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Abstract

OWEN (1975) introduced linear production (LP) situations and TIMMER, BORM and SUIJS

(1998) introduced more general situations involving the linear transformation of products (LTP).

They showed that the corresponding LTP games are totally balanced. In this paper we look at

LTP situations with an infinite number of transformation techniques. The linear program that

calculates the maximal profit, is a semi-infinite program. We show that an optimal solution of the

dual program exists and that it is a core-element of the corresponding LTP game.
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1 Introduction

OWEN (1975) introduced linear production (LP) situations. These are production situations where

there is a finite set of producers, each of them owns a bundle of resources and all producers can use the

same finite set of linear production techniques. The products can be sold on the market at given prices

and all producers are price takers. This model has two restrictions. First, each production process

can only have one output good while many production processes have by-products. Second, all

producers can use the same production techniques while in reality some producers have a production

technique that nobody else has. To overcome these restrictions, TIMMER, BORM and SUIJS (1998)

introduced situations involving the linear transformation of products (LTP). In these situations, each

linear transformation technique has at least one output good and different producers may have different

production techniques. More precise, in an LTP situation there is a finite set of producers and each

of them controls a finite number of transformation techniques. We define the set of goods to be the

set of products and resources. Each producer owns a bundle of goods that he can use (like resources)
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in his transformation process or that he can sell directly on the market (like products). The outcome

of the transformation process, the produced goods, will also be sold on the market. The goal of

each producer is to maximize his profit given his transformation techniques, bundle of goods and the

exogenous market prices.

In this paper, we consider semi-infinite LTP situations, which are LTP situations with a countable,

infinite number of transformation techniques. Something similar for LP situations and corresponding

games has been studied by FRAGNELLI, PATRONE, SIDERI and TIJS (1999) using duality results by TIJS

(1979). We will also work with linear semi-infinite programs. One of the first papers in this area was

written by CHARNES, COOPER and KORTANEK (1962). Many results on this subject can be found in

GLASHOFF and GUSTAFSON (1983) and in the recent book by GOBERNA and LÓPEZ (1998).

This paper is organized as follows. Section 2 starts with a formal introduction of finite LTP

situations and corresponding games. In section 3 we extend this to semi-infinite LTP situations where

we consider a countable, infinite number of transformation techniques. Some examples show what

problems we may encounter. Therefore, in each of the sections 4 and 5 a set of conditions will be

presented that ensures the existence of an optimal dual solution and the existence of a core-element

of the corresponding semi-infinite LTP game.

2 Finite LTP Situations and Games

Situations involving the linear transformation of products were introduced by TIMMER et al. (1998).

To illustrate these situations, consider the following example. A tailor uses a large piece of silk fabric,

thread and buttons to produce full dresses. From the left-overs he makes some doll’s dresses. More

precise, assume that this tailor needs a piece of silk fabric of 10 by 1.50 meters, 100 meters of thread,

70 buttons and 24 hours of labour to produce 6 full dresses and 2 doll’s dresses. Assuming that

the production process is linear, this production or transformation technique is represented by the

following vector a,

a =



6

2

−1

−100

−70

−24


where the rows correspond from the top downward to respectively full dresses, doll’s dresses, pieces

of silk fabric, meters of thread, buttons and hours of labour. So, silk fabric, thread, buttons and labour

are the input goods in this transformation process while full dresses and doll’s dresses are the output

goods. Since the production technique is linear, any nonnegative multiple of a is a possible production

technique. The value of this nonnegative multiple is called the activity level. The activity level of this

tailor is restricted by the amount of input goods at his disposal.
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LTP situations4 are production situations in which each producer controls some transformation

techniques and a bundle of resource goods. Denote by M the finite set of goods and by N the finite

set of producers. Each producer i ∈ N owns a bundle of goods ω(i) ∈ IRM
+ . A transformation

technique is denoted by a vector a ∈ IRM and it says that a producer needs −aj units of the goods

j with aj < 0 to produce al units of the goods l with al > 0. If aj = 0 for some good j, then this

good is not used in the transformation technique. We assume that each technique needs at least one

input good to produce at least one output good. Hence every vector a contains at least one positive

and one negative element. Denote by Di the set of transformation techniques controlled by producer

i, that is, Di = {k| producer i controls ak}, and denote by yk the activity level of transformation

technique ak . Using transformation technique ak, a producer needs {−akjyk| j ∈ M : akj < 0} to

produce {akjyk| j ∈ M : akj > 0} . We assume that the production process cannot be reversed, so

yk ≥ 0 for all k, and for any two players i, j ∈ N the setsDi and Dj are disjoint,Di ∩Dj = ∅.

Denote byD = ∪i∈NDi the finite set of all available transformation techniques. Let y = (yk)k∈D

be the vector in IRD
+ of all activity levels and let A be the technology matrix in IRM×D with kth

column ak . Define the related matrix G ∈ IRM×D
+ with kth column gk by gkj = max{0,−akj} for

all j ∈ M . This matrix states which of the goods and how much of them are needed as inputs in

the various transformation processes when all activity levels equal one. If the activity level of ak

equals yk then a producer needs the bundle gkyk of goods to produce the bundle (ak + gk)yk since

akj + gkj = max{akj , 0}.

Combining all his knowledge, producer i ∈ N can use the bundle Gy of goods to produce the

bundle (A + G)y. Here yk = 0 if k /∈ Di because producer i can only use his own transformation

techniques. The amount Gy of goods he uses, should not exceed the amount ω(i) of goods at his

disposal, so Gy ≤ ω(i). Producer i starts with the bundle ω(i) from which he uses Gy to produce

(A+G)y. Therefore, after the transformation, the producer is left with the bundle ω(i)−Gy+ (A+

G)y = ω(i) + Ay which he can sell on the market at exogenous prices p ∈ IRM
+ \ {0}. We assume

that the market is insatiable, so, all goods can be sold. Furthermore, all producers are pricetakers. The

goal of each producer is to maximize his profit from the sale of his remaining goods:

max pT (ω(i) + Ay)

s.t. Gy ≤ ω(i)

yk = 0 if k /∈ Di

y ≥ 0.

Producers can also cooperate by pooling their transformation techniques and resources. The coalition

S ⊂ N , S 6= ∅, of producers then acts like one big producer with resource bundle ω(S) =
∑
i∈S ω(i)

and D(S) = ∪i∈SDi is its set of available transformation techniques. The profit maximization

4In TIMMER et al. (1998) these situations are called extended LTP situations.
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problem for this coalition looks as follows:

max pT (ω(S) + Ay)

s.t. Gy ≤ ω(S)

yk = 0 if k /∈ D(S)

y ≥ 0.

(1)

In short, an LTP situation is described by a 5-tuple 〈N,A,D, ω, p〉 where ω = (ω(i))i∈N . The

corresponding LTP game (N, v) is such that the characteristic function v assigns to each coalition

S ⊂ N the maximal profit it can obtain as given in (1) and v(∅) = 0.

One of the main issues in cooperative game theory is how to divide the benefits from cooperation.

In LTP games we would like to know how to divide the joint profit among the cooperating producers.

The core C(v),

C(v) =

{
x ∈ IRN

∣∣∣∣∣∑
i∈N

xi = v(N ),
∑
i∈S

xi ≥ v(S) for all S ⊂ N

}
,

is the set of allocationsx of v(N ) upon which no coalitionS of producers can improve. If an allocation

x ∈ C(v) is proposed as a distribution of the total profit v(N ), where producer i gets the amount xi,

then coalition S will get at least as much as it can obtain on its own since
∑
i∈S xi ≥ v(S). Therefore,

no coalition S has an incentive to leave the grand coalition N . A game is called balanced if it has a

nonempty core and it is called totally balanced if each subgame (S, v|S) has a nonempty core, where

v|S is the game v restricted to coalition S with v|S(T ) = v(T ) for all T ⊂ S. The following theorem,

based on a theorem in TIMMER et al. (1998), shows that LTP games are totally balanced.

Theorem 2.1 Let 〈N,A,D, ω, p〉 be an LTP situation. Then the corresponding LTP game is totally

balanced.

Proof. Since each subgame (S, v|S) is an LTP game, we only have to prove that the LTP game (N, v)

is balanced. For this, recall that the value v(N ) for coalitionN equals

v(N ) = max pT (ω(N ) +Ay)

s.t. Gy ≤ ω(N )

y ≥ 0.

Note that pTω(N ) is a constant. Therefore the corresponding dual minimization program is

min (z + p)Tω(N )

s.t. GT z ≥ AT p

z ≥ 0.

(2)

Since the set of feasible solutions of this program, {z ∈ IRM |GT z ≥ ATp, z ≥ 0}, is nonempty,

closed, convex and bounded from below, this minimization problem can be solved and a minimum

exists. Let the minimum of (2) be taken in z. Define x ∈ IRN by xi = (z + p)Tω(i) for all i ∈ N .

Then
∑
i∈N xi =

∑
i∈N(z+ p)Tω(i) = (z+ p)Tω(N ) = v(N ) where the last equality follows from
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duality theory. Notice that z is also a feasible solution of the problem min{(z + p)Tω(S)|GTz ≥

ω(S), z ≥ 0} for all coalitions S. Therefore,

(z + p)Tω(S) ≥ min{(z + p)Tω(S)|GTz ≥ ω(S), z ≥ 0}

= max{pT (ω(S) + Ay)|Gy ≤ ω(S), y ≥ 0}

≥ max{pT (ω(S) + Ay)|Gy ≤ ω(S), yk = 0 if k /∈ D(S), y ≥ 0}

= v(S)

and
∑
i∈S xi =

∑
i∈S(z + p)Tω(i) = (z + p)Tω(S) ≥ v(S). We conclude that x ∈ C(v). 2

This proof shows that we can find a core-element of the LTP game (N, v) via the dual program

corresponding to the profit maximization problem. The set of core-elements we can find in this way has

been thoroughly studied for linear production situations by VAN GELLEKOM, POTTERS, REIJNIERSE,

TIJS and ENGEL (1998). In the next sections we will use this method to find a core-element for the

LTP game corresponding to an LTP situation with an infinite number of transformation techniques.

3 Semi-Infinite LTP Situations

In many production situations, there are an infinite number of techniques available to the producer.

For example, a firm may have a finite number of transformation techniques on the short run, but when

we think of the long run, this firm can choose from an infinite number of techniques. It can continue

its current production process, it can expand its activities, it can produce some extra goods or it can

switch to the use of some completely different transformation techniques. A second example concerns

cooking. If you have a recipe for baking pancakes from flour, milk, eggs, butter and sugar, then you

can get an infinite number of recipes for pancakes by changing the amounts of the ingredients slightly.

Each recipe then gives a slightly different pancake.

We define a semi-infinite LTP situation as a 5-tuple 〈N,A,D, ω, p〉 where the set D contains a

countable, infinite number of transformation techniques. All other variables are as defined in the

previous section. The following examples show some problems we may encounter in semi-infinite

LTP situations.

Example 3.1 Consider the semi-infinite LTP situation with a single producer, two goods, bundle of

goods ω = (3, 0)T , market prices p = (1, 3)T and technology matrix

A =

 −4 −31
2 −31

3 −31
4 · · · −3− 1

k · · ·

2 2 2 2 · · · 2 · · ·

 .
The primal profit ’maximization’ problem is

sup pT (ω + Ay)

s.t. Gy ≤ ω

y ≥ 0.
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Note that we have replaced the maximum by a supremum since there is an infinite number of activity

levels and an optimal solution may not exist. This problem is equal to

sup{3 + pTAy|
∑∞
k=1(3 + 1/k)yk ≤ 3, y ≥ 0} = limk→∞(3 + 3− 1/k) = 6.

There is no optimal solution for this problem, that is, there exists no vector ŷ of activity levels such

that pT (ω + Aŷ) = 6. The corresponding dual problem is

inf{(z + p)Tω|GTz ≥ ATp, z ≥ 0}

= inf{3z1 + 3|(3 + 1/k)z1 ≥ 3− 1/k, k = 1, 2, . . . , z ≥ 0}

= 3 · 1 + 3 = 6.

The set of optimal solutions {z ∈ IR2|z1 = 1, z2 ≥ 0} is nonempty. In this example we see that the

primal problem may have no optimal solution while the dual problem has optimal solutions.

Example 3.2 Consider the following semi-infinite LTP situation with a single producer, two goods,

bundle of goods ω = (0, 1)T , prices p = (1, 1)T and technology matrix

A =

 −1 −1
2 −1

3 −1
4 · · · − 1

k · · ·

1 1 1 1 · · · 1 · · ·

 .
Then

v = sup{pT (ω + Ay)|Gy ≤ ω, y ≥ 0}

= sup{1 + pTAy|
∑∞
k=1 yk/k ≤ 0, y ≥ 0}

= 1 + 0 = 1

with optimal activity vector y = 0. The dual problem equals

inf{z2 + 1| z1/k ≥ 1− 1/k, k = 1, 2, . . . , z ≥ 0}

= inf{z2 + 1| z1 ≥ k − 1, k = 1, 2, . . . , z ≥ 0} = +∞

since there exists no feasible solution z. Therefore there are no optimal solutions to the dual program

of this example while there exists an optimal solution to the primal problem.

Example 3.3 We have a semi-infinite LTP situation with a single producer, five goods and

A =



−2 −2 −2 −2 −2

0 −1
2 −1

3 −1
4 − 1

k

1 0 0 0 · · · 0 · · ·

1 1 1 1 1

0 1 1 1 1


, ω =



2

0

0

0

0


, p =



1

0

3

1

4


.

The profit maximization problem gives

v = sup{2 + pTAy| 0 ≤ y1 ≤ 1, yk = 0, k = 2, 3, . . .} = 4.
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The corresponding dual problem gives

inf{2 + 2z1| 2z1 ≥ 2, 2z1 + z2/k ≥ 3, k = 2, 3, . . . , z ≥ 0} = 5.

Here we have a duality gap: the primal maximization program does not have the same optimal value

as the dual problem.

These examples show that semi-infinite LTP situations may deal with duality gaps and the absence

of optimal solutions for both the primal and the dual program. We would like to have conditions on

semi-infinite LTP situations such that there is no duality gap, the dual problem has an optimal solution

and the primal problem has a feasible solution. Then we can find a core-element of the game via the

dual problem. We do not need the existence of an optimal solution of the primal problem to attain this

core-element.

In the following two sections we present two sets of conditions that ensure we can find a core-

element of the LTP game corresponding to a semi-infinite LTP situation via the dual problem.

4 Conditions Involving Cones

In this section we will present a first set of conditions on semi-infinite LTP situations and we show

that this guarantees that the corresponding LTP games have a nonempty core.

Denote by 0M theM -dimensional zero-vector and by ej the jth unit vector in IRM with ejm = 1 if

m = j and ejm = 0 ifm 6= j. IfB is an (infinite) set of vectors in IRq for some integer number q then

we obtain the convex cone generated by B, denoted by CC(B), by taking all nonnegative multiples

of finite convex combinations of elements in B. Thus,

CC(B) =

{
x

∣∣∣∣∣ x =
t∑
i=1

λib
i, λi ≥ 0, bi ∈ B, i = 1, 2, . . . , t, t ≥ 1

}
Define the sets K1 and K2 as follows.

K1 = CC
({

(gk)k∈D, (ej)j∈M
})

= IRM
+

K2 = CC



 gk

pT ak


k∈D

,

 ej

0


j∈M




The last equality for K1 follows from gk ∈ IRM
+ for all k ∈ D. In the literature, see for example

GLASHOFF and GUSTAFSON (1983) and GOBERNA and LÓPEZ (1998), the convex conesK1 andK2 are

usually called the first and second moment cone and denoted by M and N respectively. We renamed

these cones since we already use M and N to denote respectively the set of goods and the set of

producers. Denote by int(K1) the interior of K1 and by cl(K2) the closure of K2. Consider the

following two conditions.

Condition 4.1

ω(N ) ∈ int(K1) = IRM
++
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This condition states that the coalition N of all producers should own some positive amount of all

goods inM .

Condition 4.2 0M

1

 /∈ cl(K2)

An interpretation of this condition is that doing nothing, which is equivalent to activity level yk = 0

for all k ∈ D, cannot result in a positive profit. The following theorem shows the nonemptiness of

the core under these conditions.

Theorem 4.3 Let 〈N,A,D, ω, p〉 be a semi-infinite LTP situation. If conditions 4.1 and 4.2 are

satisfied then the corresponding LTP game is balanced.

Proof. Conditions 4.1 and 4.2 are satisfied and therefore it follows from respectively theorems

8.1.(v), (vi) and 4.4.(i) in GOBERNA and LÓPEZ (1998) that the dual problem for coalition N ,

inf (z + p)Tω(N )

s.t. GT z ≥ AT p

z ≥ 0,

is feasible, there exists an optimal dual solution and there is no duality gap. Let z be an optimal dual

solution. We can show in a similar way as in the proof of theorem 2.1 that x ∈ IRN , defined by

xi = (z + p)Tω(i) for all i ∈ N , is a core-element of the corresponding LTP game. 2

We will now return to our examples in the previous section. In the first example we have that

gk = (3 + 1
k , 0)T and pTak = 3− 1

k for all k ∈ D. Thus

K1 = CC


 3 + 1

k

0


k∈D

,

 1

0

 ,
 0

1

 = IR2
+

and

K2 = CC




3 + 1
k

0

3− 1
k


k∈D

,


1

0

0

 ,


0

1

0


 .

We see that condition 4.2 is satisfied since (0, 0, 1)T /∈ cl(K2) but condition 4.1 is not satisfied

because ω2 = 0. However, there is no duality gap and there exists an optimal dual solution.

In the second example we see that gk = ( 1
k , 0)T and pTak = 1 − 1

k for all k ∈ D. Therefore

K1 = IR2
+ and

K2 = CC




1
k

0

1− 1
k


k∈D

,


1

0

0

 ,


0

1

0


 .
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Here condition 4.1 is not satisfied sinceω1 = 0 and the same holds for condition 4.2 since (0, 0, 1)T ∈

cl(K2). The dual problem has no feasible solutions.

Finally, in the third example we have that g1 = (2, 0, 0, 0, 0)T, gk = (2, 1
k , 0, 0, 0)T, k ≥ 2,

pTa1 = 2 and pT ak = 3, k ≥ 2. So K1 = IR5
+ and

K2 = CC





2

0

0

0

0

2


,



2
1
k

0

0

0

3


k≥2

,


ej

0


j∈M


.

In this example, condition 4.1 is not satisfied but condition 4.2 is and there is a duality gap.

From these examples we may conclude that conditions 4.1 and 4.2 are sufficient but not necessary

conditions in theorem 4.3.

5 Economic Conditions

In this section a second set of conditions on semi-infinite LTP situations will be presented. These

conditions also guarantee total balancedness of the corresponding LTP games. Similar conditions for

linear production (LP) situations can be found in FRAGNELLI, PATRONE, SIDERI and TIJS (1999).

Condition 5.1

sup
k∈D

pTak = γ < +∞

All transformation techniques ak should generate a finite profit of at most γ when yk = 1, that is, the

techniques are operated at the unit activity level.

Condition 5.2

max
j∈M

gkj ≥ α > 0 for all k ∈ D

This condition states that for each transformation technique there is always some positive amount α

of a resource needed at the unit activity level.

Recall that

v(N ) = sup pT (ω(N ) +Ay)

s.t. Gy ≤ ω(N )

y ≥ 0.

We will use the following result by KARLIN and STUDDEN (1966), which we translated to semi-infinite

LTP situations for coalitionN .
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Theorem 5.3 Suppose that v(N ) is finite and that ω(N ) ∈ IRM
++. Then there is no duality gap and

the dual program has an optimal solution.

We can now prove the following result.

Theorem 5.4 Let 〈N,A,D, ω, p〉 be a semi-infinite LTP situation. If conditions 5.1 and 5.2 are

satisfied then the corresponding LTP game is totally balanced.

Proof. Since each subgame (S, v|S) of an LTP game is another LTP game, we only have to prove that

the core of (N, v) is nonempty.

By conditions 5.1 and 5.2 it follows that the dual feasible region {z ∈ IRM
+ |G

Tz ≥ ATp} is

nonempty since zT = γ−1α(1, 1, . . . , 1) is a feasible dual solution. It also follows that the primal

profit maximization problem has a finite optimal profit. From the result by KARLIN and STUDDEN,

theorem 5.3, it follows that if ω(N ) ∈ IRM
++ then there is no duality gap and there exists an optimal

dual solution z. As we have shown before, the vector x ∈ IRN with xi = (z + p)Tω(i) for all i ∈ N

is an element of C(v).

If ω(N ) /∈ IRM
++ then one or more goods in M are not available, that is, there exists at least one

good j ∈ M such that ωj(N ) = 0. We may eliminate these goods and all techniques that need a

positive amount of them since it is impossible to use these transformation techniques. This reduced

problem satisfies ωj(N ) > 0 for all non-eliminated goods j. Again by the result of KARLIN and

STUDDEN it follows that there is no duality gap in this reduced problem and there exists an optimal

solution ẑ. To obtain an element ofC(v) we define zj = ẑj for all non-eliminated goods j and zj = 0

for all eliminated goods j. Then we can show in a similar way as in the proof of theorem 2.1 that

x ∈ IRN , xi = (z + p)Tω(i), is a core-element of the corresponding LTP game. 2
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