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Abstract

This paper extends the definition of the nucleolusto stochastic cooperative games,
that is, to cooperative gameswith random payoffsto the coalitions. It isshown that the
nucleolusis honempty and that it belongsto the core whenever the core is nonempty.
Furthermore, it is shown for a particular class of stochastic cooperative games that
the nucleolus can be determined by cal culating the traditional nucleolusintroduced by
Schmeidler (1969) of a specific deterministic cooperative game.
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1 Introduction

In stochastic cooperative games, the payoffs individuals can obtain by cooperating with
each other are random variables instead of deterministic amounts. Moreover, the players
are not alowed to await the realizations of these payoffs before they decide upon an
alocation of these payoffs. These kinds of cooperative games fall outside the scope
of traditional (deterministic) cooperative game theory. Models that can deal with such
situations were introduced by Charnes and Granot (1973) and, more recently, by Suijs,
Borm, De Waegenaere and Tijs (1995). The major difference between these two modelsis
that the first model assumes risk neutral behaviour of al the players while the latter model
incorporates risk neutral as well as risk averse and risk loving behaviour of the players.
This paper introduces a nucleolus for the games introduced by Suijs et al. (1995).

The nucleolus, a solution concept for deterministic cooperative games, originatesfrom
Schmeidler (1969). This solution concept yields an allocation such that the maximal excess
of the coalitionsis minimized. The excess describes how dissatisfied a coalition iswith the
proposed allocation. The larger the excess of a particular allocation, the more a coalition
is dissatisfied with this allocation. For Schmeidler’s nucleolus the excess is defined as the
difference between the payoff a coalition can obtain when cooperating on its own and the
payoff received by the proposed allocation. So, when less is alocated to a coalition, the
excess of this coalition increases and the other way around.

Since the nucleolus depends mainly on the definition of the excess, other nucleoli are
found when different definitions of excesses are used. Such a general approach can be
found in Potters and Tijs (1992). They introduced the general nucleolus as the solution that
minimizes the maximal excess of the coalitions, using generally defined excess functions.

A similar argument holds for stochastic cooperative games. If we can specify the ex-
cesses we can define a nucleolus for these games. Unfortunately, this is not that smple.
Defining excess functions for stochastic cooperative games appears to be not as straight-
forward as for deterministic cooperative games. Indeed, how should one quantify the
difference between the random payoff a coalition can achieve on its own and the random
payoff received by the proposed allocation when the behaviour towards risk can differ



between the members of this coalition? Furthermore, the excess of one coalition should be
comparable to the excess of another coalition.

Charnes and Granot (1976) introduced a nucleolus for cooperative gamesin stochastic
characteristic function form. There, the excess was based on the probability that the payoff
acoalition can obtain when cooperating on its own, exceeds the payoff they obtained in the
proposed allocation. Indeed, it isquite reasonable to assume that acoalition isless satisfied
with the proposed allocation if this probability increases.

For the excess defined in this paper we interpret the excess of Schmeidler’s nucleolus
in adightly different way. Bearing the conditions of the core in mind, this excess can be
interpreted as follows. Given an alocation of the grand coalition’s payoff we distinguish
two cases. In thefirst case, a coalition wants to leave the grand coalition. Then the excess
equals the minimal amount of money a coalition needs on top of what they already get such
that this coalition is willing to stay in the grand coalition. In the second case, a coalition
has no incentive to leave the grand coalition. Then the excess equals minus the maximal
amount of money that can be taken away from this coalition such that this coalition still has
no incentiveto leave the grand coalition. Thisinterpretationis used to define the excess for
stochastic cooperative games.

The paper is organized as follows. Section 2 consists mainly of preliminaries. It
briefly recalls the definition of a cooperative game with stochastic payoffs. Furthermore
it states the assumptions we make on the preferences of the players and it introduces the
necessary definitions and notations. Then in Section 3 the excess functions are introduced
and, subsequently, a nucleolus. Moreover, it is shown that this nucleolusis awell defined
solution concept in the sense that it alwaysyields anonempty subset of alocations. Section
4 showsthat the nucleolusisasubset of the core whenever the coreisnonempty. Moreover,
it shows that for the class of stochastic cooperative games introduced in Suijs and Borm
(1996) the nucleolus can be determined by cal culating Schmeidler’s nucleolus of aspecific

deterministic cooperative game.



2 Stochastic cooper ative games

A stochastic cooperative game is described by atuplel’ = (N, (Xs)scw, ( 5,)ien). Here,
the set of players is denoted by N. The payoff a coalition S € N can achieve by
cooperating is denoted by arandom variable X¢. So, thereisaprobability space (2, H, P)
such that for each S C N the payoff function Xg : 2 — R is measurable, that is,
Xg'(B) € H for each element B of R, the Borel o-algebra. Since codlitions are not
allowed to await the realization of X g before they decide on the allocation, the random
payoff X s hasto bealocated. An allocation of the random payoff X among the members
of S isdescribed by apair (d,r) € H® x A, where H® = {d € R®|Y;csd; < 0} and
AS = {r € R¥|Vies : i > 0, ;cs7: = 1}. The random payoff to player i € S then
equalsd; +r; Xs. So, r alocatesfractionsof the random payoff X s to themembersof .S and
d denotes the transfer payments. Note that these transfer payments need not be efficient.
Moreover, it should be noted that for notational reasons the definition of an allocation used
in this paper differs from its original definition in Suijs et al. (1995). Originally, d was
an alocation of the expected payoff E(Xg) and r was an alocation of the residua payoff
Xs — E(Xg). Finaly, notethat the random payoff d; + r; Xs to player i € S ismeasurable
with respect to the probability space (€2, H, P). Next, define

LT)={d+rXs|lde R,r€]0,1],5 C N}. (1)

Then L£(T") isthe set of all random payoffsplayeri € N canreceiveinthegamel’. Finaly,

%, arethe complete and transitive preferences of player i over the set £(T').

Examples of situations where this model may apply appear in insurance. Individuals
facing lossesthat can occur to theminthefuture haveto decide now if they want aninsurance
for theselossesor not and, if so, which premium they want to pay for it. Furthermore, groups
of individuals may benefit from taking a collective insurance instead of many individual
ones. Another example appears when considering linear production games with random
prices. Here, a coalition has to decide which goods to produce given the resources they

posses without exactly knowing the revenues that are generated by these goods.



In the remainder of this paragraph we go through some necessary preliminaries. There-
fore, consider again the set £L(I"). Denote by F'x the distribution function of the random
variable X € L(T"). Thus, Fx(t) = P{w|X(w) < t}) for dl t € R. Next, define
F() = {Fx|X € L(I')} to be the set of distribution functions corresponding to the
random payoffsin £(I'). Now, let (F})ren be a sequence in F(I'). Then the sequence
(Fr)ren Weakly convergesto F € F(T'), denoted by Fy, = F, if limy .o Fi(t) = F(t)
foral t € {t' € R|F iscontinuousint'}. Subsequently, we say that a sequence (X )ken
of random variables converges to the random variable X if and only if the corresponding
sequence (Fy,)ren Of probability distribution functionsweakly converges to the probability
distribution function £ of X. Furthermore, let (F(T"), p) be ametric space with

p(F,Q) = / O:o \F(t) — G(t)|e M dt
foral F,G € F(I'). The following two results can be found in Feller (1950) and Feller
(1966).

Proposition 2.1 F}, = F if and only if limy, o p(F, F) = 0.

Proposition 2.2 Let (d*)zen and (%) zen be convergent sequences in R with limits d and
r, respectively. Take X € L(I"). Denote by F' the distribution function of d + X and by
F;, the distribution function of d* + r*X for all k € IN. Then F}, 5 F.

This proposition has the following implication which will be frequently used in the
remainder of this paper. Let asubset O C F(I") be called open if for each F' € O there
exits ¢ > 0 such that {G € F()|p(F,G) < €} C O. Furthermore, let (d*);en and
(r*)ken be convergent sequences in IR with limits d and r, respectively. Take X € £(T')
and denote by F' and Fj, the distribution function of d + X and d* + r* X, respectively.
Next, let O C F(I') be an open set such that F' € O. Proposition 2.2 and the definition of
an open subset then imply that there exists k° such that £}, € O for al k& > i°.



For the introduction of a nucleolus we focus on cooperative games with stochastic
payoffsI' = (NN, (Xs)scw, ( &;)ien) Where the preferences of each player satisfy the

following additional conditions:

(C1) continuity, i.e., {Fx € F(I')|X x,Y} and {Fx € F(I')|X %,Y} areclosed setsin
(F(T),p) foral Y € £(T), 2

(C2) forany X,Y € L(T) thereexistd,d € Rsuchthat X +d <; Y <; X +d,

(C3) foral X € L(I') and &l d > 0 wehavethat X + d >-; X.

Example 2.3 Let the preferences 5, with a; € (0,1) be suchthat X %, Y if and only
if ul = sup{t|Fx(t) < a;} > ul := sup{t|Fy(t) < a;}, where u denotes the o;-
guantile of X. This type of preferences may appear in insurance problems. They are
used by insurance companies if the premium is determined on the basis of the percentile
principle. This type of preferences satisfies conditions (C1) - (C3). To see this, note that
uditriX = d; +ru,. Then,itisclearthat =, satisfies(C2) and (C3). For continuity, take
Y € L(I'). We have to show that the set {X € L(I')|X &, Y} isaclosed set. Therefore,
let (df + ;X )ren be aconvergent sequencein {X € L(T')|X x, Y} and denoteits limit
by X. So, df 4+ rfu}, > u} foral k € N. Itis sufficient to show that X x_ Y, i.e,
uf > ug Since the sequence converges we know from Lemma A.3 in Appendix A that
there exist convergent subsequences (d.);ex and (r!);en with limits d; and r;, respectively,
such that d; + ;X = X. Sinced, + riX % Y impliesd} + riu), > u}, it follows that

A

d; + ruX > uY . Consequently, we have that ul > u .

1Since the preferences are complete, an equivalent statement isthat { Fy € F(I')|X =; Y} and {Fx €

FI)|X <; Y} aeopensasin (F(I),p) foral Y € L(T).
?For ease of notation, the sets { Fix € F(I')|X 5, Y} and {Fx € F(I')|X %Y} are often denoted by

{X e L)X gY}and {X € L(T)|X ZY}, respectively.



Example2.4 Let % withb; € R describe the following preferences. For X, Y € £(I)
it holds that X %Y if E(X) + bi\/m > E(Y) + bi\/m, where E denotes the
expectation and V' the variance. This type of preferences can be found for example in
portfolio decision theory, where an agent’ s eval uation of aportfolio depends on the expected
revenue of the portfolio and the standard deviation of therevenue. These preferences satisfy
conditions (C1) - (C3). To see this, note that

holdsfor d; € R and r; € [0, 1]. Then the same arguments as in Example 2.3 can be used
to show that =" satisfies conditions (C1) - (C3).

Example2.5 Let x, describe the preferences of an expected utility maximizing player.
So, X z,Y if E(wi(X)) > E(u;(Y)), where E denotes the expectation and w; is the
monotonically increasing utility function of player i. These preferences satisfy conditions
(C1) - (C3)ifforadl S C N either Xg > 0or Xg < 0. So, therandom payoff of acoalition
cannot have both positive and negative realizations. From the fact that u; is increasing
it follows that (C2) and (C3) are satisfied. For the continuity condition (C1) we refer to
LemmaA.4in Appendix A.

In order to define a nucleolus one needs to specify for each coalition S C NV an excess
function E5. The excess function assigns to each allocation (d, r) of the grand coalition
N area number representing the complaint of coalition S. The larger the complaint of a
coalition the more this coalition is dissatisfied with the proposed allocation. For the excess

function introduced in this paper we need the following notation. Define
IS(P) = {(d, T‘) S RS x RS|V¢€S cd; +1r; Xs hiX{i}},

asthe set of possibly nonfeasibleindividually rational alocationsfor coalition S. Here, an
alocation (d,r) € Ig(T") iscalled feasibleif >, s d; < 0. Furthermore, define

IRs(T) = {(d,r) € Is(T)|>_d; <0},

i€S



asthe set of feasible individualy rational allocations for coalition S and
POs(T) ={(d,r) € IRs(D)| A errsmVies : d; + 1 Xs =i di + 1 Xs},

as the set of feasible Pareto optimal allocations for S. Note that assumption (C3) implies
that > ,csd; = 0 whenever (d,r) € POg(I"). Finaly, we make another assumption,

namely,
(C4) Ig(I') #(fordl S c N.

Note that this assumption is satisfied if I" is superadditive®. Moreover, it should be noted
that a coalition S is unlikely to be formed when I5(I") = (). Sincein that case for every
alocation of X5 thereisat least one member of S whose payoff is not individually rational.
Hence, he would be better off by leaving coalition S and form a coalition on his own.
Finally, denote by CG(NV) the class of all cooperative games with stochastic payoffs with
player set NV satisfying conditions (C1) - (C4).

For gaining a clearer insight into the situation and the (forthcoming) mathematics in
particular, we make use of a simplified graphical representation of the problem. At the
moment this might seem a bit overdone, but for the remainder of this paper these figures
might turn out to be very helpful. The notions introduced in the preceding paragraph are
illustrated in Figure 1.

Figure 1 represents acooperative game with stochastic payoffswith two expected utility
maximizing players. The axes represent the utility levels of the players. For simplicity,
we have assumed that payoffs are individually rational if and only if the corresponding
expected utility is greater than or equal to zero. So, the set I5(T") is represented by the
positiveorthant. Furthermore, theset 7 R¢(I") of individually rational allocationsis depicted
by the shaded area, and the set POg(T") of Pareto optimal alocations is depicted by the

3A gameTl = (N, (Xs)scn, ( %, )ien) iscaled superadditiveif for al disunct S, T C N thefollowing
statement is true. For each alocation (d°, %) of X5 and each alocation (d7,r7) of X7 there exists an
alocation (d, r) of Xsur suchthat d; +r; Xsur 5,d5 +rf Xg forali € Sandd; +r; Xsur z,dF +r] Xs
fordl i € T. Sowhatever thealocation of Xg and Xt are, thereisaways an alocation of X g7 such that

al members of S U T are (weakly) better off.
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FIGURE 1: Individually rational and Pareto optimal allocationsin atwo-player example.

bold printed curve. Finally, note that this and the forthcoming figures do not arise from a
concrete example.

InFigure 1 both 7 R¢(T") and POg(T") are compact subsets. The following propositions
show that this holds in general for the class CG(NV) of cooperative games with stochastic

payoffs.

Proposition 2.6 I Rs(I") isacompact subset of Is(I") for each coalition S C N.

PROOF: See Appendix B. O

Proposition 2.7 Theset of Pareto optimal alocations POg(I') isacompact subset of I (I")
for each coalition S C N.

PROOF: See Appendix B. O
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Furthermore, we need to consider the following sets. Definefor each S ¢ N
PDS(F) = {(d, T‘) S IS(F)|EI(d’,r’)€POS(F) v’iGS . d,IL -+ T;XS hz dz + T,LX}

as the set of (possibly nonfeasible) allocations that are (weakly) dominated by a Pareto

optimal allocation, and
NPDs(T) ={(d,r) € Is(T)| Barepogm) Vies : d; + i Xs o, di + 1:.X}

as the set of (possibly nonfeasible) allocations that are not dominated by Pareto optimal
alocations. Note that I Rs(I') € PDg(I'). The reverse, however, need not be true, asthe

next example shows.

Example 2.8 Consider the following two player example. Let X be such that — X is
exponentially distributed with expectation equal to 1 for all S ¢ N. Furthermore let
players 1 and 2 be expected utility maximizers with utility functionsu, (¢) = —e %" and
us(t) = —e 2% respectively. Then E(ui(di + 71 X(1,2y)) = —e’dlﬁ and E(uy(dy —
reX(19y)) = —¢ % . Analocation (d,r) € If15(T) is individually rational if
E(uy(di + 71X 2y) > —2and E(ug(dy + 72 X(12y)) > —1.25. Furthermore, (d,7*) is
Pareto optimal if and only if rj =1 and 5 =2 (see Wson (1968)). Now, consider the
dlocation (d,r) withd; = 0.1, d, = 0.1, y = 1and ro, = 0. Sinced; + dy > 0 this
alocation is nonfeasible. However, the Pareto optimal allocation (d*, r*) with df = —0.9,

dy; = 0.9, r7 =1 and r; =2 isfeasibleand preferred by both players. Indeed,
E(ui(d; + i X)) = —1.8820 > —1.9025 = E(u;(d; + 1 X1.2)))
and
E(us(ds + 15X 1)) = —0.9582 > —0.9753 = E(ug(dy + 12X (1.07)).

So even nonfeasible allocations can be Pareto dominated.

Thenext proposition statesavery intuitiveresult. Namely that for every Pareto dominat-
ed alocation (d, r) and every non-Pareto dominated allocation (d’, '), which al members
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of S weakly prefer to the Pareto dominated allocation (d, r), there exists a Pareto optimal
allocation such that for each player the Pareto optimal allocation isweakly better than (d, )
but weakly worse than (d', ).

Proposition 2.9 LetT' € CG(N). Take (d,r) € PDg(T) and (d,7) € NPDg(T) such
that d; + r; Xs 3,d; + 7:Xs foral i € S. Then thereexists (d, #) € POg(T") such that

di + 1 Xs =, di + 7 Xs 3, di + 7 X
foralie S.

PROOF: See Appendix B. O

A direct consequence of this proposition is that for each allocation (d,r) € IRg(T")
there exists a Pareto optimal allocation (d', ') such that d; + | Xs %, d; + r; X for al
i € S. Moreover, since Ig(I") is nonempty by assumption (C4) we have that for each
(d,r) € NPDg(T') thereexists (d', ") € POg(I") suchthat d; + 1, Xs <, d; + ;X for all
e sS.

Finally, weintroducethreemoresets. Therefore, let (d,r) € IRy (T") beanindividualy
rational allocation for the grand coalition N. Take S C N and define

Ws((d,r)) ={(d,r") € IRs(T)|Vies : d; + 7 Xs 3; di + 1. Xn'}
asthe set of individually rational allocationsfor coalitions .S which are weakly worse than
the payoff d; + r; Xy for every member of S, and,

Bs((d,r)) ={(d',r") € IRs(T")|Vses : d; + riXs x5, di + i Xn}
as the set of individually rational allocations for coalition S which are weakly better than
the payoff d; + r; X v for every member of S. Furthermore, define

PO5((d,r)) = (Ws((d, 7)) U Bs((d,r))) N POs(I),

asthe set of Pareto optimal allocations for coalition S which are either weakly worse than
d; + r; X for al members of S or weakly better than d; + r; Xy for al members of S.
These three sets areillustrated in Figure 2. Notethat Bg((d, r)) can be empty.
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FIGURE 2. Examples of Ws((d, 7)), Bs((d,r)) and PO%((d,1)).
3 A nucleolusfor stochastic cooper ative games

With the definitions and notions introduced in the previous section we can now define
an excess function and, consequently, a nucleolus for cooperative games with stochastic
payoffs. Theexcessfunction Es : TRy(I') — R of codltition S is defined asfollows. Take
(d,r) € IRN(T). Then the excessfor coalition S is defined by

ES((d, T‘)) = {Z 5i|vies : 51 € Rand d; + T;XS ~; dl +r XN + 51}

(d/,w)erglo%((d,r)) =
For an interpretation of the excess, let usfocus on the core conditions. So, given a proposed
alocation (d, r) does acoalition S have an incentive to |eave the grand coalition or not.
First, consider again the excess as used in Schmeidler (1969). There, the excess can
be interpeted as the minimum amount of money a coalition needs on top of what they
already receive from the proposed allocation such that they are indifferent between staying
in the grand coalition and leaving the grand coalition. This interpretation is now applied
to stochastic cooperative games. For this, note that given an allocation (d,r) € IRy(T)
acodition S is indifferent between staying in the grand coalition NV and leaving if there

existsanallocation (d', ') € PO%((d,r)) suchthat each playeri € S isindifferent between
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receiving the payoff d; + r; X s and the payoff d; + r; X . So, coalition cannot do strictly
better by leaving the grand coalition but if they do split off they can allocate their payoff in
such away that no member is strictly worse off.

Now, suppose that a codlition S has an incentive to part company with the grand
codlition N. So, there exists an alocation (d, 7) € IRg(I") such that each player i € S
strictly prefersthe payoff d; + 7; X to the payoff d; + r; X . To keep this codlition in the
grand coalition the payoff to the members of .S must increase. This can be done by giving
each member i € S a deterministic amount of money §;. Hence, their payoff becomes
d; + ; + r; X . The excess of coalition S then equals the minimal amount of money they
need so that they are just willing to stay in the grand coalition.

Next, suppose that a coalition S does not have an incentive to split off from the
grand coalition. Hence, this coalition receives more than they can achieve on their own.
Conseguently, one can decrease the payoff of each member i € S with a deterministic
amount §;. Then the excess equals the maximal amount of money that can be taken away
from this coalition such that they are still staying in the grand coalition.

Summarizing, the excess Es((d,r)) represents the minimum amount of money that
codition S needsin order to be satisfied with the allocation (d, ). Moreover, if (d,r) and
(d',r") aredlocationsof Xy suchthat each playeri € S prefersd; +r; Xy tod, +r. Xy then
Es((d,r)) < Es((d',7")). Hence, the excess decreases when each player i € .S improves
his payoff. So, in a specific way the excess Es((d, r)) describes how much coalition S is
satisfied with the alocation (d, ). Finaly, sinceal players preferencesare monotonically
increasing in the amount of money d they receive (see assumption (C3)) it is reasonable to
say that one coalition is more satisfied with a particular allocation than another coalition if
the first coalition needs less money to be satisfied than the latter one, or, in other words, if
the excess of the first coalition is less than the excess of the latter. This last observation
leads to the following definition of a nucleolus.

LetI' = (N, (Xs)scw, ( 5;)icn) beacooperative game with stochastic payoffsand let

Es((d,r)) = min {Z i| Vies o (dr")s ~i (d,7r); + 6} (2

(',7)EPOE((d) (%
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describe the excess of coalition S at allocation (d, ) € I Ry(I"). Next, denoteby E((d, r))
the vector of excesses at allocation (d, r) and let 6 o E((d, r)) denote the vector of excesses

ordered in adecreasing order. The nucleolus
N(T) of thegameI" € CG(N) isthen defined by

N(T) ={(d,r) € IRN (D) V(@ serryr : 0 0 E((d, 7)) <iea 00 E((d, 7))}, (3)

where <., isthelexicographic ordering. Next, we show that the nucleolusisawell defined
solution concept for the games discussed in this paper.

In proving the nonemptiness of the nucleolus N (T") we make use of the results stated
in Maschler, Potters and Tijs (1992). They introduced a nucleolus for a more a general
framework and showed that the nucleolus is nonempty if the domain is compact and the
excess functions are continuous. Thus, we have to show that I Ry(I") is compact and
that Es((d,r)) is continuousin (d,r) for each (d,r) € IRN(I") and each S C N. The
compactness of I Ry(I") followsimmediately from Proposition 2.6. The continuity proof
isabit more complicated and consists of the following parts.

First we show that PO%((d,r)) is anonempty compact subset of POg(I"). Then we
introduce the following multifunction

Es((d,r)) = {z; 0i| (@ ryepoy((dr) * d; + i Xs ~i di + 1 XN + 6i}.
S
Hence, Es((d,r)) = min&s((d,r)). Inthe next step we show that Es((d, r)) isacompact
subset of R for each allocation (d,r) € IRx(I'). This implies that the minimum in
(2) exists. Subsequently, we show that this multifunction is both upper and lower semi

continuous, which then impliesthat the excess function Eg is continuous.

Proposition 3.1 PO%((d,r)) isanonempty compact subset of POg(T").

ProoF: That PO%((d,r)) iscompact followsfrom thefactsthat W((d, r)) and Bs((d,r))
are closed by the continuity condition (C1) and POg(T") is compact. To show that it is

nonempty let us distinguish two cases.
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First, let Bs((d, r)) # (. Thenthereexists (d', ') € I Rs(I") suchthat d;+ 7, Xs x.d; +
riXg fordlie S. Since(d,r") € IRs(I") weknow from Proposition 2.9 that there exists
(d,7) € POg(T) suchthat d; + 7, Xs x,d, + r.Xs fordl i € S. Hence, (d,7) € POg(T)
and (d,7) € Bs((d,r)). Consequently, (d,7) € PO%((d,r)).

Second, let Bs((d,r)) = 0. Take (d,7) € Is(T') suchthat d; + 7 X ~; d; + r; Xy for
al i € S. From Bs((d,r)) = @ it followsthat (d,7) € NPDg(T'). Proposition 2.9 then
implies that there exists (d,7) € POg(T") such that d; + 7: X <3,d; + 74X forali € S.
Hence, (d,7) € Ws((d,r)) and, consequently, (d,7) € PO%((d,7)). O

Next, consider again the multifunction £s : I Ry (I')—>R defined by

Es((d,r)) = {D_ 6il3wmeprosar) : di + i Xs ~i di + 1 XN + 6i}.

i€S

Proposition 3.2 Let (d,r) € IRy(T'). Then £s((d,r)) isacompact subset of R.

ProOF: We have to show that £5((d,r)) isclosed and bounded. That Es((d,r)) is bound-
ed follows from the compactness of PO%((d,r)) and the fact that for each (d',7") €
PO%((d,r)) the number §; is uniquely determined by conditions (C1) - (C2). To see
that £s((d,r)) is closed, let (3;cs 0F)ren be a convergent sequence! in Es((d,r)) with
limit 3,c5 ;. We have to show that ;.46 € Es((d,r)). Therefore, let ((d*, 7))ren
be a sequence in PO%((d,r)) such that d¥ + 75 Xg ~; d; + 6% + r, Xy for al i € S.
Since PO%((d, r)) iscompact there exists a convergent subsequence ((d, 7));en with limit
(d,7) € PO%L((d,r)). Taked; € R suchthat d; + 7 Xg ~; d; + 6; + Xy forali € S.
Note that >;c5 6; € Es((d,r)). The proof is finished if we can show that 6; = ¢, for all
i € S. Therefore, lete > 0 and i € S. Define

Vi={Y e L(D)|d; +7:Xs — & < Y < d; +7: X5 +¢€}.

4Formally, it would be more correct to start with a convergent sequence (a*)en in Es((d,r)). Then
a* € Es((d,r)) and the definition of £ imply that there exist 6* such that d; + 0% + r; Xy ~; d} + i Xs
(i € S) for some (d',r") € PO%((d,r)) and 3", 6% = a*. Consequently, the sequence (a*)ycn can be
replaced by asequence (Y-, 65 )ren.
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Since V¢ is open by the continuity of x,, (d',7) — (d,7) and d; + 7, Xs € V¢ thereexists
Lf € Nsuchthat dl + 7' Xg € V# foral I > L. Thisimpliesthat d; + 6! + r, Xy € V¢

foral ! > L*. Sincee > 0 was arbitrarily chosen it follows that
lhm (dz + 55 + TﬁXN) =d; + 51 +r Xy € ﬂ5>0‘/;5.
— 00

Hence, d; + §; + . Xn ~; d; + 7 Xs. Since by definition it holds that d; + 7 Xg ~;
d; + 6; + r; Xy it follows by assumption (C3) that 6; = 6;. O

Lemma 3.3 £s((d, r)) isupper semi continuousin (d, ) for al (d,r) € IRy (T).

PROOF: Let ((d*,7%))ren be asequencein IRy (T') converging to (d,r). Take Y. 6F €
Es((dF,r*)) such that 3.4 6F converges to 3,.¢d;. For upper semi continuity to be
satisfied it is sufficient to show that 3,5 6; € Es((d, r)).

Firgt, take (d*,7) € PO%((d*,r*)) such that d* + 7 Xg ~; d¥ + 6% 4 r¥ Xy for
dl i € S. Since ((d*,7*))ren is a sequence in the compact set POs(T') there exists a
convergent subsequence ((d', #))ien with limit (d,7) € POg(T"). Moreover, it holds that
d; + 7 Xg ~; d; +6; + ;. Xy forall i € S. Toseethis, takee > 0 andi € S. Define

Ve={Y e L(D)|d; + 7 Xs — & < Y < d; +7:. X5 +¢€}.

Since V¢ is open by the continuity of o, (d',7) — (d,7) and d; + 7, Xs € V¢ thereexists
Lf € Nsuchthat dl + 7' Xg € V¢ foral [ > L. Thisimpliesthat d! + 6! + r! Xy € V¢
forall > L°. Sincee > 0 isarbitrary we have that

llim (di + 6!+ TiXN) =d; + 6 + riXn ~; di + T Xs.
—00

The proof isfinished if we can show that (d,7) € PO%((d,r)). Therefore, takee > 0
and define

We((d,r)) = {(d,7') € IRs(T)|Vies : &} + ri Xs 3,d; + 1:Xn + €},
B3((d,r)) = {(d,r") € IRs(T)|Vies : d; + 1 Xs x,di + 7: XN — €},
PO ((d,r)) = (Ws((d,r)) U Bs5((d,r))) N POs(T).
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FIGURE 3: A graphical representation of PO ((d,r)) and PO%((d', r")).

We refer to the left figure of Figure 3 for a graphical interpretation of these sets. Note
that Ws((d, 7)) = Ne>oW5((d, 7)), Bs((d,7)) = Ne=0B5((d, 7)) and POg((d, 7)) =
Ne>oPO% ((d, r)). Furthermore, define

Ve = {Y S L(F)SMGS cdi Xy —e =Y = di + i XN +€}.

Since V¢ is open by the continuity of x., (d',r') — (d,r) and (d; + riXn)ics € V°
there exists L¢ € IN such that (d' + r' Xy )ics € V© for al [ > L. This implies that
(d',r") € WE((d,r)) and (d',r") € B5((d,r)) for al I > L (see also theright figurein
Figure 3). Hence, Ws((d', ")) € Wi((d,r)) and Bs((d', 7)) € B&((d,r)) foral I > Le.
Consequently, we have for al [ > L¢ that PO%((d', ")) € PO ((d,r)). In particular, we
have (d', ) € PO%((d,r)) foral I > L*. Hence,

lim (d', ) = (d,7) € Neso PO ((d, 7)) = PO%((d,r)). 0

l—00

Lemma 3.4 £s((d,r)) islower semi continuousin (d, r) for dl (d,r) € IRyN(T).
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PrOOF: Let ((d*,7%))ren be asequence converging to (d,r) and let 3,5 6; € Es((d,7)).
To prove lower semi continuity it sufficesto show that there exists asequence (3;cq 0F ) ken
with Y. 0% € Es((d¥,r*)) for al k € IN such that 3,4 6F convergesto >, ¢ d;.

Firgt, note that since I Ry (I") iscompact and £ is upper semi continuous that

Es(IRN(T)) = UrerrymEs((d, 7))

is a compact subset of R. Second, note that if there exists a sequence (3¢5 0F)ken
with Y ;g 0F € Es((d*,r*)) for each k € IN such that every convergent subsequence
(Yicg0b)ien convergesto ;g d; then the compactness of E5(IRy(T)) implies that the
sequence (Y ;e 0F ) ken CONVErgesto S, ¢ ;.

Take (d,7) € PO%((d,r)) such that d; + 7 X5 ~; d; + 6; +r; Xy fordl i € S. Let
¢ > 0 and define

V; :Yiﬁcﬂ-—l—fiX —eor
ve={Yecms| i 5 ,
vies Y <idi +7, X+ €

and

Vies 1 Y; ﬁﬂi +7Xs+e

. {Y e L) Vies : Vi 5,di + 7 Xg — e or }
Note that 1 is open and C© is closed by the continuity of x. for eachi € S. Next,
we show that if (d¥ + ¥ Xy )ies € VE then there exists (d*, ) € PO%((d*,r*)) such
that (dF + 7 Xs)ics € V°. Therefore, let k € IN be such that (d*,7*) € V¢ and let
(d,7) € Is(T) besuch that d; + 7 Xs ~; d¥ +rFXy forali € S . We distinguish the
following three cases.

First, suppose that (d,7) € NPDg(I). Since (d; + 7:Xs)ics € V¢ it holds that
di + 7 Xg > d; + 7 Xg — e foral i € S. From (d —L(e,e,...,e),7) € PDg(I) and
Proposition 2.9 it follows that there exists (d*, #*) € POg(I") such that

di + 7 Xs =3¢ 3, df + T Xs 3, d; + 7. X5

foralic S. Thus, (df + 7 Xs)ies € VE. Sinced; + 7 Xg ~; d¥ + rF Xy forali e S it
holdsthat (d*,7*) € Ws((d*,r*)). Hence, (d*,7*) € PO%((d*,r%)).
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Second, suppose that (d,7) € PDg(T") and that d; + 7 Xg <; d; + s Xs + € for all
i € S. Sincethe Pareto optimality of (d, ) impliesthat (d +1 (e, ¢, ...,¢),7) € NPDg(T)
it follows from Proposition 2.9 that there exists (d*, 7*) € POg(I") such that

di +7iXs 3, df + T Xs 3, di + T Xs +1e

forall i € S. Thus, (d¥ + ¥ Xg)ies € VE. Sinced; + 7 Xs ~; d¥ + ¥ Xy foral i e Sit
holdsthat (d*,7*) € Bs((d*,r*)). Hence, (d*,7*) € PO%((d*,r*)).

Finally, suppose that (d,7) € PDg(I') and that d; + 7 Xs =; d; + 7 Xs — ¢ for all
i € S. Then Proposition 2.9 impliesthat there exists (d*, 7*) € POg(T") such that

di + 7 Xs — € 3, di + 7 Xg 3, dF + 7 X

for al i € S. Thus, (d*,7%) € Bs((d*,r*)). Therefore we have that (d*,#*) ¢
PO%L((d*, r*)). Moreover, (dF + 7% Xg)ies € V°.

Now we are able to construct a sequence (X;cg 0F)ren With 3,c5 08 € PO%((dF, rF))
for each k € IN such that each convergent subsequence convergesto ), g d;.

Let (¢™).en be a strictly decreasing sequence such that €™ > 0 for adl m € N
and lim,, ,o.e™ = 0. Hence, (V"),.en iS a decreasing sequence in the sense that
V" c Ve ifm > m/. Define VO = N.woVE. From (d,7) € PO%((d,r)) it follows that
(di +7: XN )ies € VO. Hence, (d; + ;X n)ies € VE foradl e > 0. Since (d*, 7*) converges
to (d,r) thereexists k! € IN such that for all & > K" it holdsthat (d¥ + ¥ X);cs € V<.
Next, take k € IN. If k£ < K thentake ;.4 6F € Es((d¥, %)) arbitrary. If k > K' we
distinguish the following two cases.

In the first case, supposethat (d¥ + 7¥ X )ies € VO. Then (d,7) € PO%((d*,r*)) and
(d; + 7 Xs)ies € V. So, we can take (d*, 7*) equal to (d, 7) (Seethe left figure of Figure
4).

In the second case, let (dF + ¥ X )ics & VO. Then there exists m(k) € N such that
(d* 4+ 15X N )ies € VE"P\VE"PT L Subsequently, take (dF, ) € PO%((d*, %)) such
that (d¥ + 7 Xs)ies € yer® (See the right figure of Figure 4, where the bold printed
curve represents the set of allocations that belong to both PO ((d*, 7%)) and V"), That
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FIGURE 4: The choice of the allocation (d*, r*) for the two different cases.

such (d*, 7*) exists can be seen asfollows. Let (d',7') € Is(T') be such that d; + ! Xg ~;
d¥ +r¥Xy fordli € S. Theneither (d',r') € PDs(T) or (d',7") € NPDs(T).

For the case that (d', ') € PDg(T') then (d¥ + r¥ Xy )ies € V™" impliesthat (d; +
7 Xg)ies € V" and, consequently, that

d; + T;XS Kl-gz' + 7 Xs — gm(k)
forall i € S or
d, + 7 X5 3.d; + 7 Xs + ™)

forall i € S. If the first statement is true then it follows from Proposition 2.9 that there
exists (%, 7) € POg(T') suchthat d + 7 X x.d. + /X foral i € S. Thisimpliesthat
(d*+7Xs)ics € V""" and (d*, 7) € PO3((d¥, r¥)). If thesecond statement istrue then
it followsfrom (d', ') € PDs(I") and Proposition 2.9 that there exists (d*, 7*) € POs(T')
satisfying

¥ Xy~ di X 3, dE TP X 3, di + T X s + g™

foral i € S. Hence, (d*,7) € PO%((d*,7*)) and (d¥ + 75 Xg)ies € V°©
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For the case that (d', ") € NPDg(I') asimilar argument holds.

Next, let §¥ be such that d¥ + 7 Xg ~; d¥ +r¥Xy + 6F for dl i € S. Note that for
k> K'wehaveYcq6F € Es((d¥, r*)) and (dF + 7% Xg)ics € VOif (dF +7E Xy )ies € VO
and (dF + 7% Xg)ies € V" it (dF+15 Xy )ies & V0. Since (s 6%)ren iSasequencein
the compact set £5(1 Rs(I")) there exists a convergent subsequence (3¢ 0!)ien With limit
Yics 4;. Corresponding to this convergent subsequence there is a sequence (d+ 71 Xs)ien
such that (d + 71 Xs)ies € VO if (d} + r'Xn)ics € VO and (d! + 7 Xg)ics € V¢
if (& +r'Xn)ies € V. Moreover, it holds that d. + 7 Xg ~; d\ + Xy + 6! for
dl i € S. Thisimplies that (d} + riXx + 6})ies € VO if (dl + riXn)ies € V° and
(d + 1 Xy 4 01)ics € V"V if (d + rt X n)ics € V0. From VO = myen V" it follows
that

m(l)

llim (d +riXn + 0l)ics = (di+ 71Xy +6i)ics € V.
—00

Thisimpliesthat d;+7; X n+0; ~; d;+7; Xsforali € S. Sinced; +7: Xs ~; d;+71: Xn+6;

foral i € S assumption (C3) impliesthat &; = d; for al i € S. Consequently, it holds that
=00 s = =

So, each convergent subsequence (3,5 0%)1en convergesto 3¢ d;. Hence, (3cs 0F ) ren

convergesto Y, 5 d;, which completes the proof. 0

Proposition 3.5 The excess function Es((d,r)) is continuous in (d,r) for each (d,r) €
IRs(T).

PrROOF: Let ((d*,r*))ren be a sequence in TRy(T) converging to (d,r) € IRn(T).
We have to show that limy, ., Es((d*,7%)) = Es((d,r)). Since (Es((d*,r*)))ren isase-
quence in the compact set Es(IRn(I')) there exists a convergent subsequence

(Es((d',7")))ien with limit . Note that the upper semi continuity of £s implies that
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n € Es((d,r)). Since &g is lower semi continuous there exists a sequence (s 0!)ien
such that ;.4 6! € Es((d', r")) foral I € IN and lim; o, 3;c5 6! = Es((d,r)). Then

limy_ye0 Es((d', r)) limy oo Yies 0 = Es((d, 7))

<
< 7 = limy o Es((d, 7).

Hence, lim; o ;e Es((d, 1)) = Es((d,r)). Thus, every convergent subsequence of
(Es((d*,r%)))kren convergesto Es((d, r)). The compactness of £s(I Rx(T')) thenimplies
that limy, .o, Es((d*, %)) = Es((d,r)). O

Summarizing, it is shown that the domain /Ry (I") is compact and that the excess
function Eg is continuous for each codition S ¢ N. From the results stated in Maschler
et al. (1992) it then followsthat the nucleolus /' (T") as defined in (3) is anonempty subset
of IRy(T") for each stochastic cooperative gamel” € CG(N).

4 Thenucleolus, the core and deter ministic equivalents

For deterministic cooperative gamesit isknown that the nucleolus as defined in Schmeidler
(1969) is a core alocation whenever the coreis nonempty. A similar result can be derived
for the nucleolus V(T") introduced in this paper. For this, recall that an allocation (d, ) €
IRy(T") is acore dlocation for the game I if for each coalition S C N there exists no
dlocation (d,7) € IRs(T") suchthat d; + 7 Xg >=; d; + r; Xy foral i € S. The set of all

core alocationsis denoted by Core(T).
Theorem 4.1 LetT' € CG(N). If Core(T") # 0 then N (T") C Core(I').

ProoF: Take(d,r) € IRy(I)andS C N. Let (d5,75) e Is(I) besuchthat d +75 Xg ~;
d; + 7 Xy foral i € S. Moreover, let (d,7) € PO%((d,r)) and 6 € R® be such that
d; + 7 Xs ~; di + 7 Xn +6; forali e Sand¥,.6 = Es((d,r)). Regarding the sign

of the excess, we distinguish three cases.
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Firgt, suppose (d°,7%) € PDg(I)\POs(T'). Then d; + 7:Xs x,d? + 75 X for dl
i € S. Hence, 6; > 0forall i € S. Since (d°,#°) is not Pareto optimal there exists
j € Ssuchthat d; + 7 Xs =; d + 7% Xs ~; d; +r;Xx. Thend; > 0 and, consequently,
Es((d,r)) = Xics0i > 0.

Second, suppose (d5,7°) € POg(T). This impliesthat 0 € Es((d,r)). Hence,
Es((d,r)) < 0.

Third, suppose (d°,7%) € NPDg(T)\POs(T). Then d; + 7 Xs =,d5 + 7% X for
all i € S. Hence, 6; < 0 foral i € S. Moreover, since (d°,7°) is not Pareto optimal
there exists j € S such that d; + 7 Xs <; d5 + 7 Xg ~; d; +7;Xn. S0, 6; < 0 and,
consequently, Es((d,r)) = > ;cs0: < 0.

Now we show that the excess vector corresponding to a core allocation is|exicograph-
ically smaller then the excess vector corresponding to an allocation that does not belong to
the core. Thisimpliesthat the latter allocation cannot belong to the nucleolus of the game
whenever core alocations exist. Hence, the nucleolus must be a subset of the core.

Teke (d,r) € Core(I") and (d',r") & Core(I"). Since (d,r) € Core(T") it followsfrom
the core conditions that (d°,7#%) € NPDg(T') foral S ¢ N. Hence, Es((d,r)) < 0
foral S ¢ N. Since (d',r") ¢ Core(I") there exists a coalition S € N and an alo-
cation (cf, 7) € IRg(T") for S such that d; + 7, Xs = d; + riXy foral i € S. Hence,
(d'5,75) € PDg(I')\POg(I') and, consequently, Es((d,+')) > 0. This implies that
0o Es((d,r)) <jex 0 0 Es((d',r")). Thus (d',r") & N(T). 0

Next, consider the class M G(N) of cooperative games with stochastic payoffs intro-
duced in Quijs and Borm (1996). For this particular class of games it was shown that the
core of agame I' = (N, (Xs)scn, ( &;)ien) is nonempty if and only if the core of a
corresponding deterministic game Ar = (N, (zs)scn, ( &;)ien) is nonempty. This de-
terministic game Ar is called the deterministic equivalent of I'. The preferences . of a
gamel’ € MG(N) are such that there existsafunction m; : L*(R) — R satisfying

(M1) fordl X € L'(R) : X ~; m;(X),

(M2) fordl X,Y € L'(R) : X x,Y if and only if m;(X) > m;(Y),
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(M3) forall d € R: m;(d) =d,
(M4) fordl X € L'(R)andadl d € R: m;(X + d) = d+ m;(X),

with L' (R) the set of all random variableswith finite expectation. Here, m;(X) represents
the deterministic equivalent of the random payoff X according to player i. So, player i is
indifferent between receiving the random payoff X and receiving the amount m;(X) with
certainty. Furthermore, the payoff x s of coaition S inthe game Ar isdefined by

Tg = max my(d; +7r; Xs),
o (d,r)ems(r);, ( s)

forall S € N. Moreover, Suijs and Borm (1996) also showed that an alocation (d, r) €
IRs(T") isParetooptimal if and only if for the corresponding allocation (m;(d; +r; Xs) )ics
in A it holds that Y°,c s m;(d; + ;. Xs) = zg. Finaly, notethat %, satisfies conditions
(C2) and (C3) for dl i € N and that the preferences discussed in Example 2.3 and Example
2.4 satisfy (M1) - (M4). Moreover, if the utility functions discussed in Example 2.5 are
exponential then conditions (M1) - (M4) are also satisfied.

In the remainder of this section we show that the nucleolus N (Ar) of the deterministic
equivalent coincides with the nucleolus introduced by Schmeidler (1969). Moreover, we
show that an alocation (d,r) € IRx(G) belongsto the nucleolus NV (T') if and only if the
corresponding alocation (m;(d; + r; Xy ))ien in the deterministic equivalent Ar belongs
to the nucleolus N (Ar) of Ar.

LetT' € CG(NV) be such that conditions (M1)-(M4) are satisfied. For the deterministic
equivalent Ar of I" it holdsthat

Is(Ar) = {y € R*|Vies : yi >z}
isthe set of (non feasible) individually rational allocationsfor codition S,

IRs(Ar) = {y € Is(D)| Xy < s}

i€S

isthe set of feasible individually rational alocationsfor S and

POS(AF) = {f‘/ S IRS(AF)| ﬁy'ele(AF)VieS : fl/; > fl/z'}7
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is the set of Pareto optimal alocations of S. Obviously, IRs(Ar) and POg(Ar) are
compact. Next, note that for each alocationy € IRy (Ar) and each S C N we have that

Ws(y) = {y' € IRs(Ar)|Vies : y; < yi},
Bs(y) = {y € IRs(Ar)|Vies : ¥; > yi}
POs(y) = (Ws(y)U Bs(y)) N POs(Ar).

So PO%(y) isthe set of Pareto optimal allocationsfor S such that all membersof S prefer
the alocation y to such a Pareto optimal allocation or all members of S prefer the Pareto
optimal allocation to y. The excessfunction Es : IRy (Ar) — R can now be rewritten as
Es(y) = y,efgég(y){% 0i|Vies : y; = yi + di}.
Sinced; =y —y; and X ,cs yi = xg itfollowsthat Es(y) = s — Y ics vi- Hence, N (Ag)
coincides with the traditional nucleolus for the game Ar.
Now, take (d, ) € IRy(I"). The excess of codlition S then equals

Es((d, T‘)) = min { 5¢|V¢€S : d,IL + T;XS ~ dl -+ ’I",L'XN + 51}
(&) EPOZ((d;r)) ZZGS
= min 0i|Vies : mi(d, + 7. Xs) = mi(d; + i Xn + 0;
(dcr')epog«d,r)){% Vies - mi( s) = mi vt}

){Z 6ilVies : mi(d; + 1 Xg) = 0; + mi(di + ri Xn)}
€S

min
(/1) EPO%((d,r)) &
Z (mi(d; + i Xs) — mi(d; + i Xn))
€S
= x5 — Y mi(di+riXn) = Es((mi(di +7:Xn))ien).

ieS
So, the excess of coalition S at allocation (d, ) equals the excess introduced by Schmeidler
(1969) of codlition S at thecorresponding allocation (m;(d;+7; X ) ):c y inthedeterministic
equivalent Ar. Moreover, for each alocation (d,r) € POn(T) inT' the vector (m;(d; +

min
(d'r") GPOg((d,r))

r:Xn))ien is an dlocation of zx in Ar and, vice versa, for each allocation y of xy in
Ar there exists an dlocation (d,r) € POx(T") in T such that m;(d; + r; Xn) = y; for all
i € N. Thisresult has the following three implications.

First, since the deterministic equivalent of a deterministic cooperative game is the de-
terministic gameitself it followsthat the nucleolus V' coincideswith Scmeidler’ snucleolus

on the class of deterministic cooperative games.
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Second, an alocation (d, r) belongs to the nucleolus A/ (T") of thegame T if and only if
the corresponding allocation (m;(d; + 7. Xy ))ien belongs to the nucleolus A'(Ar) of the
corresponding deterministic equivalent Ar.

Third, the nucleolus N/ (Ar) is nonempty if IRy(Ar) # 0. Hence, for all games
I' € MG(N) the nucleolus N/ (T") is nonempty if IRy(Ar) # 0. Thisisin particular
interesting since Suijs and Borm (1996) also showed that the relation between stochastic
cooperative gamesI' € MG(N) and their deterministic equivalents Ar aso holdsif the
following moregeneral definition of anallocationisused. Instead of apair (d, 7) € HS x AS
an allocation of the random payoff X isdescribed by apair (d,Y) € H® x L'(R)®, where
Y isan S-dimensional vector of random variables such that 3°,. ¢ Y; = Xs. Furthermore,
note that the preferences discussed in Example 2.3, Example 2.4 and Example 2.5 are
not continuous on the set L*(R) of all random variables with finite expectation. Hence,
condition (C1) isnot satisfied in case thisdefinition of an allocation isused. For astochastic

cooperativegame I’ € MG(N), however, the nucleolus still exists.

Example 4.2 Consider the following three player game I'.  Let —X;; ~ Exp(1) for
i=1,2,3andlet Xg = >",cs X5y if |S| > 2. So, each player individually faces a random
cost which is exponentially distributed with expectation equal to 1. The cost of a coalition
then equals the sum of the cost of the members of this coalition. Furthermore, all players
are expected utility maximizers with utility functions u;(t) = —e %%, uy(t) = —e 033
and us(t) = —e 925, respectively. For the deterministic equivalent m; it holds that
mi(d; + 1:Xs) = u; ' (E(u;(d; + r:Xs))). For the deterministic equivalent Ar of T
we then get z(1; = —1.3863, x5y = —1.2164, x5y = —1.1507, z(19y = —2.2314,
T3y = —2.1878, a3y = —2.1582 and x4y 2,33 = —3.1800. The nucleolus V' (Ar) of
this game is equal to (—1.0933, —1.0633, —1.0234). To determine the nucleolus N (T")
note that an alocation (d, ) is Pareto optimal if and only if » =1(2,3,4). Then the only
alocation (d, r) for which (m;(d; + . Xn))ien = N(Ar) isthe dlocation (d*, r*) with
d* = (—0.3865, —0.0034, 0.3899) and r* =1(2,3,4). Hence, N'(I') = {(d*, ")}
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Appendix A

For the following lemma stated in this appendix we use the following notation. Let
X,Y € L(T') and let (d*)gen and (r*)ien be sequences in R and [0, 1], respectively.
Denote by F', F* and G the probability distribution functions of X, d* + 7*X and Y,
respectively. Moreover, note that

FA(t) = P({w]d" + "X (w) < t}) = P{w]X (w) <i5£7}) = F(i5),

rk

if r* £ 0.

LemmaA.3 If F* = G thenthereexistsd € Randr € [0,1] suchthat Y = d + rX.

PROOF: First, since (r*)xen is @ sequence in [0, 1] we may assume without loss of gen-
erality that (r*).en converges to r € [0,1]. Second, note that F* = G implies that
limy,00 F*(t) = G(t) fordl t € Cq = {t € R|G iscontinuousin¢}. Notethat R\Cg is
acountable set.

Consider the following two cases.

I: r = 0. Inthiscasewehavethat Y isadegeneraterandomvariable, i.e, P({w|Y (w) =
d}) = 1forsomed € R. Hence, F* = G impliesthat limy_.o, d* = d.

II: » > 0. Inthis case we show that lim;_.. d* = d for somed € R. Suppose that the

sequence (d*)en does not converge. Then there are three possibilities.

Firgt, it holds that limy o, d* = +00. Then limy oo F*(t) = limg o0 F(t;;jk) =0

forall ¢t € Cg. Consequently, it must holdthat G(t) = 0 for all ¢t € C¢. Clearly, this
isacontradiction.

Second, it holdsthat limy,_,oc d* = —o0. Thenlimy_,e F*(t) = limy o0 F(:=25) = 1

foral t € Cs. Conseguently, it must be truethat G(¢t) = 1 foral t € Cs. Again,
thisis a contradiction.

Third, there exist convergent subsequences (d');ex and (d™),,ex With limits d and
d, respectively, such that d > d. Lett; € Cg. Since limg o0 F¥(t1) = G(t1)
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it follows that lim; o, F(t1) = lim; F(*lr;dl) = G(t1) and limy,_,o, F™(t1) =
lim,, o0 F(9527) = G(t1). S0, limy_ oo F(15%) = limy, 0o F(2527). From the

L

fact that probability distribution functions are nondecreasing and continuous from

theright it followsthat F' isconstant on theinterval [2=¢ 41=9). To be moreprecisely,

T T

F(t) = lim_,o, F(254) foral t € [2-¢ 1-4), Thisimpliesthat G isconstant onthe

rl r

interval [t1, t;+d—d). Toseethis, taker € [t1,t1+d—d). If GiscontinuousinT then
it follows from F* = G that G(7) = limye F(=2) = limpoe F(7527). Since

either =¢ € [14 u-7) or =4 ¢ [1=4 1=d) jt holdsthat G(7) = limy e, F(1252).

L

If G is not continuous in 7 then there exists 7, » € Cg such that t; < 71 <
T < 7 < t; +d — d. Hence by the same argument as above we have that
G(n) = G(12) = limy_,0 F(*l;ldl). Since G is nondecreasing it holds that G(r) <
G(1) < G(m2). ThusG(7) = limy_,eo F(flrjdl). Consequently, G is constant on the

interval [t1,t; +d — d).

Next, taket € [t1,t; +d — d). By the same argument as above it followsthat F is

constant on [=¢,:=4) and that G isconstant on [t, ¢ + d — d). Hence, G isconstant on

T T

theinterval [t1,¢1 + 2(d — d)). Repeating this argument yieldsthat G is constant on
(t1,00). Finaly, sincethisholdsfor al ¢; € Cg it followsthat G is constant on R.

Obvioudly, thisis acontradiction.

Next, let F; denotethe probability distribution functionof d+rX. Sincelimy_,o d* = d
and limy,_,, 7* = r it followsthat F* = F,;. Hence, Fy(t) = G(t) foradl t € Cg. Since
F,; and G are continuous from theright it followsthat F;(t) = G(t) foral ¢t € R. Conse-
quently, Y =d +rX. O

Lemma A.4 Thepreferencerelation z, arising froman expected utility maximizing player

satisfies the continuity condition (C1).

PROOF: Let X be random variable and let (d¥ + r¥X),cn be a convergent sequence with

limit X. From Lemma A.3 we know that there exists d; and r; such that limy, o, d¥ = d;,
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limy oo 7¥ = r;and X = d;+r; Xs. Itissufficient toshow that limy, o, B (u;(d¥+rF X)) =
Suppose that (E(u;(d¥ 4+ r¥ X)) does not convergeto E(u;(d; + r;X)). Then thereare

three posssibilities
(i) thereexistse > 0 and K¢ € IN such that E(u;(d¥ + r¥ X)) < E(u;(d; +7,X)) — ¢
foral k > K¢,
(ii) thereexistse > 0 and K¢ € IN such that E(u;(d¥ + ¥ X)) > E(u;(d; + 7:.X)) + ¢
foral k > Ke.
(i) there exists subsequences (E(u;(d" + " X)))men and (E(u;(d 4+ riX)))ien such

that either E (u; (d7 +r™X)
or E(u;(d; +rtX)) > E(u;

) < E(ui(d;+7;X))—e forsomee > 0andall m > M®
(d; +r; X))+ e forsomee > 0 andal I > L° or both.
In the first case, define df = infi>, df and 7% = inf>, v if X > 0 and 7 = sup;o, ¥
if X <0foralk e N. Then (d* + 7* X (w))ren IS an increasing sequence with limit
d+ rX(w) foral w € Q. Moreover, df + 7 X (w) < d¥ + r¥ X (w) foral k € N and all
w € Q. Hence, E(u;(df + 78 X)) < E(u;(d* 4+ rfX)) forall k € IN. Next, let V C R be
acompact set and K° € IN such that

[ uilds + rit)dF (1) <se

and

[ wld 7 ar o) <ie.

Vc

where V¢ denotes the complement of V' and F' the probability distribution function of X.
Then

0 < ui(di—l—rit)dF(t)—/chi(Jf{E AR (t) =

‘7 ui(d; + rit)dF(t) _/w wi(d° + PR (1) <ze.

Since (d¥)ren and (7¥)ren are increasing sequences and u; is an increasing function we
have that

0 g/ wi(d; + rit)dF(t) —/ ui(dF + 7R dF (1) <ie,
Ve Ve
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for al k > K*. The compactness of V' impliesthat there exists L¢ > K* such that
0< /Vui(di + rit)dF (t) — /v“i(df + ) dF(t) <le,

forall k > L¢. Hence,
0< /O:o ui(d; + rit)dF(t) — /Z ui(d¥ +7F)dF(t) < ¢,

foral k > Le. Thisimpliesthat
[ wilditrit)dF (@) — = < [ w(@ +mie)ap() < [ il +rt0dEQ),

for all kK > L¢. This contradictsthe fact that

/ T wi(d 4 ) dF(t) < / T wildy + rt)dF(t) — e
forall k > L=.

For the second case, one can derive a contradiction in a similar way as for the first
case. Finally, in the third case a contradiction can be derived by applying the argument of
the first two cases to the appropriate subsequences. Hence, limy, oo E(u;(dF + rF X)) =
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Appendix B

PROOF OF PROPOSITION 2.6: Since I Rs(T') C Is(I') ¢ R® x R¥ it is sufficient to prove
that I Rs(T") is closed and bounded in R® x R®. Since
IRs(T) = {(d,r) € Is(T')| Y_ di < 0}
i€S
and Is(T") is closed by the continuity of =, forall i € S it followsthat I Rs(I") is closed.
To seethat I R5(T") is bounded, define for each: € S and each r; € [0, 1]

Note that d;(r;) exists by assumptions (C1) and (C2) and that d;(r;) + 7:.Xg ~; X;3. To
show that min,,c(o,1) d;(r;) existsit sufficesto show that d; (r;) iscontinuousinr;. Therefore,
consider the sequence (rF)rex With ¥ € [0, 1] and limy o, 7¥ = 7;. By definition we have
forall k € N that d;(rF) + r¥ Xs ~; X(iy. Hence, d;(rf) + r¥ Xs ~; d;(r;) + r; X for al
i € S. Since x, iscontinuousit follows that

lim (dl(rf) + TfXS) = Iclggo di(rf) + 7 Xg ~; di(r;) + i Xs

k—o0
Then assumption (C3) implies that limy, ., d;(r¥) = d;(r;). Consequently, d;(r;) is con-
tinuousinr; and
d; = Jnin, d;(r;)
existsand isfinitefor all i € S.

Since(d,r) € IRs(') impliesthat d; +7; X s o, Xy foral i € Sitfollowsby condition

(C3) that d; > d, fordl i € S. Hence, (d,r) € I Rs(T") impliesthat

de {JE RS|V¢€S : CL > di? ZCL < 0}

€S

andr € AS. Since both sets are bounded, we have that I Rs(T') is bounded. O

PROOF OF PROPOSITION 2.7: Since POg(I') € IRg(I") and I Rs(I") is compact it is suf-
ficient to show that POg(T") is closed in IRs(I"). Let (d,r) € IRg(I") be such that
(d,r) & POg(I'). Then there exists (d,7) € IRg(I") such that d; + 7Xs =; d; + r: Xs
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for all i € S. Next, consider the set {(d',7’") € IRs(D)|d; + i Xs <; d; + 7 Xs}. By
the continuity of %, thisset isopenin I Rs(I'"). Indeed, by the continuity of x. we have
that {Y € £(I')%|3ies : Vi @.Ji + 7, X5} isclosed. Hence, Proposition 2.6 implies that
{(d,r") € IRs(T)|Fies : d, + riXs x,d; + 7: Xs} isclosed in Is(T"). Hence, it is also
closedin I Rs(T'). Consequently, {(d',r") € IRs(T')|V;es : di + 7/ Xs <; d; + 7, X5} must
beopeninIRs(I"). Since(d, r) belongsto thelatter set there exists an open neighbourhood
O of (d,r)in IRs(T") suchthat O C {(d',7") € IRs(T)|Vies : d; + 71 Xs <i d;i + 7 X5}
Thisimpliesthat (d,7) ¢ POs(I") whenever (d,7) € O. Hence, I Rs(T')\ POg(T) is open
in I Rg(I") and, consequently, POg(T") isclosed in I Rg(T). O

PROOF OF PROPOSITION 2.9: Let (d,r) € PDg(T) and (d,7) € NPDg(T'). Without
loss of generality we may assume that (d,r) € IRg(T").> Take d; € R be such that
d; + 6; + r; Xs ~; d; + 7 Xs. Notethat §; > 0 by condition (C3). Next, take 7 € AS
andt € [0,1]. Let d;(7,t) besuch that d;(7,t) + 7, Xg ~; d; + td; + ;. Xg. Note that the
dlocation (d(7, ), 7) isfeasibleif and only if 3,4 d;(7,t) < 0. First, we show that d; (7, t)
iscontinuousin (7, t).

Let ((7*,t%))ren be a convergent sequence with limit (7, ). We have to show that
limy o0 di (7%, tF) = d;(7,t). Notethat d;(7*, t*) + 7+ X ~; d; + 150, +r; Xs foral k € IN.
Definefore > 0

VE=A{Y € L(D)|d; + td; + riXs —e <; Y <; d; +td; + X5 + €}
Since t* — t there exists K¢ € N such that d; + t*§; + ;. Xs € V¢ for dl k > K°.
Consequently, we have that d; (7", t*) + 7* Xg € V¢ for al k > K*. Thisimplies that
limy oo (di(7*, %) + 7E Xs) € Neso Vi SO,
lim (d;(7*, %) + 7F X)) = lm (7, t%) + 7, Xs ~i di + 16 + 1 Xs.

k—o0

Sinced; (7, t)+7:Xg ~; d;i+td+r; X itfollowsfromcondition (C3) that limy, ., d;(7*, t*) =

°If (d,r) ¢ IRs(T) thenthereexists (d',r') € IRg(T") suchthat d + 7. Xs =; d; + r; Xgs foradli e S.
If 0 < Oissuchthat d; + d; +r.Xg ~; d; +r; Xg forall i € Sthen (d' +§',r") isstill afeasibleallocation.
Thus, (d' + ¢',r") € IRg(T'). Continuingthe proof with theallocation (d, r) replaced by (d' 4+ ¢, ') would
yould the same result.
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Next, define f(t) = minycas e di(7,t) for al ¢t € [0,1]. Then f is a continuous
function. Moreover, since (d,7) € IRs(') and d;(r,0) = d; for al i € S it follows
from the feasibility of (d,r) that f(0) < Ycsdi(r,0) = S;esd; < 0. Furthermore,
since d; + 6; + r; Xg ~; d; + 7 Xg foral i € S and (d,7) € NPDg(I) it follows that
(d+0,7) € NPDg(I'). Thisimpliesthat f(1) > 0. For, if f(1) < 0 then there exists
r* € Asuchthat ;e di(r*,1) < 0 and d;(r*, 1) + 7 Xs ~; d; +6; + 7 Xg forali € S.
Consequently, the allocation yielding the payoffs

di(r*, 1) — & D di(r*, 1) + 17 X
ies
foreachi € S isfeasibleand preferredto d; + ; + r; X by al playersi € S. Clearly, this
contradicts the fact that (d + d,7) € NPDg(T"). Thus, f(0) <0 < f(1). The continuity
of f thenimpliesthat there exists  such that f(¢) = 0.

Let # € A be such that ¥, di(7,1) = 0. Then the alocation (d(7,t),+) is Pareto
optimal. To seethis, first note that 3", ¢ d;(7, t) > 0foral 7 € AS. Second, note that the
definition of d; (7, t) implies that

foralic Sandal 7 c AS. Next, taker € AS. If ¥,cqd;(7,1) > 0 then the allocation
(d(7,t),7) isnot feasible. From expression (4) it then follows that there exists no feasible
allocation (d, 7) which al playersi € S prefer to the allocation (d(#, 1), 7).

If Yiesds(7, 1) = 0 then the allocation (d(7, £), 7) isfeasible. Moreover, an allocation
(d,7) that al playersi € S prefer to (d(7,t),7) must be infeasible by condition (C3) and
expression (4). Hence, there exists no feasible allocation (d, 7) which all playersi € S
prefer to (d(#,1),#). Consequently, (d(#,1),) is Pareto optimal. 0 < ¢ < 1 then implies
that

di + 1 Xs 3, di(7,t) + 7 Xs S, di +0; + 1 X5~y d; + 7 Xs

forali:e S. O
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