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1  Introduction

Evolutionary and learning processes in games attract much attention at the present time. In

these processes the dynamics of the game, or players’ choice of strategies over time, is

modeled explicitly. One can distinguish two main applications of such modeling. First,

explicit dynamics usually gives the answer to the question which equilibrium will be

selected starting from certain initial conditions. Stochastic dynamic processes might serve

as a selecting device among equilibria. Therefore, the evolutionary processes can be used

to refine Nash equilibria, that is for the very theoretical problems of game theory. Seminal

papers on this question are Kandori et al. (1993) and Young (1993).

The second application of evolutionary and learning processes is a more positive one. By

means of experiments the dynamics approximating real human behavior can be obtained

and analyzed. Usually people playing a game do not perform sophisticated calculations to

find a Nash equilibrium but learn to play the game by a simple learning dynamics. When

more than one equilibrium is present, sometimes the players fail to arrive at the “plausible”

(e.g. subgame perfect) Nash equilibrium or even at a Nash equilibrium at all under simple

dynamics. Even in case of one-player decision problems the optimal behavior is not

guaranteed. Known phenomena are “probability matching” (see, for example, Börgers and

Sarin (1996)) and "melioration" (see Herrnstein and Prelec (1991)), where examples are

given of dynamics and human behavior which show non-optimality. Arthur (1993) also

gives some experimental data on non-optimal behavior in decision problems. A case of

non-equilibrium play in games was reported in Roth and Erev (1995).

Those papers assert that a simple dynamics can explain to a large extent the behavior of

players in decision problems and simple games. The dynamics, as the human behavior in

their experiments, does not necessarily converge to the optimal action or to a (subgame

perfect) equilibrium in some of the examples they consider. In this paper we investigate

this dynamics analytically whenever possible and by means of computer simulations in

more complicated cases. Although the dynamics is formulated quite simply, the analysis of

it requires sophisticated tools of stochastic optimization.
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We compare also different versions of the dynamics, since some modifications of it lead to

different convergence results. However, we shall focus not only on the long run optimality

but also on the medium run since it can be of economic importance. The environment in an

economy is not likely to be constant indefinitely. Thus the speed of convergence will play

a role in our analysis. There is a trade-off between long-run convergence and speed

thereof and we shall consider this issue.

The remainder of the paper is structured as follows: Section 2 describes the model,

Section 3 gives the analysis for the case of one-player decision problem, Section 4 reports

results of simulations for several games and Section 5 concludes.

2  The model

We formulate the model for games though it can be easily simplified to decision problems.

There are n players. Denote the set of players by Ι. The stage game is a game in normal

form. Let S1,...,Sn be the sets of  pure strategies. The payoff functions πm:S1×...×Sn→R are

assumed to be non-negative for every player and for every profile of pure strategies,

πm(s1,...sn) ≥ 0 ∀m∈Ι,∀s1∈S1,...,sn∈Sn.

Let player m have k pure strategies, |Sm| = k. The state of player m at time t is described

by the vector qt
m = (qt

m1,...,q
t
mk)∈Rk. qt

mj denotes the propensity of player m to play the

strategy j∈Sm at time t. The propensities are assumed to be strictly positive, qt
mj > 0

∀t,∀m,∀j. Denote the sum of the propensities Σk
i=1 qt

mi by Qt
m. Given the vector of

propensities the probability to play strategy j is defined then as

p
q

Qmj
t mj

t

m
t

=

The vector pt
m = (pt

m1,...,p
t
mk)∈∆Sm, where ∆Sm is the set of mixed strategies of player m.

Working with propensities rather than probabilities is easier since with probabilities we

have to change them in such a way that they were between 0 and 1 while the only

restriction on propensities that they are non-negative.
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An interpretation of this is that every player possesses at every moment of time a mixed

strategy, characterized by the vector of probabilities pt
m. Another interpretation can be that

for every player 1,...,n there is a large population of agents, the members of the population

possess a pure strategy and in each population the distribution of pure strategies is given

by the vectors pt.

The state of the whole process at time t is determined by the vectors qt
1,...q

t
n. According

to the vector of probabilities derived from q’s, each player chooses a pure strategy to play

in the present period. The precise mechanism of choice is not modeled. In the first

interpretation above it could be a random device used by a player. In the second

interpretation above such a choice can be understood as a random draw of an agent with a

pure strategy from the population. The stage game is played with the chosen strategies.

We are interested in the dynamics of  pt
m. Since it is determined through qt

m, we must

specify the dynamics of the propensities.

We pose two main requirements on the dynamics. Firstly, it should be reinforcing: if a

strategy is played, its probability increases. Secondly, it should be in a sense "simple": no

complex functions must be involved. One class of dynamics satisfying these requirements

is following. The player triggers a strategy, observes the payoff and increases the

propensity of playing this strategy by this payoff. Then he renormalizes the propensities

by multiplying them by a certain variable, since this does not change the probabilities.

Therefore the expected motion of the dynamics does not change. However, the

normalization plays an important role, since it change the variance of the stochastic

process which can influence the convergence results and the speed of convergence. We try

to answer the question for which forms of normalization the dynamics converges to an

equilibrium and for which forms the speed of the dynamics is fast enough.

Formally, if player m chooses strategy j while the other players choose strategies s-m∈S-m,

then the state of player m at time t + 1 is defined as follows:

q q B A

q q A k j

mj
t

mj
t

mj m
t

mk
t

mk
t

m
t

+

+

= +

= ≠

1

1

( )

,
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where Bmj = π(j,s-m) is the payoff, At
m is the normalizing multiplier. To keep the

propensities positive π(j,s-m) were assumed non-negative. The normalizing multiplier can

be chosen as to keep the sum of the propensities equal to a predetermined variable Ct
m, in

which case A
C

Q Bm
t m

t

m
t

mj

=
+

+1

 . We consider this type of normalization since it is

mathematically tractable while gives already rich variety of results.

The variable Ct
m can be deterministic, for example, Ct

m = Ctν, where C,ν are constant. In

case of no normalization At
m = 1 or Ct+1

m = Qt
m + Bmj, a random variable. Another

interesting case is At
m = δ < 1. The parameter δ can be understood as a forgetting

parameter since payoff got τ periods before will enter the sum multiplied by δτ. Ct
m will

determine the step size of the algorithm as it would be clear later. In fact, the inverse to

Ct
m has the same order as the step size of the dynamics. At time t = 0 the vectors of initial

propensities q0
m are given, q0

mj > 0 ∀m∈Ι,∀j∈Sm.

The model is fairly simple. However, it captures some important aspects of human

behavior. The updating of the strategies depends only on player’s own payoff. Notice that

it is exactly what is being done in one-agent decision problems with unknown distributions

of payoffs. The justification of carrying the dynamics to games is that people may not

know that they are participating in a game, or who their opponents are, or the preferences

of the opponents. Of course, in economic reality it is not the case, people usually have

some vague idea what is going on, or form expectations, but we shall consider this

extreme case. The model can also be applied to extensive form games where not all

information sets are reached during the course of the game, because the players do not

need to know the other players’ exact strategy.

The application of the model to one-agent decision problems and calibration of the

normalization version of it with Ct
m = Ctν against human subjects was considered in

Arthur (1993). Roth and Erev (1995) also applied the non-normalized version with some

other extensions in some specific games to approximate human behavior. Posch (1996)

considered the normalized (Ct
m = Ctν ) dynamics in 2x2 games. Laslier et al. (1996)

analyzed a more general version for both decision problems with 2 actions and 2x2 games.
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In their paper the new propensities were determined by a general function of the past play,

not necessarily the normalized sum. They considered the long-run convergence of the

dynamics. However, not much attention was paid to the speed of convergence and

medium term results, which certainly has an economic relevance.

An extended analysis of similar machine learning is provided in Narendra and Thathachar

(1989). However, they consider mostly the schemes with binary payoffs or with reward-

penalty nature, which require knowledge of maximal and minimal payoff. If a payoff to an

action is close to the maximal one, the probability of playing this action increases (reward)

while if a payoff is close to the minimal one, the probability decreases (penalty). Our

scheme can be considered as reward-reward scheme since independently of the outcome

the probability of playing a strategy increases. Some of the results for reward-penalty

schemes carry over to our scheme.

Roth and Erev (1995) argue that the dynamics captures two important aspects of learning.

The first one, the “Law of Effect”, states that the choices that have led to good outcomes

should be repeated more often in the future. In the model, each strategy gives a positive

payoff and the probability of playing it at the next round increases, hence this law is

fulfilled. The second aspect, the “Power Law of Practice”, says that learning tends to be

fast in the beginning and then slows down. In the no normalization case the propensities

only can increase not more than by a fixed amount (the maximal payoff to a strategy), so it

is indeed the case in the model. If ν > 0 in normalization then Ct
m grows over time and the

learning slows down. The payoff at a late stage in the game changes the probability less

than at an early stage, when the aggregate propensity is not yet very high.

Another interpretation of the dynamics can be in the spirit of learning dynamics with an

aspiration level. In such dynamics a strategy is regarded as successful and its weight is

increased if it gives a payoff that is greater than the aspiration level. In our model the

aspiration level is set to 0, hence every strategy is successful or at least, not unsuccessful.

The aspiration level does not change throughout the game. From the “aspiration level”

literature side, a similar model for decision problems was considered by Börgers and

Sarin(1996), where the probabilities change directly, not through propensities. A general

model with aspirations can be found in Bendor et al (1994).
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3  The one-player decision problem

The long run convergence

Though the ultimate goal is to analyze the dynamics in games, it is interesting to consider

its behavior in one-player decision problems. Binmore et al (1996) expressed view that it

might be wiser to consider first the human behavior in decision problems and then apply it

to games. We shall proceed in this spirit.

The main question for every dynamics is whether it converges and if so, to what point. For

games it is desirable that a dynamics converges to a Nash equilibrium and even better to a

certain refined Nash equilibrium, for example, to a (subgame) perfect equilibrium. In one-

agent decision problems Nash equilibrium corresponds to the choice of the action which

gives highest expected payoff. Since all strategies are successful, the problem of path-

dependency may arise and it is not clear that the optimal action will be chosen in the long

run.

From the model described in Section 2 we have now n = 1 and we can omit subscript m in

the formulas. The payoff to strategy j π(sj) is now a random variable, given by the

environment. The environment is assumed to have a finite number of states which occur

with fixed probabilities independent of time. Denote the realization of  π(sj) at time t by Bt.

The agent still has k strategies or actions.

Let ej be the unit k-vector with 1 on j-th place and let bt = Btej. Then we can rewrite the

formulas for the dynamics of the propensities in vector form with the multiplier expressed

in the form of given sum of propensities:

q q b
C

Q B
t t t

t

t t
+

+

= +
+

1
1

( ) .

Notice that after normalization Qt+1 = Ct+1. Rearranging terms,

q

Q

q

Q B

b

Q B

q

Q

B Q

Q B Q

b

Q B

t

t

t

t t

t

t t

t

t

t t

t t t

t

t t

+

+ =
+

+
+

= −
+

+
+

1

1 ( )
.

Since qt/Qt = pt, it can be rewritten as

pt+1 = pt + at(bt - Btpt),
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where at = (Qt + Bt)-1 determines the step size of the process. If payoffs are bounded at

has the order of (Qt)-1. In the normalization case Qt = Ct = Ctν, hence at = O(t-ν). In the no

normalization case Q t m Q Q t Mt0 0+ ⋅ ≤ ≤ + ⋅ (where m is the minimal payoff, M is the

maximal payoff), hence at = O(t-1).

Let k be the optimal action, that is the expected payoff to it is highest. To see the expected

motion of the process, we calculate E[pt+1
k|p

t].

From the expression for probabilities above E[pt+1
k|p

t] = pt
k + E[(at(bt - Btpt))k].

E
b B p

Q B
p

p

Q
p

p

Q
k
t t

k
t

t t k
t k k k

t

t
k

k
t k k

t

t
k

[ ] ( )
−

+
=

−
+

+ −
−

+
−

−

Φ Φ
Φ

Φ
Φ

1 , where Φk is the expected payoff of

action k and Φ-k is the expected payoff if action k is not chosen. Rearranging terms,

E
b B p

Q B
p p

Q Q
k
t t

k
t

t t k
t

k
t k

t
k

k
t

k

[ ] ( )( )
−

+
= −

+
−

−
+

−

−

1
Φ

Φ
Φ

Φ
. Since k is the optimal action,Φk >  Φ-k

and ( )
Φ

Φ
Φ

Φ
k

t
k

k
t

kQ Q+
−

−
+

>−

−

0 . It means that E[pt+1
k|p

t] > pt
k, that is the process is

absolutely expedient (Narendra and Thathachar (1989)) for the optimal action. However,

it does not necessarily mean that the optimal action is played in the limit t→∞ with

probability 1 as the following results show.

Proposition 3.1 (Arthur (1993), Posch (1996)) In the normalization case (Ct = Ctν) if ν <

1 or ν = 1 and C < m the non-optimal action is played in the limit with non-zero

probability.

The proof of ν < 1 case is in Arthur (1993), of ν = 1 and C < m case in Posch (1996).

The result states that the process does not necessarily converge to the optimal action for

some cases; however for other cases it does.
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Proposition 3.2 (Arthur (1993), Posch (1996)) In normalization case if ν = 1 and C ≥ m

then the probability of the optimal action converges to 1 almost surely1.

The proof is in the papers referred to.

Proposition 3.3 In the no normalization case the probability of the optimal action

converges to 1 almost surely.

We see that in the no normalization case the optimality is guaranteed; however by

changing it a little bit this result disappears.

Proposition 3.4 In the no normalization model with forgetting the probability of playing a

non-optimal action is not zero in the limit.

The proofs of propositions 3.3 and 3.4 are in Appendix 1.

We can see that the long run results are very different for different specifications of the

model. However, for economic relevance we should also look at the speed of convergence

and medium term results. It may well be that the optimal learning algorithm is too slow to

achieve good results in the medium run and may be inferior in that respect to a non-

optimal learning. The next section presents some analytical and simulation results

comparing different variations of the model.

The speed of convergence and the probability of convergence to the optimal action

There is a trade-off between the two, i.e. if the speed is high then the scheme is not

optimal and if the speed is sufficiently low then it is. In the normalization case, if ν < 1

then the learning is quick and non-optimal, while if ν = 1 the learning is slow enough to

achieve optimality. However, even in the non-optimal normalization case ν < 1 by

                                                       
1 A sequence of random variables xt is said to converge almost surely to a random variable x if
Prob[limt→∞|xt-x|<ε]=1 ∀ε>0.
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changing other parameters one can achieve probability of the optimal action as close to 1

as one desires, that is the scheme is ε-optimal2 (Narendra and Thathachar (1989)).

We can calculate expected motion of the processes and derive from it the expected rate of

convergence. However, to illustrate both issues of non-optimal convergence and the speed

thereof, we run simulations for two decision problems:

1) s1: 4 with probability 1/3, 1 with probability 2/3.

s2: 1 with probability 1/3, 4 with probability 2/3.

2) s1: 2 with probability 1

s2: 3 with probability 1

s3: 2.5 with probability 1

For the first problem Mean(s1) = 2, Mean(s2) = 3, hence the second problem is the certain

case of the first one plus an additional action. The second problem is devised to show how

convergence slows down with more actions. The sum of initial propensities is chosen quite

arbitrarily as 30, which is simply equal 10⋅ M for the second problem and close to

estimated in Arthur (1993) from human behavior.  Initial propensities q0 are equal. The

simulations were run for the normalization case with ν = 0, for the no normalization case,

and for the forgetting case with δ = 0.999.

The question remains what should be taken as the medium run. We have chosen, again

quite arbitrarily, 100000 periods as the long run, hence all what is before it is the medium

run. A justification for 100000 could be that if you have to chose an action every hour

then 100000 hours is approximately 11.5 years, a period that could be roughly considered

as with constant environment.

The results of the simulations are reported in Tables 1,2  in Appendix 2 for the problems

1),2) correspondingly. From Table 1 it is seen that if ν = 0 then the dynamics learns very

quickly: already at period 300 the probability of playing the optimal action 0.998. Both

others modification of the dynamics are slower. However, the dynamics with forgetting

                                                       
2 A scheme is said to be ε-optimal if ∀ε ∃T such that for t > T the probability of optimal action pt > 1-ε.



10

parameter accelerates and at period 100000 it almost catches up the model with ν = 0. All

three variations converges to the optimal action in this case; the 'ν = 0' case collects

greater average payoff due to higher speed.

The second problem shows the non-optimality of the normalization approach. As Table 2

shows, not all of the simulation goes to the optimal action; some of them lock in another

one. Again it collects larger average payoff in the beginning. However, two other models

find out the optimal action and regain the payoff. The no-normalization model did not

catch up with the 'ν = 0' case but the forgetting variation of it did.

The main conclusion from the analysis of the decision problems is that in the medium run

a model which gives us sufficient speed of convergence while it does not lock in an

inferior action is in a sense "optimal". The model with the forgetting parameter seems to

satisfy the criterion since it learns slowly in the beginning while the normalized model with

ν = 0 gets locked in, and it accelerates after, while the no-normalization model explore its

optimality too slowly to catch up. The model with forgetting has a non-zero probability of

getting trapped into an inferior action, but the probability is very small. The formal

criterion could be the average payoff at period 100000. In the first problem the model with

forgetting has slightly less average payoff than the model with normalization but in the

second problem the payoff of the model with forgetting much higher. The payoff of the

no-normalization model is less in both problems. It should be noticed, however, that the

results may depend on the forgetting parameter and the choice of magnitude of initial

propensities. Nevertheless, we shall use the model with forgetting later in games.

4  Games

Games provide additional insight to the behavior of the dynamics. The payoffs now

depend not only on player’s own action but on actions of the opponents. Since the

opponents do not always choose their optimal strategy, it is more difficult for a player to

learn his optimal strategy. Normally, if the opponents play the same strategy all the time,

the player will eventually learn the best response to this strategy. However, a Nash

equilibrium is most likely outcome of the dynamics, since in an equilibrium all players play
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mutual best responses. We shall start the analysis with 2x2 games and proceed to more

complex ones.

2x2 games

The main result about the convergence in games is stated in Posch (1996) and Laslier et

al. (1996):

Theorem

(I) If the game has strict Nash equilibria and the dynamics uses normalization with ν = 1

and C > m or no normalization then the algorithm converges to the set of strict Nash

equilibria almost surely and all equilibria are attained in the limit with positive probability.

(II) If the game has no strict Nash equilibria then cycling is possible.

The proof for normalization case is in Posch (1996). Since the no-normalization case is

essentially equivalent to the normalization case with conditions given in the theorem, the

theorem carries over to it.

The theorem does not say anything about selection among strict Nash equilibria. To get

some insight we have run a number of simulations for two games with two Nash

equilibria. The first game is of pure coordination type, the second is of 'stag-hunt' type.

Game 1 s1 s2

s1 3, 3 1, 1

s2 1, 1 2, 2

Game 2 s1 s2

s1 3, 3 0.5, 2

s2 2, 0.5 2, 2
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Both games have two strict equilibria (s1,s1),(s2,s2). In the first game the efficient

equilibrium (s1,s1) is risk-dominant, in the second one the inefficient equilibrium (s2,s2) is

risk-dominant. Since the model with forgetting proved to be the most plausible one in the

medium run according to the average payoff criterion, we present results only for this

model. The results of the simulations are reported in Tables 3,4 in Appendix 3.

Table 3 shows that the efficient risk-dominant equilibrium is almost exclusively chosen by

the dynamics. Only one simulation converges to the inferior equilibrium. In Table 4 the

inefficient risk-dominant equilibrium is chosen much more often than the efficient one. The

results suggest that the risk-dominance, rather than efficiency, is the most important

criteria in choosing among equilibria by the dynamics. This result is in line with results in

Kandori et al (1993) and Young (1993) where different dynamics also favor risk-dominant

equilibrium.

Other games

Our main hypothesis is that the more "central" Nash outcome is more likely to observe

under the dynamics. 2x2 games are of no use in this respect since they have at most two

pure Nash equilibria, hence both are in a sense extreme.

We shall show that if the game possesses several equilibria then the “egalitarian” one, that

is the one with more or less equal payoffs for the players, has high chances of being

chosen in the medium run. The intuition for this is since the learning is simultaneous for

both players they are pressing each other and more likely to end up in a compromise.

To illustrate this point, we show the results of simulations of the dynamics for several

games. The first two games, the ultimatum game and the best shot game were analyzed in

Roth and Erev (1995). The third game, the oligopoly leadership game, has the same

structure as the best shot game but a different set of equilibria and through comparison of

these games one can see that the “egalitarian” equilibrium indeed has almost the same

probability of being chosen in the long run as the subgame perfect equilibrium. The fourth

game considered is a kind of "property" game. This game was analyzed in Young (1996).
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The ultimatum game

Two players are to divide 10$. The first player can demand x∈{1,...,9} for himself and,

accordingly, leave 10-x to the second player. The second player can then accept or reject

this demand. We assume that each player has 9 strategies {1,...,9}. The strategy j for

player 1 means that he demands j$ for himself and leaves (10-j)$ for the second player.

The strategy k for player 2 means that she accepts any demand ≤ k$, which leaves

≥ (10-k)$ for her, while she rejects any demand >k$. Thus the strategy set for player 2 is

restricted to monotone strategies, that is the strategies where the player accepts a demand

m > k but rejects a demand m ≤ k are ruled out. The game proceeds as follows. Each

player randomly chooses a strategy according to the vector of propensities. Let player 1

choose strategy j and player 2 choose strategy k. If j ≤ k, the demand of player 1 is

accepted and the players get j$ and (10-j)$ correspondingly. If j > k the demand is rejected

and both get 0$. Then the propensities of played strategies are updated according to the

dynamics. Note that the game is essentially a game in extensive form, though we analyzed

it in normal form. The first player knows whether his current demand is accepted or

rejected but does not know what would happen with greater or smaller demands. Our

model allows us to analyze the game since the updating depends only on obtained payoff

and does not depend on the payoffs that might be obtained. A pair of strategies ( j,j ) is an

equilibrium ∀ j ∈ {1,...,9}. ( 9,9 ) is the subgame perfect equilibrium.

Table 5 in Appendix 3 shows the results of the simulations for 100000th period. It reports

the numbers of simulations which have the probability of playing a particular pair of

strategies larger than 0.5. Not all the simulation converge to the subgame perfect

equilibrium (9,9). At period 100000 the equilibrium (8,8) managed to attract the largest

number of simulations, while one simulation converges even to (5,5). The average payoff

of about 7 for Player 1 also shows that there are some money left on the table.

Roth and Erev (1995) use experiments for ultimatum game. Their data also favor more

“egalitarian” equilibria more than the subgame perfect one. The mean demand in the

experiments was between 5 and 6. From the point of view of the dynamics, a high demand

can yield 0 if rejected. A modest demand has smaller probability to be rejected because of

monotonicity of the strategies of Player 2. More often it yields a positive amount, thus
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reinforcing itself. Though a high demand reinforces itself better, it happens less often,

hence it is not clear a priori whether the subgame perfect equilibrium will be chosen. A

model of noisy replicator dynamic and extended discussion about the convergence to a not

subgame perfect equilibria in the Ultimatum Game can be found in Binmore et al (1995).

The best-shot game

There are 2 players in the game, each has 3 strategies {s1,s2,s3}. The first player plays first,

the second player observes first player’s move and plays her strategy. Thus the second

player has 33 = 27 strategies in normal form corresponding to the game. However, the

payoffs can be described by the 3×3 bimatrix since the payoffs depend only on strategy of

the first player and the answer on this strategy by the second player irrespective to what

she would do in response to other strategies of Player 1.

s1 s2 s3

s1 0, 0 1.95, 0.31 3.7, 0.42

s2 0.31, 1.95 0.31, 0.31 2.06, 0.42

s3 0.42, 3.7 0.42, 2.06 0.42, 0.42

The underlying story for the game is that the players choose their level of provision of a

public good. The cost of provision is an increasing function of the quantity provided. The

benefit from the good is an increasing function of the maximum between two players’

levels of provision. The strategies s1,s2,s3 correspond to the low, medium and high level of

provision. The numbers are taken from Roth and Erev (1995) who report about an

experiment on an extended version of this game and about simulations of various versions

of the dynamics.

Since the first player chooses first, the subgame perfect equilibrium strategy for him is to

choose s1, and for the second player to choose s3 if the first player played s1, and to choose

s1 if the first player played s2 or s3. Denote this strategy of Player 2 as s3s1s1. Then the

subgame perfect equilibrium can be denoted by (s1, s3s1s1). The set of all Nash equilibria in

the game consists of (s1, s3xx), where x stands for any strategy s1,s2,s3 (the above

mentioned subgame perfect one belongs to this subset) and (s3, s1s1s1), (s3, s1s2s1). Note
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that in the first subset the payoffs are 3.7 for Player 1 and 0.42 for Player 2, while in the

second one the payoffs are inverse, 0.42 for Player 1 and 3.7 for Player 2. Thus there is no

“egalitarian” equilibrium in the game.

The averages of probabilities of strategies over a hundred simulations are reported in

Table 6 in Appendix 3. It is clearly seen that the set containing the subgame perfect

equilibrium (s1, s3xx) is chosen with probability indistinguishably close to 1. The results do

not differ much from those reported in Roth and Erev (1995, Table II).  Player 1 learns to

choose strategy 1 rather quickly. Learning of Player 2 is slower in the beginning since she

has much more strategies to choose from but it catches up towards period 100000. The

game quickly converges to the set of equilibria (s1, s3xx). The distribution among xx is

such that (s1, s3s1s1) is likely outcome though others are also present since the second

player does not have much opportunity to learn what she should play in respond to s2 and

s3.

A possible explanation for finding the subgame perfect equilibrium is that the difference in

payoffs between two equilibria is rather high for Player 1 and he learns not to play the

other equilibrium quickly. This differs from the ultimatum game where the difference in

payoffs from a demand of, say, 6 and 7 is not big if they are both accepted and the

difference is high if 7 is rejected. The best-shot game does not possess such “egalitarian”

equilibria, hence the convergence is to the subgame perfect one. In the next subsection we

consider a game with the same structure as the best-shot game but with an “egalitarian”

equilibrium.

The oligopoly leadership game

The structure of this game is as in the best-shot game. There are 2 players, one of which

moves first. However, the interpretation of the strategies is different and the payoffs are

different too. The players are firms; they choose levels of production. Firm 1 chooses first,

Firm 2 follows. The price for the good produced by the firms and therefore the profit

received by the firms depend on the aggregate level of production. However, the demand

function is not linear as it is usually assumed, hence the price does not depend linearly on

the quantity. By choosing the appropriate demand and cost functions (quadratic in the



16

total output and in firm’s own output correspondingly) the following payoffs can be

obtained.

s1 s2 s3

s1 1,1 1,2.3 1,4

s2 2.3, 1 2,2 0.6, 0.3

s3 4, 1 0.3, 0.6 0, 0

(the magnitude of the payoffs has the same order as in the best-shot game)

Interpreting strategies s1,s2,s3 as low, medium and high level of production

correspondingly, one can see that the subgame perfect equilibrium strategy for Firm 1 is to

capture the market by choosing high level of production s3. Firm 2 is then left with a small

remaining fraction of the market. The payoffs are 4 for Firm 1 and 1 for Firm 2. These

strategies correspond to the subset of the Nash equilibria of the game (s3, xxs1), where

again x denotes any of the strategies s1,s2,s3. The equilibrium (s3, s3s2s1), belonging to this

subset, is subgame perfect. The game, however, possesses two other types of Nash

equilibria. One of them, as in the best-shot game, is the inversion of the subgame perfect

equilibrium, namely (s1,s3s3s2) and (s1,s3s3s3) with payoffs 1 for Firm 1 and 4 for Firm 2.

The new type of Nash equilibria is the “egalitarian” one: (s2, xs2s2) and (s2, xs2s3), where

payoffs are 2 for both firms. We argue that this equilibrium does not have much fewer

chances of being chosen in the medium run than the subgame perfect equilibrium. Table 7

of Appendix 3 shows the averages of probabilities of strategies over a hundred

simulations.

From the table it can be seen that the "egalitarian" strategy (s2,s2) is learnt faster than the

subgame perfect one. At period 1000 the equilibrium (s2,s2) has larger probability of being

played while with time the subgame perfect one regain its strength. At period 10000 the

probabilities of playing both strategies s2 and s3 for Player 1 are equal and at period

100000 the subgame perfect equilibrium strategy s3 finally gets larger probability. If the

“egalitarian” one fails to gain the lion’s share in probability distribution in the beginning

then the subgame perfect equilibrium can regain the probability in later periods. However,
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the “egalitarian” equilibrium succeeds in being selected in about one third of the

simulations. 23 simulations have the probability of playing this equilibrium after 100000

periods larger than 0.5. For the set of equilibria containing subgame perfect one the

number of such simulations are 45. This shows that the "egalitarian" equilibrium has not

much fewer chances to be selected in the medium run. And since the subgame perfect

equilibrium (s3, s3s2s1) also has s2 as response to s2, the early recognition of the

"egalitarian" equilibrium helps to discriminate the subgame perfect equilibrium among the

set (s3, xxs1). The dynamics converges to the subgame perfect equilibrium in 2/3 cases

when it converges to this set.

The oligopoly leadership game, as well as the ultimatum game, possesses an equilibrium

that lies between two extreme equilibria where almost all payoff goes to one player. In this

“intermediate” equilibrium the payoffs are divided more or less equally. This is why we

call it the “egalitarian” equilibrium. In distinction to these two games, the best-shot game

does not possess such an equilibrium and the subgame perfect one gains dominance very

easily. The implication of this observation is that the selection of equilibria by the

dynamics presented in the medium run may depend mainly on the structure of the set of

Nash equilibria of the game. If the game has only “extreme” equilibria, the players (or at

least one of them) quickly learn to play the subgame perfect one. A possible explanation

might be that it is too risky for the other player to insist on the other extreme, therefore

she has to allow the unfavorable for her subgame perfect outcome. However, in the

presence of an equilibrium between those extremes, it is not easy for them to find out the

subgame perfect one. My conjecture is that this is an inherent feature of the dynamics that

an equilibrium between extreme equilibria has rather big chances to attract the process in

the medium run, though in the long run a subgame perfect equilibrium prevails. However,

we have no proof of that at hand. More work has to be done to derive such a proof.

The "property" game

In analysis of above games the "egalitarian" equilibrium was not subgame perfect while

there was a subgame perfect equilibrium which regains the probability though the

"egalitarian" equilibrium did not perform badly. In this subsection we consider a game
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where all three equilibria seems equally plausible and we cannot give preference to one of

them from conventional refinement criteria. The game has following payoff matrix

s1 s2 s3

s1 1, 1 1, 1 4, 2

s2 1, 1 3, 3 1, 1

s3 2, 4 1, 1 1, 1

The story is that suppose two people divide a property of 6 (in a case of divorce, for

example). They can agree on three outcomes (4,2),(3,3)(2,4). In the case of disagreement

they both get payoff of 1. The equilibria in the game are (s1,s3),(s2,s2),(s3,s1). The second

one is "egalitarian" one in the sense that it has equal distribution of payoffs while two

others has one player getting more than the other.

The results of the simulations are reported in Table 8 of Appendix 3. The simulations

show that starting from equal initial propensities for all three strategies, the middle

equilibrium is chosen more often than the other two though all three equilibria are chosen

in the long run. The probability of playing the pair of strategies (s2,s2) is larger than the

probability of playing the other two equilibria and in larger number of simulation the

dynamics converges to the middle equilibrium rather than to the other two as it is seen

from "Modes" column. The explanation for this is that if we calculate the expected

probabilities of playing the equilibria for period 2 (for period 1 they are all equal since the

initial propensities are equal) then the expected probability of playing the middle

equilibrium is slightly higher than for other two equilibria. Hence in expectations the

dynamics should go to the "egalitarian" equilibrium. Due to the noise other equilibria also

have a chance to be selected and it is confirmed from simulations. Our hypothesis about

the likeliness of the "egalitarian" equilibrium in some games is supported too. Another

supporting paper on this subject is Young (1996), where the finding for pure coordination

games is similar under a different dynamics.
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5 Conclusion

The simple dynamics captures certain aspects of human learning such as the “Law of

Effect” and the “Power Law of Practice”. Hence it may describe the behavior of humans

in decision problems and games. The analysis for the case of one-player decision problem

shows that the dynamics selects the optimal strategy in the long run despite the fact that

the non-optimal strategy is also reinforcing. However, as it was shown, the speed of

convergence is slow. The speed of convergence for the dynamics seems to be dependent

on the difference in payoffs between the optimal and non-optimal strategies and on the

number of strategies. Since the speed is too slow to produce satisfactory results for the

medium run, we modified the dynamics such as there is a small probability of locking in an

inferior action but the speed of convergence is improved considerably. The speed of

convergence play a role for most real games. In principle chess can be solved explicitly but

we do not have all the time in the world just to play chess. Therefore we must sometimes

admit having non-optimality in moves. According to the average payoff criterion the best

model given the tradeoff between speed and convergence seems to be the model with

forgetting parameter.

Application of the dynamics for games yields some interesting observations. Though it

seems that in the long run the dynamics will eventually converge to the subgame perfect

equilibrium, in the medium run it sometimes fails to find an equilibrium at all (as in the

ultimatum game) or it converges to an equilibrium that is not subgame perfect. This

equilibrium often has the feature to be “in the middle” of the set of Nash equilibria for the

game (as in the oligopoly leadership game and in the property game) and gives more or

less equal payoffs for both players. Such an equilibrium can be called “egalitarian”. In the

absence of a suitable “egalitarian” equilibrium the dynamics finds the subgame perfect

equilibrium and rather quickly.

The paper analyzes the dynamics formally only for the case of one-player decision problem

and gives some examples how it can perform in games. The direction for further research

are establishing the analytical results for games since simulation studies can give only

partial insight onto the problem. More games with various properties should be analyzed
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to establish certain features of the dynamics. Some extensions of the basic model are

possible. An interesting extension is to games with negative payoffs or, equivalently, a

dynamics where not all strategy profiles are reinforcing. If the players know the game or

the decision problem, the assumption that all strategies are reinforcing seems not very

natural since the players may hope to obtain the highest payoffs. Also the assumption of

the fixed aspiration level can be relaxed though it may bring about the phenomenon of

“probability matching”, which is absent in the present model.
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Appendix 1

Proposition 3.3 In the no-normalization case the probability of playing the optimal
strategy converges to 1 almost surely.

Proof Notice that Q t m Q Q t Mt0 0+ ⋅ ≤ ≤ + ⋅  in this case. Then c1t ≤ Qt ≤ c2t with

m < c1. Then the dynamic is equivalent to the normalization case with ν = 1. According to
Proposition 3.2 the process then converges to the optimal action.

Proposition 3.4 In the no-normalization case with forgetting the probability of playing
non-optimal action in positive in the limit t→∞.

Proof The proof is along the lines of similar proof for normalization case given in Arthur
(1993). Notice that now we have Q0 + m Στ=1

t δτ ≤ Qt ≤ Q0 + M Στ=1
t δτ. Calculating the

sum of geometric series we get Q m Q Q M
t
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t
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, that is Qt has the

order of (1-δt).
To proof the non-optimality consider the event that an inferior action j is triggered from
time t. Denote this event as Dt. We need to show that Prob{Dt} = Πt
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t > 0. Let
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t. Since 0 < aj
t < 1 the convergence of Πt
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t) is necessary from the

convergence of Σaj
t. From our dynamic equation for probabilities pt+1 = pt + at(bt - Btpt),
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. It means that aj
t decreases faster

than a geometric series and therefore converges. Therefore the probability of playing the
inferior action j from time t is positive and the proposition is proven.
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Appendix 2

In the row labeled 'Probability' the probability of the optimal action is given; in the row
labeled 'Mode' the number of simulations where the probability of the optimal action is
highest and larger than 0.5; the row labeled 'Av.Payoff' gives the average payoff up to time
t. The column 'ν = 0' is for normalization case with ν = 0, the column 'no-norm' for no
normalization case, and the column 'forgetting' for the case with δ = 0.999.

Table 1. Averages of the probability of playing the optimal strategy and the numbers of simulations where

the mode is the optimal strategy and the average payoff for problem 1)

  Time ν=0 no-norm forgetting

300 Probability 0.998 0.764 0.768

Mode 100 99 97

Av. Payoff 2.896 2.706 2.701

10000 Probability 1 0.914 0.992

Mode 100 100 100

Av. Payoff 2.997 2.879 2.937

100000 Probability 1 0.959 1

Mode 100 100 100

Av.Payoffs 2.999 2.939 2.994

100 simulations, q0=(15,15)

Table 2. Averages of the probability of playing the optimal strategy and the numbers of simulations where

the mode is the optimal strategy and the average payoff for problem 2)

  Time ν=0 no-norm forgetting

300 Probability 0.841 0.511 0.532

Mode 85 75 76

Av. Payoff 2.812 2.630 2.634

10000 Probability 0.860 0.687 0.904

Mode 86 90 100

Av. Payoff 2.926 2.777 2.863

100000 Probability 0.860 0.774 1

Mode 86 97 100

Av.Payoffs 2.930 2.846 2.983

100 simulations, q0=(10,10,10)
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Appendix 3

The column 'Probabilities' reports the probabilities of equilibria, (s1,s1),(s2,s2), respectively.
The column 'Modes' reports the number of simulations where the probability of the
equilibrium is larger than 0.5. The column 'Average Payoffs' gives average payoffs up to
time t for players 1,2 respectively.

Table 3. Averages of the probability of playing the equilibrium, the numbers of simulations where the

mode is on the eqilibrium and the average payoffs for Game 1.

  Time Probabilities Modes Average Payoffs

300 0.638, 0.062 79, 1 2.136, 2.136

1000 0.816, 0.023 93, 1 2.410, 2.410

10000 0.990, 0.010 99, 1 2.882, 2.882

100000 0.990, 0.010 99, 1 2.979, 2.979

100 simulations, q0=(15,15)

Table 4. Averages of the probability of playing the equilibrium, the numbers of simulations where the

mode is on the equilibrium and the average payoffs for Game 2.

  Time Probabilities Modes Average Payoffs

300 0.150, 0.482 7, 52 1.866, 1.862

1000 0.120, 0.620 9, 69 1.893, 1.887

10000 0.106, 0.877 11, 88 2.028, 2.027

100000 0.120, 0.880 12, 88 2.110, 2.109

100 simulations, q0=(15,15)
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For the ultimatum game we report the results only for 100000th period. The number in
cell (i,j) represents the number of simulations where the average probability of playing
pair (i,j) is highest and larger than 0.5.

Table 5. Numbers of simulations with mode on pairs of strategies and the average payoffs for Ultimatum

game.

1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 4 1 2 0

7 0 0 0 0 0 0 10 6 12

8 0 0 0 0 0 0 0 18 15

9 0 0 0 0 0 0 0 0 11

100 simulations, q0=(10,10,10,10,10,10,10,10,10)

Average payoffs: Player 1: 7.141
Player 2: 2.789

For the best shot and oligopoly leadership games the results are reported in following
manner. For Player 1 the probabilities of playing each of the three strategies are reported.
For Player 2 the probabilities of answers to given strategy of Player 1 are reported.

Table 6. Averages of probabilities for the best-shot game

Time s1 s2 s3 Av.Payoffs

1000         Player 1 0.951 0.036 0.009 2.151

                 Player 2 on s1 0.127 0.331 0.538 0.506

10000        Player 1 0.999 0.000 0.000 3.195

                 Player 2 on s1 0.000 0.058 0.941 0.411

100000      Player 1 1 0 0 3.645

                 Player 2 on s1 0 0 1 0.419

100 simulations;  q0=(10,10,10) for both players
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Table 7. Averages of probabilities for the oligopoly leadership game

Time s1 s2 s3 Av.Payoffs

1000         Player 1 0.052 0.567 0.380 1.975

                 Player 2 on s2

                                                on s3
0.164
0.467

0.743
0.306

0.092
0.226

1.445

10000        Player 1 0.000 0.500 0.500 2.621

                 Player 2 on s2

                               on s3

0.068
0.567

0.893
0.220

0.037
0.175

1.489

100000      Player 1 0 0.420 0.580 3.079

                 Player 2 on s2

                               on s3

0.069
0.623

0.897
0.176

0.034
0.167

1.436

100 simulations;  q0=(10,10,10) for both players

For the Property game the set of equilibria is (s1,s3),(s2,s2),(s3,s1). The numbers in the table
are given correspondingly in this order of equilibria. 'Probabilities' are the probabilities of
the equilibria, 'Modes' are the numbers of simulations where the probability of playing an
equilibrium more than 0.5. 'Average Payoffs' gives average payoffs up to time t for players
1,2 correspondingly.

Table 8. Averages of the probability of playing the equilibrium, the numbers of simulations where the

mode is on the equilibrium and the average payoffs for the "property" game.

  Time Probabilities Modes Average Payoffs

300 0.113, 0.191, 0.143 2, 12, 4 1.777, 1.831

1000 0.133, 0.260, 0.175 8, 29, 18 1.920, 1.993

10000 0.289, 0.406, 0.284 30, 41, 29 2.612, 2.651

100000 0.300, 0.410, 0.290 30, 41, 29 2.969, 2.955

100 simulation, q0=(10,10,10)
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