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1.  Introduction

With national health reform on the backburner and Congress increasingly favoring

policy decentralization the locus of activity for health reform is returning with a vengeance

to the states.  States have long been the nation’s laboratories for experimentation with

different forms of health care delivery systems.  At the heart of most ongoing state health

reforms is overhauling Medicaid through the strategy of moving Medicaid eligibles out of

fee-for-service (FFS) coverage and into managed care.1  Managed Medicaid is likely to be

increasingly popular under block grant programs.  Over 40 states now use Medicaid

managed care as a cost saving device or as a platform for increasing insurance coverage

(Hurley, Freund, and Paul 1993).  By the year 2000, over 30 percent of Medicaid eligibles

in all aid categories will be enrolled in managed care programs; within the next three years

enrollment of Medicaid eligibles in managed care will likely reach nearly 100 percent in the

largest Medicaid states, New York and California (Freund and Hurley 1995).  We use a

synthetic difference-in-differences specification of a count regression model to examine the

effect on utilization and program cost of randomly switching Medicaid adults out of fee-

for-service into managed care.

Estimation of the program effect (of managed care on use) is the central aim of our

work.  There are different aspects of medical care utilization, and each may be distinctly

affected by managed care.  We examine use of four modes of care: doctor office visits,

hospital outpatient department visits, emergency room visits, and hospital inpatient days.

                                               
1 As background for our international readers Medicaid provides hospital, physician, and nursing home
care for the U.S. low income population.  Medicaid programs are administered by the states and differ in
terms of eligibility and generosity of coverage across states subject to federal guidelines and financial
assistance.  Patient co-payments for Medicaid services are minimal and the health care providers who
participate in the program must accept all Medicaid patients who seek care.  Currently Medicaid enrolls
about 30 million people (20 million of whom are receiving income maintenance payments under Aid to
Families with Dependent Children) with total expenditures of about $90 billion.
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Specifically, we explore the answers to two questions.  What is the impact of managed

care on the utilization of various modes of health care by Medicaid enrollees?  How do the

estimated utilization changes affect Medicaid program cost?

As is realistic, the Medicaid experiment we examine has multiple provider settings.

Enrollees in the managed care program got care from one of six different managed care

plans, and we estimate a set of program effects across managed care provider

characteristics.  In describing the use and cost implications of a switch to managed care

we are careful to report the robustness of our conclusions to alternative estimating

equations and to note how the program effects inferred from our synthetic difference-in-

differences design differ from the program effects one would infer from simpler designs

such as either a one group before and after treatment design or a post treatment cross-

sectional comparison of use by the experimental versus control group.2

To summarize our results, we find evidence of substitution among adult Medicaid

users from more expensive forms of ambulatory care to cheaper modes of care.  We also

find that the particular health maintenance organization (HMO) in which Medicaid users

enroll does not matter much in terms of the estimated program effect.  The substitution

among care modes due to a switch to managed care leads to an estimated annual decrease

in Medicaid program cost of about ten percent.

2.  Brief Background on Medicaid Experiments

Previous evaluations of the impact of Medicaid managed care on use patterns for

single mothers receiving welfare benefits differ from our research in three ways: the type

of evaluation, the type of data, and the extent of generalizability.

                                               
2 As we will soon make clear, we coin the term synthetic difference-in-differences to note that we use two
distinct, statistically equivalent, comparison groups to infer any change in use by Medicaid recipients
continuously under fee-for-service medical care during the experiment.
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With one exception (Leibowitz, Buchanan, and Mann 1992) previous studies have

used quasi-experimental designs.  Hurley, Freund, and Paul (1993) examined the 25 best

executed Medicaid managed care evaluations for the AFDC population; only one

evaluation was designed as an experiment.  Quasi-experimental studies suffer some

obvious difficulties in inferring program effects by comparing cross-sectional data from

pre and post intervention periods.  Only some of the cross sectional comparisons use

findings from an area employing Medicaid managed care and findings from a sufficiently

similar area retaining fee-for-service Medicaid, which means that events other than the

switch to managed care may have caused the observed differences in outcomes between

areas.  Similarly, quasi-experimental evaluation of programs in areas where Medicaid

managed care is not mandatory may be contaminated by researchers’ inability to correct

for preferred or adverse selection.

Another difficulty in previous research lies in the two data sources generally used:

either (1) claims/encounter data reported by Medicaid programs or managed care

providers or (2) telephone or personal surveys of beneficiaries enrolled in Medicaid in

managed care or fee-for-service areas.  Although claims data may suffer less than survey

data from inaccurate reports of the existence of health care events, such as doctor visits or

hospital admissions, and claims data are cheaper to collect than survey data, use other than

hospital care often is underreported particularly when the claims come from capitated

providers who have no distinct fee for the service provided.  Neither claims data nor

encounter data are collected with research in mind, and frequently events are not

comparably defined.  Accurate measures of health status needed to control for individual
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differences that confound the assessment of managed care’s effect on use are also missing

from claims/encounters data.

The third difficulty with previous research is that it has generally evaluated the

success of Medicaid managed care plans that were newly created solely to service the

Medicaid population.  The demonstration that managed care plans studied are not ones

likely to proliferate through the rest of the 1990s.  Rather, Medicaid recipients are

beginning to be enrolled in HMOs and other types of managed care entities that have

already been marketed successfully in the private sector.  In the best previous evaluation

using experimental data, Leibowitz, Buchanan, and Mann (1992) were limited not only to

using data from a Medicaid only managed care plan but also were limited to studying a

plan so small in enrollment that the data are unlikely to generalize to other situations.

Although our research will not correct every problem with the existing empirical

research, we believe that what we do is informative because of quality of the data and the

productive marriage of samples.  Also notable is that our data cover a group of health

plans operating in a mature managed care market with commercial enrollment.  We

contend that we are able to learn more from our data concerning how the market will

operate when most, if not all, Medicaid recipients are in regularly functioning managed

care arrangements.

3.  Econometric Framework

There are two special features of the econometric framework we use to estimate

the cost change of a switch to managed care from fee-for-service under Medicaid.  One

distinctive feature of our work is that we develop a synthetic difference-in-differences

statistical design because of the idiosyncratic sampling feature of the Medicaid experiment
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we evaluate.  A second distinctive feature of our research is to use count data regressions

that have been purged of two complicating forms of heteroskedasticity: (1) overdispersion

in the conditional mean and variance and (2) excess zeros because many people use no

medical care (Lambert 1992, Greene 1994, Grootendorst 1995, Gurmu and Trivedi 1995,

Mullahy 1995b).  We now lay out the algebra of the conventional difference-in-differences

regression setup, which aids in explaining how the sampling design in the Hennepin

County experiment necessitates developing a synthetic difference-in-differences

specification.

A. The Standard Difference-in-Differences Research Design

An obvious way to infer the behavioral effects of an experimental policy

intervention is to compare the difference in outcomes over time for a control group to the

difference in outcomes during the same period for a randomly selected treatment group.

The difference-in-differences data organization is prevalent in social science research

including psychology where it has been termed the untreated control group design with

pretest and post test (Meyer 1995).  The advantage of the difference-in-differences design

is that the behavior change for the control group picks up any naturally occurring changes

in behavior while the experimental group’s behavior change reflects both the (same)

naturally occurring change in behavior plus the impact of the intervention.  A comparison

of the changes in behavior for the two otherwise demographically and economically

homogeneous groups reveals the behavioral impact of the experimental intervention.

Expressed algebraically in a linear in the parameters regression with control covariates xit

the difference-in-differences research design is

y d d d xit
j

t
j

t
j

it
j

it
j= + + + + +α α α β γ ε0 1

1 (1)
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where yit  is use of a medical care mode by person i in either the pretest period (t = 0) or

the post-test period (t = 1), and the superscript indicates either membership in the control

group (j = 0) or the treatment group (j = 1).  The ds are 0-1 binary variables indicating

pre and post treatment periods for the control and treatment groups such that

d t

d j

d t j

t

j

t
j

= ∀ =

= ∀ =
= ∀ =

















1 1

1 1

1 1,

. (2)

Notice that the interaction binary variable dt
j  switches on to indicate the experimental

group’s medical care use after it is (randomly) switched into Medicaid managed care from

fee-for-service.  With exogenous random assignment to the managed care group so that

E dit
j

t
j( | )ε = 0, β would be zero in the absence of treatment.3  Under truly random

assignment of treatment an unbiased estimate of the average treatment effect is the

estimated value of β, which is also (conditional on xit ) the average difference between the

change in medical care use by the treatment group pre and post policy intervention and the

change in the medical care use by the control group pre and post treatment period.

B. Synthetic Difference-in-Differences

The data we use for our examination of the effect of managed care on Medicaid

health care utilization were collected as part of the Nationwide Evaluation of Medicaid

Competition Demonstrations sponsored by the Health Care Financing Administration.

The six state project (California, Florida, Minnesota, Missouri, New Jersey, and New

York) involved implementation and assessment of alternative strategies for delivering and

                                               
3 Heckman and Smith (1995) emphasize that the researcher should be careful to check that endogenous
self selection does not invalidate the exogeneity of treatment group membership.  Note that the estimated
value of α1 captures a common time trend in use by both the treatment and control groups.  Similarly, the
estimated value of α1 captures any overall time-invariant difference in the use by the treatment and
control groups not due to the covariates in xit.
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financing Medicaid benefits.  We use data from Hennepin County (Minneapolis),

Minnesota.  Our data are unique because, unlike the other demonstration sites, Hennepin

County’s featured random assignment to prepaid plans and a panel structure for a portion

of the data set in addition to cross-sections of controls and experimental Medicaid users,

which led us to develop a synthetic difference-in-differences regression setup.4  Our

research represents the first time the Hennepin data have been used to estimate economet-

ric models that take maximum advantage of the data the experiment generated.

The Three Samples.  The core of our data is a stratified random sample of

persons qualifying for Aid to Families with Dependent Children (AFDC) in 1986; the 86

percent response rate yielded a sample size of 307 people.  All 307 AFDC eligibles were

enrolled in FFS Medicaid in 1986 when they were surveyed concerning health and other

personal attributes.  The intention of the demonstration was to return 12–18 months later,

after the 307 people had been enrolled in prepaid plans, and re-administer the survey.  Due

to various administrative problems the second survey was not administered for 30 months

so that only 152 of the original 307 interviewees could be followed.

Because of the attrition the project staff selected an additional random sample in

1988, which included complete information for 194 people in FFS Medicaid.5  The 194

persons added to the demonstration data in FFS Medicaid in 1988 plus the 155 usable

people who were part of the 1986 survey but had attrited by 1988 combine to make up the

control/comparison group for our synthetic difference-in-differences comparison.6

                                               
4 The main drawback of the Hennepin County data is a lack of cost information; there also are no data
regarding specialist referrals or prescription drug use.
5 The second sample had a response rate of 85 percent. Overall the second sample had 430 people, 222 of
which were randomly selected to have a prepaid plan in 1988.  Section 4 discusses how we used the 1988
cross section of persons in Medicaid managed care in a robustness check of our synthetic difference-in-
differences results.
6 For all survey respondents one of their children was randomly selected and detailed information obtained
for the randomly selected child.  We only consider AFDC eligible women; there was only one male in the
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In the synthetic difference-in-differences approach we calculate the average

difference between the medical use in 1986 and 1988, before and after the random

assignment of managed care, for a treatment group and a synthetic control group using the

three samples from the Hennepin County experiment.  Using regressions of the form of

equation (1) we compare (i) the difference between the actual post and pre-intervention

medical care use by the panel members and (ii) the difference between the 1988 medical

care use by the supplemental cross section of FFS Medicaid users and the 1986 medical

care use by the baseline cross section of FFS Medicaid users in 1986 who had attrited

before the resurvey in 1988.  Conditional on the covariates xit  our synthetic difference-in-

differences estimate of the effect of Medicaid managed care on use is algebraically

summarized as

$ ( ) ( )
~

β = − − −y y y y1
1

0
1

1
0

0
0 , (3)

where the tilde over the superscript 0 indicates that two different cross sections were used

in the baseline of how medical care use changed during the treatment period for persons

not receiving the policy intervention.  We provide a detailed look at the underlying

assumptions behind synthetic difference-in-differences in the appendix.

Definitions for Hennepin variables and descriptive statistics appear in Table 1.  We

judge our synthetic difference-in-differences to be an informative regression specification

based on the variable-by-variable t-test results displayed in Table 1.  First, the descriptive

statistics generally do not reject the null hypothesis that the 1986 (pre-managed care

intervention) means for the panel (treatment group) are identical to the 1986 means for the

baseline cross section (control group).  Second, there is little statistical difference between

                                                                                                                                           
panel subset of the data set who we dropped for the sake of homogeneity.  We also dropped seven men in
the 1986 attrition group and 14 men in the 1988 nonenrollee cross section.
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the means of the 1988 supplemental control group cross section and the 1986 control

group cross section (of attriters), which leads us not to worry about possible attrition bias.

Because all three samples we use are similar in terms of the mean values of the

independent variables, and because the pre-intervention (1986) medical care use is

statistically indistinguishable for the 1986 cross section and the panel group who were

later switched to managed care in 1988, we believe that comparing the two separate cross

sections to the panel sample in a synthetic difference-in-differences regression is

informative.  [Insert Table 1 here.]

Other Notable Aspects of the Survey.  The recall period for physician office

visits, OPD visits, and ER visits is the previous three to four months, and the recall period

for inpatient use is the previous 12 months, which are short enough for reasonable recall

accuracy with medical care use data.  Our data values also are in the range of other

surveys and therefore have face validity (Hurley, Freund, and Paul 1993).

Persons who enrolled in managed care in 1988 could select from six prepaid plans.

Three plans were large well-established HMOs in the Minneapolis market at the time, and

three others were smaller local HMOs.  The managed care plans were capitated by 95

percent of the predicted FFS expenditures.  Of persons randomly assigned managed care,

about 60 percent chose one of the three large well-established HMOs, and about 40

percent of the persons in managed care chose one of the three smaller local HMOs.  A

statistical advantage of the Hennepin County experiment is that differing HMOs create

heterogeneity in the economic treatment administered to the enrollees.  We estimate

econometric models parameterizing heterogeneous treatment to improve the accuracy of

program intervention effect estimates, specifically whether the particular HMO
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membership mattered.  An instrumental variables approach to self-selected treatment site

is called for if our single equation count models suggest significant differences in cost

containment by HMO type (Heckman 1995, Mullahy 1995a).

In 1992 there were about 31 million persons on Medicaid with about seven million

or 22 percent AFDC adults, and about 15 million or 49 percent AFDC children.  Of the

$92 billion total vendor payments under Medicaid about $12 billion or 14 percent were for

AFDC adults and about $15 billion or 16 percent were for children; the bulk of the

remainder of AFDC vendor payments went to the aged, blind, and disabled (Medicaid

Statistics 1993).  In the aggregate, AFDC Medicaid enrollees, the group we examine with

the Hennepin County experiment, are disproportionately costly relative to children but not

costly relative to the expenditures for the aged, blind, and disabled.

A final point to note is that our data cover persons continuously eligible for AFDC

during the 12 months preceding the 1986 (pre-intervention) survey and continuously

eligible for AFDC during the 12 months preceding the 1988 (post-intervention) survey.

How important are the relatively long-term AFDC eligibles among the Medicaid

population?  The Survey of Income and Program Participation (SIPP), a large random

sample of the United States focusing on work history and use of the social safety net,

provides insight into the intersection of the AFDC and Medicaid populations.  The 1984

SIPP had over 229,000 observations of which over 25,000, or approximately 11 percent

of the people, had ever enrolled in Medicaid during the 32 month observation period of

the survey.  About 9,000, or 37 percent of the people, enrolled in Medicaid in 1984 were

also receiving AFDC.  Virtually all persons receiving AFDC in 1984 had been enrolled in

Medicaid at some time during the previous 32 months, and two-thirds of the AFDC



12

recipients in 1984 had been enrolled in Medicaid during the entire 32 month survey period

(Short, Cantor, and Monheit 1988).7  From the joint use of AFDC and Medicaid as

reported in the SIPP we conclude that most AFDC recipients who receive Medicaid are

long-term welfare recipients so that our experimental group is representative of the typical

AFDC Medicaid enrollee.

C. Count Data Regression Models

We estimate five regression models for each of the four modes of medical care

studied: doctor visits, emergency room visits, hospital clinic and outpatient visits, and

hospital inpatient visits.  We now describe how each modeling approach offers

successively more safeguards against misspecification of the conditional mean function and

error structure that if present and ignored lead to inconsistent parameter estimates in

limited dependent variable models.

Poisson and Negative Binomial Models.  The well-known Poisson specification

is a basic econometric model able to incorporate the discrete non-negative integer aspect

of medical care utilization data.  The distribution of medical care use under the Poisson is

f y
yi

i
y

i

i

i

( )
exp( )

!
= λ λ

; i = 1, ..., n, (4)

where yi represents a discrete dependent variable, such as the number of doctor office

visits.  The typical parameterization of the Poisson sets

λi == exp( ' )x bi , (5)

where xi is a collection of independent variables and b is the corresponding vector of

parameters the investigator wants to estimate, including the program effect.  A Poisson

                                               
7 In addition, claims data from all sites in the Medicaid Competition Demonstrations indicate that 90
percent of all Medicaid eligibles were eligible for at least 11 months in a typical year (Paul, Sherrill, and
Iannacchoine 1989).



13

distribution of use implies the restriction that the conditional mean equals the conditional

variance, or

E y x y xi i i i i( | ) var( | )= = λ , (6)

which is known as equidispersion.

Another popular count regression specification is the negative binomial model.

The negative binomial loosens the deterministic specification by including a stochastic

term in the parameter λi so that

λi == ++exp( ' )x bi iε , (7)

where εi follows a gamma distribution.  The distribution of medical care use under the

negative binomial is

f y
y

yi
i

i i

i

i

yi

( )
( )

( ) ( )
=

+
+ +









+








Γ
Γ Γ

α
α

α
φ α

φ
φ α

α

1
, (8)

where α > 0 is known as the precision parameter, Γ(⋅) is the gamma function, and the

conditional mean, λi, can be parameterized as the linear exponential in (5).  The negative

binomial distribution has the properties

E y xi i i( | ) = φ  and (9)

var( | ) ( )y xi i i i= +φ δφ1 ,      (10)

where δ ≡ 1/α.  The term δ is known as the overdispersion parameter, which permits the

form of heteroskedasticity where the conditional variance exceeds the conditional mean,

which is prevalent in count data.  The negative binomial model collapses into the Poisson

specification as δ approaches zero, which makes the negative binomial model a robust

generalization of the Poisson specification.
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Excess Zeros.  As emphasized earlier, it is common for persons to use none of a

narrowly defined medical care mode during a year.  Specifically, during the two

observation years 56 percent of the treatment group had no doctor office visits, 79 percent

no hospitalizations, 82 percent no emergency room visits, and 86 percent of the treatment

group had no outpatient department visits.  Statistically modeling the outcome of many

people using no care, known as the problem of excess zeros in count regression,

necessitates hypothesizing a specific form for the overdispersion created by the so-called

excess zeros.  The particular form of the conditional variance we use is

var(yi) = λi(1 − qi)(1 + λiqi), (11)

where λi is the mean of the Poisson process and qi  is the probability of observing a

structural zero, which is a choice not to consume any of a mode of care.  As qi

approaches zero in (11) the variance collapses into the well-known Poisson variance, λi.

The general economic theory of demand says the qi term should be parameterized with the

same covariates as is λi.  When using a logit specification for the binary choice probability

q
x

xi
i

i

i

i

==
++

==
++

exp( ' ( ))

exp( ' ( ))

τβ
τβ

λ
λ

τ

τ1 1
, (12)

where τ is the parameter reflecting the proportionate difference between the parameters of

the count model and the logit parameters.  Correctly including excess zeros into the

estimation process is necessary for consistent and efficient estimates of the effect of a

switch to managed care on care use across modes.

It is possible that the Poisson portion of the model also has the standard form of

overdispersion, gamma heterogeneity, leading to the negative binomial count regression
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specification.  In the case of excess zeros coupled with gamma heterogeneity the error

variance is

var(yi) = λi(1 − qi)[1 + λi(qi + δ)], (13)

where δ is the familiar overdispersion parameter in the negative binomial model.  Once

again the count data regression model is robust in the sense that as qi  and δ approach zero

in (13) the specification collapses into the simple Poisson.8

In zero altered models, the conditional mean is

E(yi | xi) = E(yi | xi, zi = 0) Prob(zi = 0) + E(yi | xi, zi = 1) Prob(zi = 1),

(14)

where zi represents an indicator of whether or not a structural zero is observed.

Continuing,

E(yi | xi) = 0 qi + E(yi | xi, zi = 1) (1– qi), (15)

because yi is always zero in the case of a structural zero, and the probability of observing a

structural zero is defined as qi.  Conditional on not observing a structural zero the data are

assumed to follow a Poisson or negative binomial distribution so that

E(yi | xi) = λi (1 – qi). (16)

Zero altered models provide the opportunity to decompose the program effect of

managed care on Medicaid utilization into (1) the effect of the program on the probability

                                               
8 It is possible that the zero inflated count models also have additional (extrinsic) heteroskedasticity,
which extends beyond the intrinsic heteroskedasticity in the variance functions specified in (11)–(13).  We
checked for possible extrinsic heteroskedasticity by generalizing the overdispersion parameter, δ, in the
ZINB model by making it a linear exponential function of personal attributes — age, household income,
and the number of chronic conditions.  We selected the arguments in the skedasticity function to capture
the most likely remaining sources of subtle nonlinearity in the regression model (Grootendoorst 1995).  In
general, none of the estimated coefficients in the skedasticity function appended to the ZINB models were
significantly different from zero.
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of observing a structural zero, and (2) the effect on the level of utilization conditional on

not observing a structural zero.  Formally,

∂
∂

∂
∂

∂
∂

λ β λ τβ
τ λ β

E y x

x
q

E y x z

x
E y x z
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x

q q q
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i i
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i i i

i
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== −− −− −−
== −− −−

1
1

1
1

1 1

1 1

(17)

We will use the decomposition in (17) to present results displaying the impact of managed

care on the decision to use any of a particular mode of care as well as the impact on

quantity of care used once the mode is chosen.

4.  Econometric Estimates

Our four outcomes of interest are the numbers of doctor visits, hospital outpatient

department visits, hospital emergency room visits, and hospital inpatient days.  We are

concerned whether $β , the estimated coefficient of the enrollment period-treatment group

dummy variable, dt
j , in the specification of the conditional mean in (1), which measures

the effect of a random switch into Medicaid managed care out of fee-for-service, differs

statistically and economically from zero.  Because the count regression models we

examine are largely nested within one another our organization scheme is to begin with the

simplest count model, the stand-alone Poisson, and then proceed through the results for

increasingly more elaborate specifications of the conditional mean and error structure.  We

conclude by discussing how much difference the complex count models make to the

answer to our research question and whether the estimated treatment effect differs

significantly by HMO site.
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A. Program Effect Estimates from the Basic Count Models

Tables 2 and 3 display results from the two basic count data models — Poisson

and negative binomial.  The first column of Table 2 shows no significant change in doctor

visits following a switch to managed care.  Other results of interest for their conformity

with prior expectations, which is an informal model specification check, include that

schooling positively affects doctor visits, African-Americans have fewer office visits,

children reduce the mother’s office visits, and greater functional limitation leads to

additional doctor office visits.  Regarding outpatient department services, a summary of

results for the statistically significant control variables are that African-Americans use

more OPD services, and additional chronic conditions and functional limitation raise OPD

use.  Most importantly, Table 2 illustrates how the introduction of managed care results in

a statistically significant drop in outpatient department use.  The fall in OPD visits is

sizable, 80–90 percent of the 1986 (pre-intervention) average, and indicates that managed

care has the intended effect of restraining utilization of a relatively costly mode of health

care.  [Insert Table 2 here.]

Results for emergency room (ER) use appear in the third column of Table 2.  No

significant program effect on emergency room use appears as was the case for doctor

visits.  Indeed, the only statistically significant coefficients in the Poisson specification

show age negatively associated with ER visits and additional acute conditions positively

associated with ER visits.  The finding of no managed care effect on emergency room use

runs counter to many previous findings in the literature (Hurley, Freund, and Taylor

1989a, 1989b).  Our final outcome of interest, Poisson results for inpatient days, appears

in the last column of Table 2.  The simple Poisson specification suggests a marginally
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significant program effect that is an increase in inpatient use.  From Table 2 alone it is

unclear how potential overdispersion will affect the parameter estimate.

Table 3 presents results from negative binomial regressions for all four modes of

care.  The negative binomial results are similar to the Poisson results presented in Table 2.

In the first column of Table 3 the overdispersion parameter, δ, is significantly different

from zero, which rejects the Poisson model for doctor visits.  The results for doctor visits

are robust across the basic count specifications in Tables 2 and 3; from a policy

perspective the focal result is the lack of any change in doctor visits following a switch to

Medicaid managed care.  The estimates in Table 3 also locate overdispersion that rejects

the Poisson model for outpatient department (OPD) visits.  As in Table 2 there is a

statistically significant drop in utilization after a switch to managed care under the negative

binomial specification; the magnitude of the program effect in Table 3 is nearly identical to

that in Table 2.  [Insert Table 3 here.]

In contrast to the previous two cases of doctor and outpatient department visits

emergency room use regressions do not locate overdispersion rejecting the simple Poisson

count model against the negative binomial alternative.  As before, no change in ER visits is

observed under managed care.  For inpatient days, overdispersion in the data rejects the

Poisson model.  Additionally, in the negative binomial model presented in the last column

of Table 3 there is no significant change in inpatient use after a switch to managed care.

The result that inpatient days do not change due to managed care is likely due to the

experiment’s enrollment of only persons qualifying for AFDC (Freund, et al. 1989).  Most

hospital utilization for the mothers and children who qualify for AFDC is birth related,

which is unlikely to change if the number of pregnancies does not change.
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As noted in Section 2 a substantial proportion of people (56–86 percent depending

on mode) use no medical care.  Because the problem of excessive zeros is so obvious in

the Hennepin County experiment we estimate a variety of zero inflated count models.

B. Program Effect Estimates from the Zero Inflated Count Models

Tables 4 and 5 each display results for the four modes of care from two two-part

models — zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB).  Unlike

Grootendorst (1995), our model specification includes all independent variables in both

the first-part logit portion of the model accounting for the binary choice between using a

particular health care mode or not and the second-part count potion of the model

accounting for the level of utilization.  Based on the economic theory of demand there is

no a priori reason to assume that any of the independent variables would affect one part of

the use outcome and not the other.  Note that the first-stage logit coefficient estimates can

be derived by multiplying the tabulated coefficients by the estimated value of τ.  Also note

that the derived logit coefficients indicate the probability of a person using none of a

particular mode of care.

The Vuong (1989) statistic at the bottom of Table 4 tests the non-nested

hypothesis whether the zero inflated Poisson model provides a better fit than the simple

Poisson model.  Values of the Vuong statistic exceeding 1.96 reject the Poisson model.

Note that with the exception of ER visits all Vuong statistics reject the Poisson in favor of

the zero inflated Poisson.  Estimates of the two-part zero inflated Poisson models in Table

4 show outpatient department visits falling significantly under managed care but by a

fraction of the amount estimated in the one-part regression functions of the parallel count

models in Tables 2 and 3.  According to Table 4 the extent of the decline in outpatient



20

department visits is also more than proportionally offset by a significant increase in the

amount of inpatient use under managed care.  Doctor visits and emergency room use do

not change significantly due to a switch to managed care in the Poisson zero inflated count

model estimates displayed in Table 4.  [Insert Table 4 here.]

Comparing Table 4 to Table 5 underscores that accounting for excess zeros in a

Poisson specification insufficiently controls for overdispersion in three of the four modes

of medical care use; only emergency room visits do not display overdispersion.  Table 5

also shows that when controlling for overdispersion beyond that resulting from excess

zeros with a negative binomial in the second stage the significant drop in OPD visits again

appears under managed care but at a marginal level of significance; no other mode changes

significantly under managed care.  The Vuong statistic rejects the basic negative binomial

specification in favor of the zero inflated negative binomial model for all modes of care.

[Insert Table 5 here.]

In Table 6 we present the decomposition of the program effect developed in

equation (17) into the contribution from the binary portion versus the count part of the

zero inflated specification.  We do program effect decompositions for both the ZIP and

ZINB models for all four modes of care.  In both the zero inflated Poisson and negative

binomial specifications doctor visits show little program effect from the binary portion of

the model, but a small drop in the number of visits conditional on not observing a

structural zero.  Across models Table 6 there is an increase in non-use of OPD services

leading to a drop of between 0.18 and 0.23 visits.  The ZIP model indicates an increase in

utilization given that the person uses some OPD services, while the ZINB model indicates

a decrease in utilization given that the person uses some OPD services.  Because the ZINB



21

model dominates the ZIP model due to overdispersion, we place more weight on the

ZINB results.  As expected from the simpler models ER use shows little change through

either avenue of the two-part models.  Across specifications IP use shows a marked

increase in the incidence of non-use, resulting in an estimated per-person decrease in

utilization of between 0.23 and 0.28 days annually from the increase in structural zeros.

Curiously, when conditioning on not observing a structural zero with both the ZIP and

ZINB specifications there is a marked rise in the estimated length of stay under managed

care ranging from 0.33 to 0.42 additional hospital days annually. Although without greater

data detail at the episode level such a conclusion cannot be confirmed the longer average

hospital stays for hospital inpatient service users under managed care might be partly

explained by greater use of outpatient surgery, such that the average amount of inpatient

use rises because some below average users of hospital inpatient care are induced to shift

to outpatient care.

Summary.  Results from the two-part models suggest that significant changes in

utilization come in the form of lower levels of hospital outpatient department usage under

managed care.

C. Additional Model Specification Results

The treatment effects we estimate and present in Tables 2–6 do not disaggregate

by HMO.  As noted earlier, a person could select one of six different HMOs if picked to

switch into managed care out of fee-for-service.  It is important for the policymaker with

scarce program dollars to allocate to know whether some kinds of HMOs are more

effective than others in limiting the use of relatively high-cost modes of care.
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Additionally, the program effect estimates we present come from specialized count

data regression models that incorporate multiple avenues for heteroskedasticity that if

present and ignored cause inconsistent parameter estimates.  Because of the complexity of

our estimating equations it seems informative to determine ex post how much practical

difference the specialized count models made to the results.

Third, we develop a synthetic difference-in-differences statistical design.  Cross-

sectional comparisons are the focus of much of the econometric literature on treatment

effects (Manski 1995, Heckman and Smith 1995).  It would be interesting to know how

estimates that use the ability of longitudinal data to condition out person specific latent

heterogeneity differ from program effect estimates based on point-in-time comparisons of

outcomes for a treatment versus a control group.

We now conclude our presentation of parameter estimates with a discussion of the

consequences of the three model specification decisions that ex ante matter most to the

estimated program effect — degree of aggregation of the treatment effect variable, the use

of specialized count regressions models, and the difference-in-differences design.

HMO Heterogeneity.  Possible differential effectiveness across HMOs in cost

containment success admits the possibility for policymakers to target enrollments into the

plan(s) with the greatest cost savings.  Moreover, because persons chosen (randomly) for

managed care could in turn choose their HMOs, any differential plan effectiveness

detected signals the need for model respecification where the selection of membership in

the treatment group is exogenous but the selection of specific HMO for treatment is not

exogenous.
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In models not tabulated we disaggregated the enrollment (treatment effect)

variable according to which of the six possible HMOs serviced the treatment group

member.  We found insignificant variability of program effects across managed care

providers.  We conclude that for Hennepin County treatment heterogeneity is

unimportant; no HMO was significantly more effective than the others in reducing

utilization under Medicaid.9

Count Regressions Versus Ordinary Least Squares.  On theoretical grounds

the specialized count data regression models we use are econometrically preferable.  Ex

post it may not be the case that the more complex count regression models estimates lead

to different conclusions than simple ordinary least squares coefficients.  As a check on

how much difference it makes in our case to use specialized count models we ran OLS

regressions for the four outcomes using the synthetic difference-in-differences statistical

design of Tables 2–5.  Similar to the specialized count models the estimated program

effects from OLS are insignificant for the numbers of doctor visits, emergency room visits,

and inpatient stays.  Also similar to the count models the estimated treatment effect for

outpatient department visits is significantly negative; the estimated marginal effect of

managed care on OPD use is about −0.43, which is slightly larger than the estimated

program effect from the preferred count model for OPD visits, the zero inflated negative

binomial in Table 5.  For the Hennepin county experiment there is little difference between

OLS and the results from the substantially more complex count regressions in terms of

statistical significance of the estimated program effects, but the magnitudes of the

                                               
9 As additional verification of the lack of differential cost savings across HMOs we aggregated the six
HMOs into their two naturally occurring groups, larger well established HMOs and smaller newer HMOs.
Again we found no difference between the estimated program effects for the two different broad HMO
types.
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statistically significant estimated program savings from OLS are slightly larger than from

the specialized count models.

Difference-in-Differences Versus Cross-Sectional Comparisons.  As a final

check of our results before proceeding to simulations examining their economic

significance we produced program effect estimates from cross section regressions

comparing the 1988 use by the randomly selected treatment group to the control group.

Count regression models estimated with the 1988 (post-intervention) cross section show

no significant program effects for all four modes of medical care.

What matters most to our results is the difference-in-differences design rather than

the specialized count regression models or the degree of aggregation of the HMO variable.

The result that using the available panel dimension is key to our finding is of general

importance.  Much of the current debate over whether experimental data are a necessary

improvement over survey data takes the use of a post treatment cross section as given

(Heckman and Smith 1995, Manski 1995).  Our results point to the value of experiments

with longitudinal surveys of the treatment and control groups, which allow the researcher

to condition out latent individual specific heterogeneity.

4.  Simulations Examining Program Effect Economic Significance

Economists have recently criticized themselves for devoting too much attention to

statistical significance and too little attention to the more important policy issue of the

economic significance of empirical results (McCloskey and Ziliak 1996).  Having

discussed the statistical significance and magnitudes of the estimated program effects for

four modes of care use we now examine the economic significance of our results, which
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we judge in the context of simulated cost savings of switching AFDC Medicaid recipients

from fee-for-service to managed care.

A. Background

The focal policy issue of our research is whether managed care saves an

economically significant amount when applied to Medicaid.  The Medicaid competition

demonstration evaluation collected no cost or payment data specific to Hennepin county.

As an approximation we use estimates of cost of care by mode for people continuously

enrolled in AFDC during 1987 in Maryland’s Medicaid system (Stuart, et al. 1990).  The

AFDC status and year for Maryland fit nicely with our Hennepin data.  We acknowledge

up front that the Maryland Medicaid experience is not identical to Minnesota’s.10  Because

we examine proportionate payment (expenditure) changes it is only necessary that the

relative prices be similar in Maryland and Minnesota for our calculations to be an

informative estimate of the percentage savings possible from a switch to managed care.11

Stuart, et al. (1990) also found that the average payment for an office-based

physician visit was $34, the average payment for an OPD visit was $77, and the average

payment for an ER visit was $47.12  The relative payment values for Maryland confirm

previous findings that average payments to outpatient departments exceed average

                                               
10 Using a 50 percent sample of the population of AFDC enrolled Medicaid recipients, Stuart, et al. (1990)
found that ambulatory care users are about two and a half more times likely to use an office based
physician than outpatient department based care, and about three times more likely to use an office based
physician than emergency room based care.  In the Hennepin County data for 1986, doctor office visits
were about three times more likely than OPD visits, and about eight times more likely than ER visits.
Although ER usage is not similar in proportion in Maryland and Minnesota, OPD usage is similar in both
states, which is most important for our purposes because doctor office visits and OPD visits are where we
find the most evidence of reductions under managed care.
11 The savings we estimate is limited to Medicaid payments for adults, which are roughly 14 percent of
total Medicaid payments.  We do not consider overhead and other administrative payments in our
simulation exercises.
12 Because average ER payments seem unbelievably low in Stuart, et al. (1990) we do sensitivity checks by
first setting the average ER payment to $47 then doubling it to $94.
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payments to office-based physicians (see also McDevitt and Dutton (1989) for Michigan’s

Medicaid system).  Additionally, we use the 1985 average Medicaid inpatient per diem

reimbursement rate for hospitals in Minnesota, $311, as a measure of the payments for

providing IP services to Medicaid users (Medicaid Source Book, 1988, p. 463).  To

summarize, we take Maryland’s average payment figures for ambulatory services and the

Medicaid inpatient per diem rate for Minnesota hospitals as representative of the pro-

portionate payment differences among physician office visits, OPD visits, ER visits, and IP

visits to form proportionate payment estimates under fee-for-service versus managed care.

In policy regime change simulations examining the economic significance of a

switch from fee-for-service to managed care under Medicaid we consider four alternative

econometric count model results — (i) the simplest of all models, ordinary least squares,

(ii) the simplest of all specialized count models, Poisson, (iii) the most highly

parameterized model we estimated, zero inflated negative binomial, and (iv) a hybrid

simulation model, which uses the statistically most preferred model’s estimated program

effect for each of the four modes of care.13  To construct the hybrid model we used the

Vuong statistics and estimated overdispersion parameters in Tables 2–5, permitting the

data for each mode of care to select the most preferred of the different specialized count

models.  It is reasonable to use each of the four modes statistically dominant program

effect estimates in an economic simulation to see what difference it makes.  Based on the

results for the estimated variance function the statistically dominant model for doctor

office visits is the ZINB, the dominant model for outpatient department visits is also the

ZINB, the dominant model for emergency room visits is the Poisson, and the dominant

                                               
13 Program effect estimates are annualized by multiplying the estimate by 12 divided by the average num-
ber of months of the ambulatory observation period, or about 3.5 months.
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model for inpatient visits is the ZINB.  We also use simple ordinary least squares for a

baseline comparison.  Table 7 presents the cost savings estimates from our simulation

exercises.  [Insert Table 7 here.]

B. Simulation Results

The estimates in Table 7 are the average percentage change in expenditures

relative to the 1986 expenditures for the treatment group prior to their switch to managed

care.  The range of estimated program effects is a 5–12 percent savings from a switch

from fee-for-service to managed care under Medicaid.

The Poisson results in the first row of Table 7 give a baseline for the cost savings

from managed care.  The Poisson model is the least econometrically complex of the

specialized count models because the Poisson admits the fewest potential problems in the

error structure.  In the Poisson regressions outpatient department visits drop by about 1.2

visits per year, which is the most of any of the three specialized count models in Table 7

we use to simulate a switch to managed care; except for OPD all other use modes showed

virtually no change in utilization.  Using the Poisson coefficients the baseline expected

effect of a switch to managed care is an annual payment decrease of about five percent.

The second simulation in Table 7 uses the most highly parameterized of the

specialized count models, the zero inflated negative binomial.  In the negative binomial

regressions taking account of non-use again only the program effect for outpatient visits is

statistically significant.  OPD use in the ZINB based simulations drop by about 1.3 visits

per year, which is about the effect of a switch to managed care in the simple Poisson

model in row 1.  The ZINB model is statistically more conservative than the simple

Poisson because the ZINB in row 2 controls for overdispersion and excess zeros.  The
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estimated economic impact of a switch to managed care is a cost savings of 12 percent

when computed with parameter estimates from the highly parameterized ZINB for all for

medical care use modes.

The third row of Table 7 gives simulation results using the statistically dominant

count regression specification for each of the four separate medical care modes we study.

The only statistically significant coefficient in the hybrid simulation model in row 3 is the

program effect for outpatient visits, which comes from the ZINB specification.  The

simulated OPD effect from the ZINB is slightly smaller than the simulated OPD program

effect from the OLS estimate, but slightly larger than the Poisson estimate.  Because the

estimated ER use effect is somewhat larger in its econometrically preferred specification,

the Poisson, the hybrid model’s estimated cost savings are slightly smaller than in the

ZINB, about 10–11 percent.

Finally, we apply the results yielding the largest estimated program impact,

ordinary least squares.  OLS estimates show a fairly large, albeit insignificant, reduction in

doctor office visits as well as a reduction in emergency room use to go with the large

estimated reduction in outpatient department use.  The slightly larger estimated marginal

effects under OLS make the simulated program effect in row 4 in the range 11–12 percent.

The OLS estimates in general tend to be larger in absolute value than the specialized count

data models because OLS imposes a simple linear relationship between the covariates and

the dependent variable.  We emphasize that the cost savings from OLS is presented only

as an additional benchmark, and that the model selection procedures generally point to the

value of a count model with a specification giving special attention to so-called excess

zeros.
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Discussion.  The extent of cost savings hinges crucially on any movement out of

relatively expensive hospital inpatient use and outpatient department based care into

relatively cheaper physician office based care.  The value of average payment for an ER

visit matters only slightly in the predicted proportionate total payment change because

there are so few emergency visits for the Hennepin sample members.  Based on model

selection tests and the simulations in Table 7 we conclude that cost savings of about 10

percent are possible given a switch from fee-for-service to managed care under Medicaid.

Federal and sate governments together spend about $90 billion annually in the U.S. on

the Medicaid program.  Because Medicaid is the fastest growing item in the typical state

budget and nationally consumes a large fraction of discretionary expenditures, legislators

are anxious to find cost savings.  Although it is common to hear policymakers long for

cost savings of about a third, the 10 percent savings we find is an economically significant

sum.  If every state had a well designed program of managed care as we studied for

Minnesota then the U.S. could save about $9 billion per year.  Other programs would

generally be able to save such an amount only by eliminating major components or

beneficiaries.

5. Conclusion

We find that as Medicaid programs move from fee-for-service to managed care the

expected maximum program payment savings is about 10 percent.  Although our estimates

are similar to some in the literature (Freund et al. 1989) they are much smaller than the

cost savings found in studies of waiver applications performed by the states for the Health

Care Financing Administration (Hurley, Freund, and Paul 1993).
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Our modeling procedures take advantage of a unique data set that longitudinally

surveyed a treatment group before and after a switch from fee-for-service into managed

care under Medicaid.  The data set we used also contains several homogeneous cross

section control groups, which we used to develop a synthetic difference-in-differences

statistical design.  Of note is that the signs and statistical significance of estimated program

effects on medical care use across the four modes studied are similar when estimated by

ordinary least squares and complex count data models correcting for multiple sources of

heteroskedasticity.  Our preferred estimate, 10 percent savings from the hybrid simulation

model, is roughly double the basic Poisson and slightly lower than the cost savings

estimated by simulations using either OLS or the most complex count model, the ZINB,

results.

More important than the regression estimator to our results is the statistical design.

Using longitudinal data with latent individual heterogeneity conditioned out yields an

estimated program effect of about a 5–12 percent cost savings from universal adoption of

Medicaid managed care.  Using the difference in use from the post-intervention cross

section of the (randomly selected) treatment versus control group indicates no statistically

significant effect on utilization of medical care services under managed care.  We believe

the difference in program effects across statistical designs comes from necessarily

unmodeled latent person-specific heterogeneity that produces biased estimates of the

program effect from a switch to managed care when estimated with the 1988 (post-

intervention) cross section data alone.

Because hospital inpatient use is the largest component of Medicaid outlays

substantial cost reductions are impossible without control of inpatient use.  We do not find
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evidence of decreased use of inpatient services under managed care.  We also emphasize

that our preferred 10 percent estimated cost savings is for the initial effect of switching to

managed care.  Cost changes can be difficult to pin down in a one-time experimental study

because the capitation rate may be set inappropriately yielding an apparently higher cost to

switching from fee-for-service to prepaid plans (Freund, et al., 1989, p. 86).  A broader

picture of the managed care effect would come from viewing the utilization of a Medicaid

population over a period of several years, which would include the adjustment in

capitation rates as HMOs become accustomed to the Medicaid population and permit

estimation of managed care’s ability to make people healthier or change health seeking

behavior, in turn maintaining lower utilization over time.

Appendix

The age-old problem in social experimentation is the inability to observe an

outcome of interest, such as utilization of medical care services, for the same set of

persons simultaneously with and without the policy intervention.  That is, the researcher

would most like to know

E(Y1) – E(Y0) = ∆,
(A1)

where ∆ is the pure treatment effect, the subscript 1 indicates the presence of the policy

intervention, and the subscript 0 indicates the absence of the policy intervention.

Instead, the usual cross-sectional experiments measure

E(Y1|z = 1) – E(Y0|z = 0) = ∆ + error,
(A2)
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where z indicates membership in either the treatment group (z = 1) or membership in the

other (untreated) group (z = 0).

Notice that in (A2)

E(Y1) = E(Y1|z = 1) Pr(z = 1) + E(Y1|z = 0) Pr(z = 0) (A3)

and

E(Y0) = E(Y0|z = 1) Pr(z = 1) + E(Y0|z = 0) Pr(z = 0). (A4)

When persons are randomly assigned to treatment and control groups, error = 0 in (A2)

because

E(Y|z = 1) = E(Y1|z = 1) = E(Y1|z = 0) (A5)

and

E(Y|z = 0) = E(Y0|z = 1) = E(Y0|z = 0). (A6)

So altogether,

E(Y1) = E(Y1|z = 1) (A7)

and

E(Y0) = E(Y0|z = 0). (A8)

An alternative approach recognizes that we can observe the same people both with

and without treatment when over time.  That is, we can construct a pre-/post-treatment

experiment designed to measure,

E(Y1) – E(Y0) = ∆,
(A9)

with

E(Y1|t = 1) – E(Y0|t = 0). (A10)
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A difficulty is a possible secular trend in the outcome measure that will be confound

measuring the true intertemporal program effect.  That is, it may more properly be the

case that

E(Y1| t = 1) – E(Y0| t = 0) = ∆ + k, (A11)

where k is an unknown constant additive secular trend.  Purifying the common trend from

(A11) requires estimating k.  First, the researcher must make a formal assumption about

the nature of the secular trend such as

E(Y|t = 1) – E(Y|t = 0) = k. (A12)

If another independent untreated sample (denoted by a prime) is available one can

form an estimate of the intervention effect that is

[E(Y1|t = 1) – E(Y0|t = 0)] – [E(Y0'|t = 1) – E(Y0'|t = 0)] = ∆.
(A13)

Note the similarity of (A13) to a difference-in-differences estimator.  One needs no new

apparatus to cope with the added time dimension, and the results follow with only

notation changes from cross-section model in (A1)–(A8).

Consider the first difference in equation (A13):

E(Y1|t = 1) = E(Y1|t = 1,z = 1) Pr(z = 1|t = 1) + E(Y1|t = 1,z = 0) Pr(z = 0|t = 1) (A14)

and

E(Y0|t = 0) = E(Y0|t = 0,z = 1) Pr(z = 1|t = 0) + E(Y0|t = 0, z = 0) Pr(z = 0|t = 0).(A15)

As before, under random selection

E(Y|t = 1, z = 1) = E(Y1|t = 1, z = 1) = E(Y1|t = 1, z = 0)
(A16)

and

E(Y|t = 0, z = 0) = E(Y0|t = 0, z = 1) = E(Y0|t = 0, z = 0). (A17)
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Altogether

E(Y1|t = 1) = E(Y1|t = 1, z = 1) (A18)

and

E(Y0|t = 0) = E(Y0|t = 0, z = 0). (A19)

Note that we observe E(Y1|t = 1) and E(Y0|t = 0).  When the same people are observed at

both points in time the researcher does not need to worry about the potential for selection

biases.  What the researcher cannot observe using a single difference in outcomes is an

underlying trend, which make us consider estimation of the second difference in equation

(A13).

The data issues concerning a control group over time are directly analogous to the

treatment group issues we have just discussed.  The key to a viable measure of the time

trend, k, is a random sample at the two points in time.  It is less important that the survey

involve the same people over time because no treatment is ever administered to the

control group.  We can rewrite the difference-in-differences estimator to reflect the fact

that the second difference (secular trend estimator) need not involve the same people over

time

[E(Y1|t = 1) – E(Y0|t = 0)] – [E(Y0''|t = 1) – E(Y0'|t = 0)] = ∆,
(A20)

which we call synthetic difference-in-differences because the double prime denotes a

second control group.

The manipulations of the synthetic difference-in-differences design follow closely

what we have above.

E(Y0''|t = 1) = E(Y0''|t = 1,z = 1) Pr(z = 1|t = 1) + E(Y0''|t = 1,z = 0) Pr(z = 0|t = 1) (A21)

and
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E(Y0'|t = 0) = E(Y0'|t = 0,z = 1) Pr(z = 1|t = 0) + E(Y0'|t = 0, z = 0) Pr(z = 0|t = 0).(A22)

As before, under random selection,

E(Y|t = 1, z = 0) = E(Y0''|t = 1, z = 1) = E(Y0''|t = 1, z = 0) (A23)

and

E(Y|t = 0, z = 0) = E(Y0'|t = 0, z = 1) = E(Y0'|t = 0, z = 0). (A24)

Altogether,

E(Y0''|t = 1) = E(Y0''|t = 1, z = 0) (A25)

and

E(Y0'|t = 0) = E(Y0'|t = 0, z = 0). (A26)

Putting our observables together we have

E(Y0''|t = 1) – E(Y0'|t = 0) = k.
(A27)

Subtracting (A27) from (A11) gives (A20), our synthetic difference-in-differences

estimator.14  In the Hennepin County data set the sample denoted by 0' is a potential sore

spot because it is the group of attriters from the original pre-/post-survey.  As such, we

note the additional requirement that the attrition could reasonably be viewed as random or

ignorable.

                                               
14 The synthetic difference-in-differences design is perhaps better called semi-synthetic.  A completely
synthetic difference-in-differences design would involve four separate cross-section samples, two per pre-
and post intervention period, where one group in the second period gets the policy intervention.
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Table 1

Descriptive Statistics for Hennepin County Medicaid Data Set

1986
Attriters
(n = 155)

1988
Nonenrollees

(n = 194)

1986 (Pre-
Enrollment)
(n = 152)

1988 (Post-
Enrollment)
(n = 152)

Variable: Definition Mean
(Std. Dev.)

Mean
(Std. Dev)

Mean
(Std. Dev.)

Mean
(Std. Dev.)

DOCTOR: Doctor office and
health center visits.

1.400
(2.462)

1.392
(2.871)

1.632
(4.162)

1.645
(3.546)

ER: Emergency room visits. 0.187
(0.453)

0.278
(0.671)

0.204
(0.493)

0.237
(0.561)

OPD: Hospital clinic and
outpatient visits.

0.368
(1.455)

0.577
(1.895)

0.539
(1.783)

0.283
(1.136)

HOSPSTAY: Indicator of
inpatient hospital admission.

0.213
(0.411)

0.222
(0.416)

0.197
(0.399)

0.184
(0.389)

LOS: Length of hospital stay
(days).

1.529
(7.113)

1.126
(3.312)

0.717
(1.693)

0.809
(2.742)

SCHOOL: Number of years
completed.

11.632
(2.344)

11.948
(1.587)

11.237
(2.716)

11.408
(2.448)

AGE: Age of survey member. 30.213
(8.478)

28.861
(6.928)

28.395†
(7.393)

30.730
(7.386)

HHINC: Household income
level.

6841.9
(3318.5)

7164.9
(2362.5)

6578.9
(2524.8)

7006.6
(2203.2)

CHRONIC: Number of
chronic conditions.

1.761
(1.802)

1.866
(1.836)

1.704
(1.826)

1.934
(2.397)

ACUTE: Number of acute
conditions.

4.181
(3.362)

3.784
(3.675)

4.132
(4.339)

3.382‡
(3.711)

PARTNER: Indicator if
woman is married.

0.071
(0.258)

0.057
(0.232)

0.053
(0.224)

0.066
(0.249)

TOTCHIL: Total number of
children in household.

2.239
(1.358)

2.196
(1.121)

2.237
(1.301)

2.382‡
(1.162)

HSTATUSI: Measure of
functional ability, 0–7.

0.529
(1.191)

0.392
(1.143)

0.500
(1.297)

0.612
(1.447)

BLACK: Race indicator. 0.226
(0.419)

0.407*
(0.493)

0.289
(0.455)

---------

EXPOSURE: Recall period
for ambulatory care (mos.).

3.563
(0.307)

3.441
(0.325)

3.516
(0.300)

3.322‡
(0.469)

GROUP: Indicator if person
was in experimental group.

0.0 0.0 1.0 1.0

TIME: Indicator if year was
1988.

0.0 1.0 0.0 1.0

ENROLL: Interaction term of
GROUP and TIME.

0.0 0.0 0.0 1.0

*  Indicates a statistically significant difference in means at the 5% level between the 1986 attriters and the
1988 nonenrollees.
† Indicates a statistically significant difference in means at the 5% level between 1986 attriters and nonattriters.
‡ Indicates a statistically significant difference in means at the 5% level between the pre- and post-enrollment
groups.
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Table 2

Poisson Regression Models — All Modes
(absolute values of t-statistics) [marginal effects]

Doctor
Visits

Outpatient Dept.
Visits

Emergency Rm.
Visits

Inpatient
Days

Regressors n = 653 n = 653 n = 653 n = 652
Constant –0.352

(0.947)
–1.768
(2.303)

0.189
(0.163)

1.556
(4.794)

SCHOOL 0.037
(2.495)
[0.045]

0.046
(1.407)
[0.014]

0.058
(1.243)
[0.011]

–0.032
(1.555)

[–0.024]
AGE –0.002

(0.482)
[–0.003]

–0.054
(5.763)

[–0.016]

–0.058
(4.092)

[–0.011]

–0.078
(10.542)
[–0.059]

BLACK –0.774
(8.939)

[–0.904]

0.550
(4.259)
[0.165]

0.132
(0.752)
[0.025]

0.231
(2.607)
[0.173]

HHINC –0.000007
(0.487)

[–0.000008]

0.00006
(2.517)
[0.00002]

–0.00002
(0.470)

[–0.000003]

0.00005
(3.373)
[0.00004]

CHRONIC –0.023
(1.117)

[–0.027]

0.204
(8.337)
[0.061]

0.050
(1.096)
[0.009]

–0.032
(1.177)

[–0.024]
ACUTE 0.119

(12.588)
[0.139]

–0.012
(0.704)

[–0.004]

0.070
(2.835)
[0.013]

0.053
(4.495)
[0.044]

PARTNER –0.093
(0.690)

[–0.109]

1.234
(7.887)
[0.371]

0.510
(1.866)
[0.096]

0.495
(3.598)
[0.371]

TOTCHIL –0.212
(6.619)

[–0.248]

–0.106
(2.043)

[–0.032]

0.071
(1.016)
[0.013]

0.133
(3.952)
[0.100]

HSTATUSI 0.127
(5.094)
[0.149]

0.233
(5.464)
[0.070]

0.091
(1.394)
[0.017]

0.026
(0.670)
[0.019]

EXPOSURE 0.090
(1.024)
[0.106]

0.254
(1.399)
[0.076]

–0.484
(1.642)

[–0.091]
--------

GROUP 0.142
(1.507)
[0.167]

0.301
(1.718)
[0.090]

0.005
(0.019)
[0.001]

–0.434
(3.390)

[–0.326]
TIME 0.123

(1.322)
[0.143]

0.278
(1.660)
[0.083]

0.326
(1.391)
[0.062]

0.077
(0.724)
[0.058]

ENROLL 0.009
(0.065)
[0.010]

–1.167
(4.379)

[–0.350]

0.073
(0.212)
[0.014]

0.257
(1.497)
[0.193]
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Table 3

Negative Binomial Regression Models — All Modes
(absolute values of t-statistics) [marginal effects]

Doctor
Visits

Outpatient Dept.
Visits

Emergency Rm.
Visits

Inpatient
Days

Regressors n = 653 n = 653 n = 653 n = 652
Constant –0.681

(0.795)
–2.392
(1.264)

0.090
(0.073)

2.065
(1.917)

SCHOOL 0.065
(1.978)
[0.076]

0.005
(0.067)
[0.002]

0.063
(1.248)
[0.012]

–0.022
(0.391)

[–0.016]
AGE 0.003

(0.255)
[0.003]

–0.029
(1.336)

[–0.010]

–0.056
(3.679)

[–0.011]

–0.100
(4.452)

[–0.073]
BLACK –0.779

(4.623)
[–0.914]

0.443
(1.337)
[0.147]

0.143
(0.750)
[0.027]

0.350
(1.212)
[0.258]

HHINC –0.00001
(0.524)

[–0.00001]

0.00004
(0.665)
[0.00001]

–0.00001
(0.360)

[–0.000003]

0.00005
(0.953)
[0.00003]

CHRONIC 0.033
(0.679)
[0.039]

0.154
(1.939)
[0.051]

0.043
(0.815)
[0.008]

0.044
(0.484)
[0.033]

ACUTE 0.116
(4.901)
[0.136]

–0.004
(0.079)

[–0.001]

0.068
(2.482)
[0.013]

0.014
(0.354)
[0.011]

PARTNER 0.071
(0.239)
[0.083]

0.779
(1.371)
[0.258]

0.415
(1.317)
[0.079]

0.375
(0.670)
[0.277]

TOTCHIL –0.114
(1.717)

[–0.134]

0.002
(0.014)
[0.001]

0.063
(0.819)
[0.012]

0.151
(1.349)
[0.111]

HSTATUSI 0.118
(1.987)
[0.139]

0.186
(1.344)
[0.062]

0.086
(1.201)
[0.016]

0.129
(0.998)
[0.095]

EXPOSURE 0.007
(0.032)
[0.008]

0.454
(0.986)
[0.150]

–0.484
(1.563)

[–0.092]
--------

GROUP 0.005
(0.024)
[0.006]

0.152
(0.368)
[0.050]

0.010
(0.037)
[0.002]

–0.447
(1.198)

[–0.330]
TIME 0.079

(0.392)
[0.093]

0.051
(0.130)
[0.017]

0.304
(1.203)
[0.058]

0.068
(0.189)
[0.050]

ENROLL –0.098
(0.331)

[–0.115]

–1.073
(1.703)

[–0.355]

0.095
(0.256)
[0.018]

0.051
(0.094)
[0.038]

δ 0.767
(8.108)

2.192
(14.042)

–0.663
(1.133)

2.127
(17.811)
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Table 4

Zero Inflated Poisson Regression Models — All Modes
(absolute values of t-statistics) [overall marginal effects]

Doctor
Visits

Outpatient Dept.
Visits

Emergency Rm.
Visits

Inpatient
Days

Regressors n = 653 n = 653 n = 653 n = 652
Constant 0.534

(1.270)
–0.233
(0.473)

0.643
(0.456)

0.449
(1.641)

SCHOOL 0.044
(0.235)
[0.059]

0.741
(2.813)

[–0.106]

1.228
(1.570)
[0.191]

0.644
(2.899)
[0.177]

AGE 0.066
(0.495)
[0.089]

–0.238
(1.263)
[0.034]

1.954
(3.437)

[–0.303]

0.317
(1.950)
[0.087]

BLACK –0.650
(6.710)

[–0.877]

–0.075
(0.917)
[0.011]

0.218
(0.853)
[0.034]

0.324
(6.030)
[0.089]

HHINC –0.055
(0.531)

[–0.074]

0.247
(2.148)

[–0.035]

–0.051
(0.172)

[–0.008]

0.121
(2.105)
[0.033]

PARTNER –0.122
(0.862)

[–0.164]

0.264
(2.747)

[–0.038]

0.463
(1.258)
[0.072]

–0.014
(0.152)

[–0.004]
CHRONIC –0.030

(0.723)
[–0.040]

0.028
(0.570)

[–0.004]

0.085
(0.624)
[0.013]

–0.038
(1.138)

[–0.010]
ACUTE 0.301

(7.779)
[0.406]

–0.078
(1.499)
[0.011]

0.291
(1.934)
[0.045]

0.172
(6.315)
[0.047]

TOTCHIL –0.451
(5.634)

[–0.608]

–0.053
(0.565)
[0.008]

0.068
(0.346)
[0.011]

–0.168
(4.101)

[–0.046]
HSTATUSI 0.129

(5.065)
[0.174]

0.101
(3.384)

[–0.014]

0.085
(1.007)
[0.013]

–0.088
(3.078)

[–0.024]
EXPOSURE 0.427

(1.356)
[0.576]

0.578
(1.529)

[–0.083]

–1.936
(1.721)

[–0.300]
--------

GROUP 0.171
(1.725)
[0.230]

–0.073
(0.684)
[0.010]

0.107
(0.346)
[0.067]

–0.281
(2.710)

[–0.077]
TIME 0.182

(1.846)
[0.246]

–0.029
(0.291)
[0.004]

0.320
(1.194)
[0.050]

0.007
(0.098)
[0.002]

ENROLL –0.130
(0.965)

[–0.176]

0.296
(1.875)

[–0.042]

–0.083
(0.216)

[–0.013]

0.354
(2.713)
[0.097]

τ –0.185
(2.104)

1.560
(13.070)

0.660
(1.530)

0.891
(13.105)

Vuong Statistic 6.127 3.300 0.496 6.619
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Table 5

Zero Inflated Negative Binomial Regression Models — All Modes
(absolute values of t-statistics) [overall marginal effects]

Doctor
Visits

Outpatient Dept.
Visits

Emergency Rm.
Visits

Inpatient
Days

Regressors n = 653 n = 653 n = 653 n = 652
Constant –0.034

(0.096)
0.158

(0.191)
0.729

(0.384)
–0.672
(0.814)

SCHOOL 0.251
(1.534)
[0.391]

–0.129
(0.375)

[–0.104]

1.212
(1.094)
[0.188]

1.046
(1.672)
[0.340]

AGE 0.179
(1.615)
[0.278]

–0.533
(1.482)

[–0.431]

–1.954
(2.698)

[–0.304]

1.101
(2.236)
[0.358]

BLACK –0.260
(3.507)

[–0.405]

0.270
(1.382)
[0.218]

0.215
(0.821)
[0.033]

0.308
(1.793)
[0.100]

HHINC –0.104
(1.573)

[–0.161]

0.040
(0.252)
[0.033]

–0.053
(0.173)

[–0.008]

0.059
(0.345)
[0.019]

PARTNER –0.123
(0.841)

[–0.191]

0.449
(1.300)
[0.363]

0.461
(1.035)
[0.072]

–0.050
(0.196)

[–0.016]
CHRONIC 0.098

(1.945)
[0.152]

0.159
(1.511)
[0.128]

0.084
(0.592)
[0.013]

–0.055
(0.536)

[–0.018]
ACUTE 0.217

(3.780)
[0.338]

0.016
(0.194)
[0.013]

0.291
(1.707)
[0.045]

0.202
(2.167)
[0.066]

TOTCHIL –0.024
(0.469)

[–0.037]

–0.024
(0.171)

[–0.019]

0.069
(0.228)
[0.011]

–0.216
(1.545)

[–0.070]
HSTATUSI 0.114

(1.878)
[0.178]

0.075
(1.104)
[0.061]

0.086
(0.831)
[0.013]

–0.127
(1.566)

[–0.041]
EXPOSURE –0.110

(0.428)
[–0.172]

0.039
(0.063)
[0.032]

–2.002
(1.418)

[–0.311]
--------

GROUP 0.000
(0.001)
[0.000]

0.099
(0.590)
[0.080]

0.110
(0.284)
[0.017]

–0.283
(1.008)

[–0.092]
TIME –0.012

(0.161)
[–0.019]

0.039
(0.253)
[0.032]

0.321
(0.925)
[0.050]

–0.008
(0.036)

[–0.002]
ENROLL –0.050

(0.448)
[–0.078]

–0.470
(1.407)

[–0.380]

–0.090
(0.184)

[–0.014]

0.441
(1.230)
[0.143]

τ –15.775
(2.266)

–2.264
(1.251)

0.663
(0.858)

0.853
(9.514)

δ 0.744
(7.038)

1.267
(5.567)

–9.047
(0.003)

0.483
(1.582)

Vuong Statistic 5.994 4.475 5.192 5.940
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Table 6

Decomposition of Program Effects for ZIP and ZINB Models

Zero-Inflated Poisson

Care Mode
Program Effect from Zero

Portion
Program Effect from

Count Portion
Doctor Visits –0.014 –0.162
Outpatient Department Visits –0.181 0.138
Emergency Room Visits 0.003 –0.016
Inpatient Days –0.234 0.331

Zero-Inflated Negative Binomial

Care Mode
Program Effect from Zero

Portion
Program Effect from

Count Portion
Doctor Visits –0.002 –0.076
Outpatient Department Visits –0.228 –0.162
Emergency Room Visits 0.003 –0.017
Inpatient Days –0.281 0.424
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Table 7

Summary of Results of Payment Savings for Medicaid
Table Entries Represent Annual Changes in Utilization Per Person

Alternate Cost Values Used for Emergency Room Visits

ER Visit Cost = $47

Scenario
Doctor

Office Visits
($34)

OPD Visits
($77)

ER Visits
($47)

Hospital
Days

($311)
Percent
Savings

1: Poisson 0.035 –1.228* 0.049 0.193 –5.20%
2: ZINB –0.274 –1.334* –0.049 0.143 –11.70%
3: Hybrid** –0.274 –1.334* 0.049 0.143 –10.92%
4: OLS –0.395 –1.508* 0.055 0.185 –11.63%
* Coefficient estimate is significantly less than zero at the 5% level.
** Uses the ZINB for Doctor Visits, OPD Visits, and Hospital Days; uses the Poisson for ER Visits.

ER Visit Cost = $94

Scenario

Doctor
Office Visits

($34)
OPD Visits

($77)
ER Visits

($94)

Hospital
Days

($311)
Percent
Savings

1: Poisson 0.035 –1.228* 0.049 0.193 –4.56%
2: ZINB –0.274 –1.334* –0.049 0.143 –11.44%
3: Hybrid** –0.274 –1.334* 0.049 0.143 –9.98%
4: OLS –0.395 –1.508* 0.055 0.185 –10.60%
* Coefficient estimate is significantly less than zero at the 5% level.
** Uses the ZINB for Doctor Visits, OPD Visits, and Hospital Days; uses the Poisson for ER Visits.


