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Games Arising from Infinite Production Situations
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Abstract

OWEN (1975) introduced linear production (LP) situations and TIMMER, BORM and SulJs
(1998) introduced more generd situationsinvolving the linear transformation of products (LTP).
They showed that the corresponding LTP games are totally balanced. In this paper we look at
LTP situations with an infinite number of transformation techniques. The linear program that
cal culates the maximal profit, isasemi-infinite program. We show that an optimal solution of the
dual program exists and that it is a core-element of the corresponding LTP game.
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1 Introduction

OWEN (1975) introduced linear production (LP) situations. These are production situations where
thereisafinite set of producers, each of them ownsabundle of resources and al producers can usethe
samefinite set of linear production techniques. The products can be sold on the market at given prices
and all producers are price takers. This model has two restrictions. First, each production process
can only have one output good while many production processes have by-products. Second, all
producers can use the same production techniques whilein reality some producers have a production
technique that nobody else has. To overcome these restrictions, TIMMER, BORM and SulJs (1998)
introduced situationsinvolving the linear transformation of products (LTP). In these situations, each
linear transformation techniquehas at | east one output good and different producersmay havedifferent
production techniques. More precise, in an LTP situation there is a finite set of producers and each
of them controls a finite number of transformation techniques. We define the set of goods to be the
set of products and resources. Each producer owns a bundle of goods that he can use (like resources)
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in his transformation process or that he can sell directly on the market (like products). The outcome
of the transformation process, the produced goods, will also be sold on the market. The goa of
each producer isto maximize his profit given his transformation techniques, bundle of goods and the
exogenous market prices.

In this paper, we consider semi-infinite LTP situations, which are LTP situationswith a countabl e,
infinite number of transformation techniques. Something similar for LP situationsand corresponding
games has been studied by FRAGNELLI, PATRONE, SIDERI and T13s (1999) using duality resultsby TiJs
(1979). We will also work with linear semi-infinite programs. One of thefirst papersin thisareawas
written by CHARNES, COOPER and KORTANEK (1962). Many results on this subject can be found in
GLASHOFF and GUSTAFSON (1983) and in the recent book by GOBERNA and LOPEZ (1998).

This paper is organized as follows. Section 2 starts with a formal introduction of finite LTP
situationsand corresponding games. In section 3 we extend thisto semi-infinite LTP situationswhere
we consider a countable, infinite number of transformation techniques. Some examples show what
problems we may encounter. Therefore, in each of the sections 4 and 5 a set of conditionswill be
presented that ensures the existence of an optimal dual solution and the existence of a core-element
of the corresponding semi-infinite LTP game.

2 FiniteLTP Situations and Games

Situationsinvolving the linear transformation of products were introduced by TIMMER et a. (1998).
Toillustrate these situations, consider the following example. A tailor usesalarge pieceof silk fabric,
thread and buttonsto produce full dresses. From the left-overs he makes some doll’s dresses. More
precise, assumethat thistailor needs a piece of silk fabric of 10 by 1.50 meters, 100 meters of thread,
70 buttons and 24 hours of labour to produce 6 full dresses and 2 doll’s dresses. Assuming that
the production process is linear, this production or transformation technique is represented by the
following vector a,

-1
—100
—70
—24

where the rows correspond from the top downward to respectively full dresses, doll’s dresses, pieces
of silk fabric, meters of thread, buttons and hours of labour. So, silk fabric, thread, buttonsand labour
are the input goods in this transformation process while full dresses and doll’s dresses are the output
goods. Sincethe productiontechniqueislinear, any nonnegativemultiple of a isapossibleproduction
technique. Thevalue of thisnonnegative multipleis called the activity level. The activity level of this
tailor is restricted by the amount of input goods at his disposal.



LTP situations* are production situations in which each producer controls some transformation
techniques and a bundle of resource goods. Denote by M the finite set of goods and by NV the finite
set of producers. Each producer i € N owns a bundle of goods w(i) € IR_A{ . A transformation
technique is denoted by avector a € R and it says that a producer needs —ay; units of the goods
J with a; < 0 to produce a; units of the goods ! with a; > 0. If a; = 0 for some good j, then this
good is not used in the transformation technique. We assume that each technique needs at least one
input good to produce at least one output good. Hence every vector a contains at |east one positive
and one negative e ement. Denote by D; the set of transformation techniques controlled by producer
i, that is, D; = {k| producer i controls a*}, and denote by ;. the activity level of transformation
technique a*. Using transformation technique a*, a producer needs {—a¥y,|j € M : af < 0} to
produce {a?yk\ jeM: a? > 0} . We assume that the production process cannot be reversed, so
yr > 0 foral k, and for any two playersi, j € N thesets D; and D; are disjoint, D; N D; = ().

Denoteby D = U;en D; thefinite set of dl availabletransformation techniques. Lety = (yk)ken
be the vector in R? of all activity levels and let A be the technology matrix in R > with k"
column a*. Define the related matrix G € R P with k" column g* by g% = max{0, —a%} for
al j € M. Thismatrix states which of the goods and how much of them are needed as inputsin
the various transformation processes when all activity levels equal one. If the activity level of oF
equals i then a producer needs the bundle g*y;. of goods to produce the bundle (a* + ¢*)y* since
a? + g;»“ = max{a?, 0}.

Combining al his knowledge, producer i € N can use the bundle Gy of goods to produce the
bundle (A + G)y. Herey, = 0 if k ¢ D, because producer ¢ can only use his own transformation
techniques. The amount Gy of goods he uses, should not exceed the amount w(i) of goods at his
disposal, so Gy < w(i). Producer i starts with the bundle w(¢) from which he uses Gy to produce
(A+ G)y. Therefore, after the transformation, the producer isleft with thebundlew (i) — Gy + (A +
G)y = w(i) + Ay which he can sell on the market at exogenous pricesp € R} \ {0}. We assume
that the market isinsatiable, so, al goods can be sold. Furthermore, all producersare pricetakers. The
goal of each producer isto maximize his profit from the sale of his remaining goods:

max pl(w(i) + Ay)
st. Gy < w(i)
ye = 0if k ¢ D;
y > 0.
Producers can al so cooperate by pooling their transformation techniques and resources. The coalition

S C N, S # 0, of producers then acts like one big producer with resource bundlew(S) = >, g w(i)
and D(S) = U;esD; isits set of available transformation techniques. The profit maximization

“In TIMMER et al. (1998) these situations are called extended LTP situations.



problem for this coalition looks as follows:

max pT(w(S) + Ay)
st. Gy <w(S)
yr = 0if k ¢ D(S)
y=>0.

D)

In short, an LTP situation is described by a 5-tuple (N, A, D, w, p) where w = (w(i))ien. The
corresponding LTP game (N, v) is such that the characteristic function v assigns to each coalition
S C N themaximal profit it can obtain as givenin (1) and v(()) = 0.

One of the main issuesin cooperative game theory ishow to divide the benefits from cooperation.
In LTP games wewould like to know how to divide the joint profit among the cooperating producers.
The core C(v),

C(v) = {a: cRY

Zwi =v(N), sz > v(S) forall S C N},
iEN i€S

istheset of allocationsz of v(N') uponwhich no coalition S of producerscanimprove. If anallocation
x € C(v) isproposed as a distribution of the total profit v(V), where producer i gets the amount ;,
then coalition S will get at least asmuch asit can obtainonitsownsince Y, g z; > v(S). Therefore,
no coalition S has an incentive to leave the grand coalition N. A gameis called balanced if it has a
nonempty core and it is called totally balanced if each subgame (S, v|s) has anonempty core, where
v|g isthegame v restricted to codition S with v g(7") = v(T') for al T' C S. Thefollowing theorem,
based on atheorem in TIMMER et a. (1998), showsthat LTP games are totally balanced.

Theorem 2.1 Let (N, A, D,w, p) be an LTP situation. Then the corresponding LTP gameis totally
balanced.

Proof. Since each subgame (S, v|s) isan LTP game, we only have to prove that the LTP game (N, v)
isbalanced. For this, recall that the value v(V) for coalition N equals

v(N)= max p!(w(N)+ Ay)
st. Gy <w(N)
y=>0.

Notethat p”w(V) is aconstant. Therefore the corresponding dual minimization program is

min (2 + p)Tw(N)
st. GTz> ATp ()
z > 0.

Since the set of feasible solutions of this program, {z € RM|GTz > ATp,z > 0}, is nonempty,
closed, convex and bounded from below, this minimization problem can be solved and a minimum
exists. Let the minimum of (2) betakenin z. Definex € RY by z; = (z + p)Tw(i) fordl i € N.
ThenY ey i = Sien(z+p)Tw(i) = (z+ p)Tw(N) = v(N) where the last equality followsfrom
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duality theory. Notice that z is also a feasible solution of the problem min{(z + p) w(S)|GTz >
w(S), z > 0} for al codlitions S. Therefore,

(z+p)Tw(S)

AV

min{(z + p)Tw(8)|GTz > w(9), z > 0}
= max{p’ (w(S) + Ay)|Gy < w(S), y > 0}

> max{p’ (w(S) + Ay)|Gy < w(S), yx = 0if k ¢ D(S), y > 0}
= v(9)

and Y cqri = Yes(z+p)Tw(i) = (z+ p)Tw(S) > v(S). We conclude that z € C(v). 0

This proof shows that we can find a core-element of the LTP game (V, v) viathe dual program
correspondingto the profit maximization problem. Theset of core-elementswe can findinthisway has
been thoroughly studied for linear production situations by VAN GELLEKOM, POTTERS, REIINIERSE,
Ti3s and ENGEL (1998). In the next sections we will use this method to find a core-element for the
LTP game corresponding to an LTP situation with an infinite number of transformation techniques.

3 Semi-Infinite LTP Stuations

In many production situations, there are an infinite number of techniques available to the producer.
For example, afirm may have afinite number of transformation techniques on the short run, but when
we think of thelong run, thisfirm can choose from an infinite number of techniques. It can continue
its current production process, it can expand its activities, it can produce some extra goods or it can
switch to the use of some completely different transformation techniques. A second example concerns
cooking. If you have arecipe for baking pancakes from flour, milk, eggs, butter and sugar, then you
can get an infinite number of recipes for pancakes by changing the amounts of theingredientsslightly.
Each recipe then gives a dightly different pancake.

We define a semi-infinite LTP situation as a 5-tuple (N, A, D, w, p) where the set D contains a
countable, infinite number of transformation techniques. All other variables are as defined in the
previous section. The following examples show some problems we may encounter in semi-infinite
LTP situations.

Example 3.1 Consider the semi-infinite LTP situation with a single producer, two goods, bundle of
goodsw = (3,0)”, market prices p = (1, 3)” and technology matrix

1 1 1 1
Ao | 7t 3 -3 3h o 3
2 2 2 2 .. 2

The primal profit 'maximization’ problemis

sup pT(w+ Ay)
st. Gy<w
y > 0.



Note that we have replaced the maximum by a supremum since there is an infinite number of activity
levelsand an optimal solution may not exist. This problemisequal to
sup{3 +p" Ay| 021 (3 + 1/k)y < 3, y > 0} = limy, ,0(3+ 3 — 1/k) = 6.
There is no optimal solution for this problem, that is, there exists no vector ¢ of activity levels such
that p” (w + Aj) = 6. The corresponding dual problemis
inf{(z+p)Tw|GTz > ATp, 2 > 0}
= inf{321+3|3+1/k)z1 >3—-1/k, k=1,2,..., 2> 0}
= 3-1+3=6.

The set of optimal solutions{z € ]RQ\zl = 1, z9 > 0} isnonempty. In this example we see that the
primal problem may have no optimal solution while the dual problem has optimal solutions.

Example 3.2 Consider the following semi-infinite LTP situation with a single producer, two goods,
bundle of goodsw = (0, 1)7, pricesp = (1, 1)7 and technology matrix

1 -1 1 _1 1
A= 2 3 4 k
1 1 1 1 1
Then
v = sup{p’(w+ Ay)|Gy < w, y > 0}
= sup{l+pT Ay| 222, yx/k <0, y > 0}
= 14+40=1

with optimal activity vector y = 0. The dual problem equals

inf{zo+1|21/k>1—-1/k, k=1,2,..., 2> 0}
= inf{ze+1lz1 >k—-1,k=1,2,..., 2 >0} =400
since there exists no feasible solution z. Therefore there are no optimal solutionsto the dual program

of this example while there exists an optimal solution to the primal problem.

Example 3.3 We have a semi-infinite LTP situation with a single producer, five goods and

-2 -2 -2 -2 —2 2 1
T 0 0

A= 1 0 0 0 0 ,w=101],p=|3
1 1 1 1 1 0 1

0 1 1 1 1 | | 0 | | 4]

The profit maximization problem gives

v=sup{2+plAy|0<y <1, yp =0, k=2,3,...} =4



The corresponding dual problem gives
inf{2+ 221|221 > 2, 221 + 20/k >3, k=2,3,..., 2 >0} = 5.

Here we have aduality gap: the primal maximization program does not have the same optimal value
as the dual problem.

These exampl es show that semi-infinite LTP situationsmay deal with duality gapsand the absence
of optimal solutionsfor both the primal and the dual program. We would like to have conditionson
semi-infinite LTP situationssuch that there isno duality gap, the dual problem has an optimal solution
and the primal problem has a feasible solution. Then we can find a core-element of the game viathe
dual problem. We do not need the existence of an optimal solution of the primal problem to attain this
core-element.

In the following two sections we present two sets of conditions that ensure we can find a core-
element of the LTP game corresponding to a semi-infinite LTP situation viathe dual problem.

4 ConditionsInvolving Cones

In this section we will present afirst set of conditions on semi-infinite LTP situations and we show
that this guarantees that the corresponding LTP games have a nonempty core.

Denote by 0, the M-dimensional zero-vector and by e’ the j** unit vectorinR™ withel, = 1 if
m=jandel, = 0if m # j. If Bisan (infinite) set of vectorsin IR? for some integer number ¢ then
we obtain the convex cone generated by B, denoted by CC(B), by taking al nonnegative multiples
of finite convex combinations of elementsin B. Thus,

CC(B) = {:c

t

z=>Y Nb', Ni>0,b€B, i=12,...,1, tZl}
=1

Define the sets K and K5 asfollows.

K, =CC ({(gk)keD, (ej)jEM}) =RY

k i
Ky, = CC g €
pTa® 0/
keD jEM

The last equality for K, follows from g* ¢ Ri‘f foral k € D. In the literature, see for example
GLASHOFF and GUSTAFSON (1983) and GOBERNA and L OPEZ (1998), the convex cones K and K, are
usually called the first and second moment cone and denoted by M and N respectively. We renamed
these cones since we aready use M and N to denote respectively the set of goods and the set of
producers. Denote by int(K;) the interior of K; and by cl(K>2) the closure of K. Consider the
following two conditions.

Condition 4.1

w(N) € int(K1) = R},



This condition states that the coalition NV of al producers should own some positive amount of all
goodsin M.

Condition 4.2

Ons
( 1 )%CZ(KQ)

An interpretation of this condition isthat doing nothing, which is equivalent to activity level y, = 0
fordl k € D, cannot result in a positive profit. The following theorem shows the nonemptiness of
the core under these conditions.

Theorem 4.3 Let (N, A, D,w,p) be a semi-infinite LTP situation. If conditions 4.1 and 4.2 are
satisfied then the corresponding LTP game is balanced.

Proof. Conditions 4.1 and 4.2 are satisfied and therefore it follows from respectively theorems
8.1.(v), (vi) and 4.4.(i) in GOBERNA and LOPEZ (1998) that the dual problem for codlition IV,

inf (24 p)Tw(N)
st. GTz> ATp
z >0,
isfeasible, there exists an optimal dua solution and thereis no duality gap. Let z be an optimal dual

solution. We can show in a similar way as in the proof of theorem 2.1 that = € R", defined by
z; = (2 + p)Tw(i) foral i € N, isacore-element of the corresponding LTP game. O

We will now return to our examples in the previous section. In the first example we have that
g* =3+ 1,07 andpTak =3 — 1 foral k € D. Thus

e () () ()

and
341 0
Ko =CC 0 , 0 [, 1
1
3_k keD 0

We see that condition 4.2 is satisfied since (0,0,1)” ¢ cl(K>) but condition 4.1 is not satisfied
because wy = 0. However, thereisno duality gap and there exists an optimal dual solution.

In the second example we see that ¢* = (£,0)7 and pTa® = 1 — 1 for al k € D. Therefore
K;=R2 and

S =
(e)

Ky, =0CC

—_
|
=

o

k 7 keD



Here condition4.1isnot satisfied sincew; = 0 and the same holdsfor condition4.2 since (0, 0, 1) €
cl(K3). Thedua problem has no feasible solutions.

Finally, in the third example we have that g* = (2,0,0,0,0)7, ¢* = (2,4,0,0,0)7, k > 2,
plal =2andpTak =3,k > 2. S0 K; :Ri and

Ky, =0CC

W O O O F= N
g
<

N O O O O N

k>2 0 JjeEM

In thisexample, condition 4.1 is not satisfied but condition 4.2 isand there is a duality gap.

From these examples we may concludethat conditions4.1 and 4.2 are sufficient but not necessary
conditionsin theorem 4.3.

5 Economic Conditions

In this section a second set of conditions on semi-infinite LTP situations will be presented. These
conditions also guarantee total balancedness of the corresponding LTP games. Similar conditionsfor
linear production (LP) situations can be found in FRAGNELLI, PATRONE, SIDERI and T13s (1999).

Condition 5.1

sup pTak =7 <400
keD

All transformation techniques a* should generate afinite profit of at most v when y;, = 1, that is, the
techniques are operated at the unit activity level.

Condition 5.2

mang >a>0forallk e D

JEM
This condition states that for each transformation technique there is aways some positive amount o
of aresource needed at the unit activity level.

Recall that
v(N)= sup pT(w(N)+ Ay)
st. Gy <w(N)
y = 0.

Wewill usethefollowing result by KARLIN and STUDDEN (1966), which we translated to semi-infinite
LTP situationsfor codition N.



Theorem 5.3 Suppose that v(V) isfinite and that w(N) € IRi‘L{L. Then there is no duality gap and
the dual program has an optimal solution.

We can now prove the following result.

Theorem 5.4 Let (N, A, D,w,p) be a semi-infinite LTP situation. If conditions 5.1 and 5.2 are
satisfied then the corresponding LTP game s totally balanced.

Proof. Since each subgame (S, v|s) of an LTP gameisanother LTP game, we only have to prove that
the core of (IV, v) is nonempty.

By conditions 5.1 and 5.2 it follows that the dual feasible region {z € RY|GTz > ATp} is
nonempty since z” = v 1a(1,1,...,1) is afeasible dua solution. It aso follows that the primal
profit maximization problem has afinite optimal profit. From the result by KARLIN and STUDDEN,
theorem 5.3, it follows that if w(N) € IF{_]KL then there is no duality gap and there exists an optimal
dual solution z. Aswe have shown before, the vector = € RN withz; = (z 4 p)Tw(i) forali € N
isan element of C(v).

If w(N) ¢ RY, then one or more goodsin M are not available, that is, there exists at least one
good j € M such that w;j(N) = 0. We may eliminate these goods and all techniques that need a
positive amount of them since it is impossible to use these transformation techniques. This reduced
problem satisfies w;(/N) > 0 for al non-eliminated goods j. Again by the result of KARLIN and
STUDDEN it follows that there is ho duality gap in this reduced problem and there exists an optimal
solution 2. To obtainan element of C(v) we define z; = 2; for al non-eliminated goods j and z; = 0
for al eliminated goods j. Then we can show in asimilar way as in the proof of theorem 2.1 that
z e RN, z; = (24 p)Tw(i), isacore-element of the corresponding LTP game. a
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