claim number process {Nt : t ≥ 0} is an homogeneous Poisson process and

the claim height process {Xi : i ∈ N} is an i.i.d. process independent of {Nt :

t ≥ 0}, the total claim height process {St =
∑Nt

i=1 Xi : t ≥ 0} has stationary and

independent increments. Clearly, when γ > 0, the present value claim height process

{e−γTiXi : i ∈ N} is no longer an i.i.d. process, since claims that occur at different

times are discounted over different time periods. Consequently, the distribution of

an increment in the total present value claim height no longer only depends on the

length of this time period, i.e., the process does not have stationary increments.

However, in the case of exponential inter-occurrence times, we can show a relation

between the distributions of the total discounted claim height over different time

periods of the same length. This will allow us to derive a recursive formula for

Q(k,N, c).

It is well known that the conditional distribution of the stochastic vector (T1, T2, . . . , Tn),

conditional on the event that exactly n claims occurred in the time period [0, T ],

equals the distribution of the vector (U(1), U(2), . . . , U(n)), where U(i) denotes the i-th

order statistic in a sequence of n i.i.d. random variables with uniform distribution

over [0, T ].

It is clear that the following generalization holds:

Lemma 3. For all 0 ≤ s < t and m,n ∈ N : m < n, we have that

(Tm+1 − s, Tm+2 − s, . . . , Tn − s) | (Ns = m,Nt = n) ∼ (U(1), U(2), . . . , U(n−m)),

where U(i) denotes the i-th order statistic in a sequence of n − m i.i.d. random

variables with uniform distribution over [0, t − s].

Proof. Straightforward generalization of the proof of Theorem 2.3.1 in Ross (1996).

Given this result, we can now show that the present value risk process has incre-

ments that are independent and “nearly” stationary in the following sense:

Lemma 4. The present value risk process satisfies:

(i) {S̃t : t ≥ 0} has independent increments,

(ii) for all 0 ≤ t1 < t2 < · · · < tn and all u ≥ 0, the random vector (S̃t1+u −
S̃u, S̃t2+u−S̃t1+u, . . . , S̃tn+u−S̃tn−1+u) has the same distribution as the random

vector (e−γuS̃t1 , e−γu(S̃t2 − S̃t1), . . . , e−γu(S̃tn − S̃tn−1)).
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Proof.

(i) See Boogaert and Haezendonck (1989).

(ii) We first show that for all 0 ≤ v < w

S̃w+u− S̃v+u ∼ e−γu(S̃w− S̃v). (10)

For simplicity of notation, we consider the case where v = 0, u = s, and w = t−
s for some s < t. For each m,n ∈ N0 : m ≤ n, we denote (U(1), U(2), . . . , U(n−m))

for the n − m order statistics of a sequence of n − m i.i.d. random variables

with uniform distribution over [0, t − s].

First notice that it follows from Lemma 3 that for any m,n ∈ N0 with m ≤ n,

we have:

Pr
(
e−γs

∑n
i=m+1e

−γ(Ti−s)Xi ≤ x
∣∣∣ Ns = m,Nt = n

)

= Pr
(
e−γs

∑n
i=m+1e

−γU(i−m)Xi ≤ x
)

= Pr
(
e−γs

∑n−m
i=1 e−γU(i)Xi ≤ x

)

= Pr
(
e−γs

∑n−m
i=1 e−γTiXi ≤ x

∣∣∣ Nt−s = n − m
)
.

Consequently, we see that for any x ∈ R:

Pr(S̃t − S̃s ≤ x)

=
∞∑

m=0

∞∑
n=m

Pr
(
e−γs

∑n
i=m+1e

−γ(Ti−s)Xi ≤ x
∣∣∣ Ns = m,Nt = n

)

· Pr(Ns = m,Nt = n)

=
∞∑

m=0

∞∑
n=m

Pr
(
e−γs

∑n−m
i=1 e−γTiXi ≤ x

∣∣∣ Nt−s = n − m
)

· Pr(Ns = m) Pr(Nt−s = n − m)

= Pr
(
e−γs

∑Nt−s

i=1 e−γTiXi ≤ x
)

= Pr(e−γsS̃t−s ≤ x)

= Pr
(
e−γs(S̃t−s − S̃0) ≤ x

)
.

The proof of the more general case where 0 ≤ v < w and u ≥ 0 goes along

the same lines. From (i) we know that the increments are independent and

therefore (10) can be applied to all increments separately, which yields the

desired result.
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We can now come to the recursive formula for Q(k,N, c).

Theorem 5. Let c, γ ≥ 0, k ≥ −c. Then we have:

Q(k, 1, c) = 1 − Gh(k + c) (11)

and for n = 2, . . . , N

Q(k, n, c) = 1 − Gh(k + c) +

∫ k+c

0

Q
(
(k − y + c)eγh, n − 1, c

)
dGh(y), (12)

where Gh(.) denotes the cdf of S̃h.

Proof. For n = 1 we have

Q(k, 1, c) = 1−Pr(S̃h ≤ k+c) = 1−Gh(k+c).

Let us denote

Yi,h := S̃ih − S̃(i−1)h.

Thus, Yi,h equals the present value of the total claim amount in the time interval

((i − 1)h, ih], and Y1,h is equal to S̃h and has cdf Gh(.).

Then, for all n = 2, . . . , N , we have

Q(k, n, c) = 1 − Pr
(
Y1,h ≤ k + c, Y1,h + Y2,h ≤ k + c + ce−γh, . . . ,

Y1,h + · · · + Yn,h ≤ k + c + ce−γh + · · · + ce−(n−1)γh
)

= 1 −
∫ k+c

0

Pr
(
Y2,h ≤ k + c + ce−γh − y, . . . ,

Y2,h + · · · + Yn,h ≤ k + c + ce−γh + · · · + ce−(n−1)γh − y
)
dGh(y).

(13)

Given Lemma 4(ii), if we choose u = h and ti = ih for i = 1, 2, . . . , n, it

follows that (Y2,h, . . . , Yn,h) has the same distribution as (e−γhY1,h, . . . , e
−γhYn−1,h).

Therefore, for every y ∈ [0, k + c], we have:

Pr
(
Y2,h ≤ k + c + ce−γh − y, . . . ,

Y2,h + · · · + Yn,h ≤ k + c + ce−γh + · · · + ce−(n−1)γh − y
)

= Pr
(
e−γhY1,h ≤ k + c + ce−γh − y, . . . ,

e−γh(Y1,h + · · · + Yn−1,h) ≤ k + c + ce−γh + · · · + ce−(n−1)γh − y
)

= Pr
(
Y1,h ≤ (k − y + c)eγh + c, . . . ,

Y1 + · · · + Yn−1,h ≤ (k − y + c)eγh + c + ce−γh + · · · + ce−(n−2)γh
)

= 1 − Q
(
(k − y + c)eγh, n − 1, c

)
.

Substituting the expression above in (13) yields the desired result.
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The above recursive formula can be used to compute lower and upper bounds

for the probability of ruin in the interval [0, T ] for given values of c, k, T and h. It

therefore remains to determine Gh(x) = Pr(S̃h ≤ x). For the classical risk process,

the algorithm by Panjer (1981) gives a recursive formula for the density of Sh. In

the following theorem, we show how an alternative to Panjer’s recursion can be used

to determine the density gh(.) of the present value of the total claim height S̃h.

Theorem 6. Let the claim heights Xn (n ∈ N) be nonnegative and absolute con-

tinuous distributed with pdf f(.). The density gh(.) (h > 0) of the variable S̃h then

satisfies the following integral equation:

gh(x) = λhe−λhf̃h(x)+λh

∫ x

0

x − y

x
f̃h(x−y)gh(y)dy, x > 0, (14)

where f̃h(.) denotes the pdf of X1e
−γT1 | {Nh = 1}. Hence,

f̃h(x) =
1

h

∫ h

0

f(xeγu)eγudu, x > 0. (15)

Proof. See Boogaert and De Waegenaere (1990).

Now, if gh(.) is the solution of integral equation (14), then the initializing step

in the recursive algorithm can be computed as follows:

Q(k, 1, r) = 1 − Gh(k + r)

= 1 − e−λh −
∫ k+r

0

gh(y)dy.

The combined results of Theorems 2, 5 and 6 now allow to determine the lower

and upper bounds in (9) for any given h > 0. The following theorem shows that

both the lower and upper bound converge to P (k, t, pc(.)) as h tends to zero.

Theorem 7. For all k, T ≥ 0 and γ ≥ 0,

lim
h↓0

P
(
k, T, rb(h) pb(h, .)

)
= P (k, T, pc(.)) = lim

h↓0
P

(
k, T, re(h) pe(h, .)

)
.

Proof. It is seen easily that, for any γ, t ≥ 0, one has

lim
h↓0

(
rb(h) pb(h, t)

)
= pc(t) = lim

h↓0

(
re(h) pe(h, t)

)
.

This allows to show that both the time of ruin for rb(h)pb(h, .) and for re(h)pe(h, .)

converge almost sure to the time of ruin for pc(.). Since convergence almost sure

implies convergence in distribution (see Mittelhammer, 1996, page 258) the result

follows.
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4 Numerical results

In this section we present numerical results in cases where the claim heights have

an exponential distribution or a Pareto distribution.

For the interpretation of the numerical results it is important to know that, as

is the case for the classical risk process, certain normalizations can be done without

loss of generalization.

Theorem 8.

(i) Let T = T̄ /α, λ = αλ̄, γ = αγ̄, p = αp̄. Then the ruin probability

P (k, T, pc(.)) does not depend on α, for all α > 0.

(ii) Let k = αk̄, p = αp̄ and let the pdf of the claim size distribution be given by

f(x/α)/α for some function f(.). Then the ruin probability P (k, T, pc(.)) does

not depend on α, for all α > 0.

Proof. Goes along the usual lines.

Hence, Theorem 8(i) shows that the probability of ruin does not change if the

time horizon is rescaled and other time-related model parameters are modified ac-

cordingly. Theorem 8(ii) says that the probability of ruin does not change if the

monetary unit is re-evaluated.

4.1 Exponentially distributed claim size

We consider the case where the claim sizes {Xi : i ∈ N} are exponentially distributed

with mean µ, i.e. f(x) = 1
µ
e−x/µ. For γ > 0, it follows immediately that the function

f̃h(.) in Theorem 6 is given by:

f̃h(x) =




1
hγx

(
e−

x
µ − e−

xeγh

µ

)
if x > 0,

1
hγµ

(eγh − 1), if x = 0,

0 if x < 0.

As in Dickson and Waters (1999), we take µ = 1 and λ = 1. The safety loading

θ is equal to 0.1, and consequently the premium density p = 1.1.

For the case with no interest (γ = 0) the literature provides accurate ruin prob-

abilities. Table 1 shows the ruin probabilities by Seal (1978) denoted by “S” for

several values of the initial surplus k and the time horizon T , and the lower bounds

and upper bounds (LB–UB) derived in this paper computed using interval length

h = 0.01. It is clear from Table 1 that the algorithm produces good bounds when

γ = 0.
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T k = 0 k = 5 k = 10

1 LB–UB 0.4616–0.4649 0.0138–0.0139 0.0003–0.0003

S 0.4634 0.0138 0.0003

5 LB–UB 0.7178–0.7204 0.1024–0.1029 0.0092–0.0093

S 0.7196 0.1027 0.0092

10 LB–UB 0.7838–0.7859 0.1901–0.1908 0.0318–0.0320

S 0.7854 0.1906 0.0319

20 LB–UB 0.8303–0.8320 0.2950–0.2958 0.0820–0.0822

S 0.8318 0.2956 0.0821

Table 1: Ruin probabilities and lower and upper bounds (LB–UB) for γ = 0.

T k = 0 k = 5

1 LB–UB 0.4596–0.4629 0.0126–0.0127

AVG 0.4612 0.0127

SIM 0.4613 0.0127

DW 0.4598 0.0126

5 LB–UB 0.7014–0.7040 0.0778–0.0781

AVG 0.7027 0.0780

SIM 0.7033 0.0780

DW 0.7019 0.0778

10 LB–UB 0.7538–0.7560 0.1259–0.1264

AVG 0.7549 0.1262

SIM 0.7556 0.1263

DW 0.7544 0.1260

20 LB–UB 0.7806–0.7825 0.1627–0.1632

AVG 0.7816 0.1630

SIM 0.7821 0.1631

DW 0.7812 0.1628

Table 2: Simulated ruin probabilities and lower and upper bounds for γ = 0.05.

We have computed lower bounds and upper bounds for interest rate γ = 0.05 and

initial surplus k = 0 and k = 5. Table 2 shows the approximations by Dickson and

Waters (1999) (DW), simulated ruin probabilities (SIM), the lower bounds (LB) and

upper bounds (UB) that we discussed in this paper, as well as the average of lower

and upper bound (AVG). All bounds are computed with a fixed interval length

h = 0.01 which is slightly larger than the step size used by Dickson and Waters
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T LB–UB AVG SIM

1 h = 1 0.3248–0.6321 0.4784 0.4613

h = 0.5 0.3849–0.5476 0.4663

h = 0.25 0.4211–0.5038 0.4625

5 h = 1 0.5884–0.8294 0.7089 0.7033

h = 0.5 0.6405–0.7685 0.7045

h = 0.25 0.6701–0.7355 0.7028

10 h = 1 0.6587–0.8605 0.7596 0.7556

h = 0.5 0.7025–0.8098 0.7561

h = 0.25 0.7273–0.7823 0.7548

20 h = 1 0.6968–0.8750 0.7859 0.7821

h = 0.5 0.7352–0.8301 0.7826

h = 0.25 0.7570–0.8057 0.7813

Table 3: Lower and upper bounds for k = 0, γ = 0.05 and different values of h.

(1999) (h = 0.009).

The simulated ruin probabilities were computed using 250 · 106 simulation runs

of the risk process— which results in 95% confidence intervals with length at most

1.3 · 10−4.

Clearly, for small h the lower bound and upper bound are close together and the

actual probability of ruin is known with relatively high precision. However, also for

higher values of h a good approximation of the ruin probability can be obtained by

averaging the lower and upper bound. Indeed, the simulated ruin probabilities are

located remarkably close to the average of the lower and upper bound of our algo-

rithm. This is illustrated in Table 3 which repeats the simulated ruin probabilities

of Table 2 for k = 0 and shows the lower and upper bounds computed resulting from

h = 1, h = 0.5 and h = 0.25.

Another illustration of this effect is shown in Figure 3 where the average of the

lower and upper bound for the case with k = 5 and T = 20 is plotted against the

step size h. We see that, as h approaches zero, the average quickly approaches the

the actual ruin probability.

4.2 Pareto distributed claim size

We consider the same example as in Section 4.1, but now with i.i.d. Pareto(2, 3)

claim size distribution, i.e. Pr(Xi ≤ x) = 1 − (a/(a + x))b, with a = 2, b = 3. To
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Figure 3: Average of the bounds of the probability of ruin, for k = 5, γ = 0.05 and

T = 20, as a function of step size h.

γ LB–UB AVG SIM DW

0.000 0.4201–0.4237 0.4219 0.4219 0.4201

0.025 0.4182–0.4227 0.4204 0.4209 0.4191

0.050 0.4172–0.4217 0.4195 0.4199 0.4181

0.075 0.4162–0.4207 0.4185 0.4188 0.4170

0.100 0.4152–0.4196 0.4174 0.4179 0.4160

Table 4: Ruin probabilities for Pareto claim size distribution with k = 0, T = 1.

solve integral equation (14) we need f̃h(.) which, for γ > 0, is now equal to

f̃h(x) =




ab

hγx

(
(a + x)−b − (a + xeγh)−b

)
if x > 0,

b
haγ

(eγh − 1) if x = 0,

0 if x < 0.

Note that, similarly to the case with exponential claim size distribution, the

mean claim size of the Pareto(2, 3) distribution is equal to 1.

Table 4 shows the lower bound and upper bound (LB–UB) for the probability

of ruin in [0, 1], the average of both bounds (AVG), as well as the approximations

by Dickson and Waters (1999) (DW) and simulated (SIM) probabilities, for the

case with zero starting capital (k = 0). The bounds are computed with step size

h = 0.009. Taking the simulated values as reference, the results indicate that the

bounds presented in this paper, and in particular the average of lower and upper

bound, closely approximate the actual ruin probability.
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5 Conclusion

In this paper lower and upper bounds for the finite-time probability of ruin of a risk

process with a constant interest force are derived. The time horizon is divided into

small intervals and two alternative premium income functions are considered where

a fixed amount is received either at the beginning or at the end of the interval. This

yields a lower bound and an upper bound for the continuous time probability of ruin

when the premium income is received at a constant rate over time. In Section 3 a

recursive algorithm is developed that enables the computation of the bounds.

Existing numerical results and simulations show that the recursive algorithm

yields accurate lower and upper bounds for the probability of ruin for a finite time

horizon for any nonnegative interest force. An alternative method to approximate

finite-time ruin probabilities, which is due to Dickson and Waters (1999) yields an

underestimate for the ruin probability. Since our algorithm yields both lower and up-

per bounds, it is possible to determine the accuracy of the bounds/approximations.

Moreover, it can be shown that the bounds converge to the actual ruin probability.
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