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Abstract

This paper extends the definition of the nucleolus to stochastic cooperative games,

that is, to cooperative games with random payoffs to the coalitions. It is shown that the

nucleolus is nonempty and that it belongs to the core whenever the core is nonempty.

Furthermore, it is shown for a particular class of stochastic cooperative games that

the nucleolus can be determined by calculating the traditional nucleolus introduced by

Schmeidler (1969) of a specific deterministic cooperative game.

KEYWORDS: Nucleolus, cooperative game theory, random variables, preferences.

1Department of Econometrics and CentER, Tilburg University, PO Box 90153, 5000 LE Tilburg, The

Netherlands

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6794667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

1 Introduction

In stochastic cooperative games, the payoffs individuals can obtain by cooperating with

each other are random variables instead of deterministic amounts. Moreover, the players

are not allowed to await the realizations of these payoffs before they decide upon an

allocation of these payoffs. These kinds of cooperative games fall outside the scope

of traditional (deterministic) cooperative game theory. Models that can deal with such

situations were introduced by Charnes and Granot (1973) and, more recently, by Suijs,

Borm, De Waegenaere and Tijs (1995). The major difference between these two models is

that the first model assumes risk neutral behaviour of all the players while the latter model

incorporates risk neutral as well as risk averse and risk loving behaviour of the players.

This paper introduces a nucleolus for the games introduced by Suijs et al. (1995).

The nucleolus, a solution concept for deterministic cooperative games, originates from

Schmeidler (1969). This solution concept yields an allocation such that the maximal excess

of the coalitions is minimized. The excess describes how dissatisfied a coalition is with the

proposed allocation. The larger the excess of a particular allocation, the more a coalition

is dissatisfied with this allocation. For Schmeidler’s nucleolus the excess is defined as the

difference between the payoff a coalition can obtain when cooperating on its own and the

payoff received by the proposed allocation. So, when less is allocated to a coalition, the

excess of this coalition increases and the other way around.

Since the nucleolus depends mainly on the definition of the excess, other nucleoli are

found when different definitions of excesses are used. Such a general approach can be

found in Potters and Tijs (1992). They introduced the general nucleolus as the solution that

minimizes the maximal excess of the coalitions, using generally defined excess functions.

A similar argument holds for stochastic cooperative games. If we can specify the ex-

cesses we can define a nucleolus for these games. Unfortunately, this is not that simple.

Defining excess functions for stochastic cooperative games appears to be not as straight-

forward as for deterministic cooperative games. Indeed, how should one quantify the

difference between the random payoff a coalition can achieve on its own and the random

payoff received by the proposed allocation when the behaviour towards risk can differ
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between the members of this coalition? Furthermore, the excess of one coalition should be

comparable to the excess of another coalition.

Charnes and Granot (1976) introduced a nucleolus for cooperative games in stochastic

characteristic function form. There, the excess was based on the probability that the payoff

a coalition can obtain when cooperating on its own, exceeds the payoff they obtained in the

proposed allocation. Indeed, it is quite reasonable to assume that a coalition is less satisfied

with the proposed allocation if this probability increases.

For the excess defined in this paper we interpret the excess of Schmeidler’s nucleolus

in a slightly different way. Bearing the conditions of the core in mind, this excess can be

interpreted as follows. Given an allocation of the grand coalition’s payoff we distinguish

two cases. In the first case, a coalition wants to leave the grand coalition. Then the excess

equals the minimal amount of money a coalition needs on top of what they already get such

that this coalition is willing to stay in the grand coalition. In the second case, a coalition

has no incentive to leave the grand coalition. Then the excess equals minus the maximal

amount of money that can be taken away from this coalition such that this coalition still has

no incentive to leave the grand coalition. This interpretation is used to define the excess for

stochastic cooperative games.

The paper is organized as follows. Section 2 consists mainly of preliminaries. It

briefly recalls the definition of a cooperative game with stochastic payoffs. Furthermore

it states the assumptions we make on the preferences of the players and it introduces the

necessary definitions and notations. Then in Section 3 the excess functions are introduced

and, subsequently, a nucleolus. Moreover, it is shown that this nucleolus is a well defined

solution concept in the sense that it always yields a nonempty subset of allocations. Section

4 shows that the nucleolus is a subset of the core whenever the core is nonempty. Moreover,

it shows that for the class of stochastic cooperative games introduced in Suijs and Borm

(1996) the nucleolus can be determined by calculating Schmeidler’s nucleolus of a specific

deterministic cooperative game.
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2 Stochastic cooperative games

A stochastic cooperative game is described by a tuple Γ = (N, (XS)S⊂N , ( �∼i)i∈N). Here,

the set of players is denoted by N . The payoff a coalition S ⊂ N can achieve by

cooperating is denoted by a random variableXS . So, there is a probability space (Ω,H, IP)

such that for each S ⊂ N the payoff function XS : Ω → IR is measurable, that is,

X−1
S (B) ∈ H for each element B of R, the Borel σ-algebra. Since coalitions are not

allowed to await the realization of XS before they decide on the allocation, the random

payoffXS has to be allocated. An allocation of the random payoffXS among the members

of S is described by a pair (d, r) ∈ HS ×∆S, where HS = {d ∈ IRS |
∑
i∈S di ≤ 0} and

∆S = {r ∈ IRS |∀i∈S : ri ≥ 0,
∑
i∈S ri = 1}. The random payoff to player i ∈ S then

equals di+riXS . So, r allocates fractions of the random payoffXS to the members ofS and

d denotes the transfer payments. Note that these transfer payments need not be efficient.

Moreover, it should be noted that for notational reasons the definition of an allocation used

in this paper differs from its original definition in Suijs et al. (1995). Originally, d was

an allocation of the expected payoff E(XS) and r was an allocation of the residual payoff

XS −E(XS). Finally, note that the random payoff di + riXS to player i ∈ S is measurable

with respect to the probability space (Ω,H, IP). Next, define

L(Γ) = {d + rXS |d ∈ IR, r ∈ [0, 1], S ⊂ N}. (1)

Then L(Γ) is the set of all random payoffs player i ∈ N can receive in the game Γ. Finally,

�∼i are the complete and transitive preferences of player i over the set L(Γ).

Examples of situations where this model may apply appear in insurance. Individuals

facing losses that can occur to them in the future have to decide now if they want an insurance

for these losses or not and, if so, which premium they want to pay for it. Furthermore, groups

of individuals may benefit from taking a collective insurance instead of many individual

ones. Another example appears when considering linear production games with random

prices. Here, a coalition has to decide which goods to produce given the resources they

posses without exactly knowing the revenues that are generated by these goods.
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In the remainder of this paragraph we go through some necessary preliminaries. There-

fore, consider again the set L(Γ). Denote by FX the distribution function of the random

variable X ∈ L(Γ). Thus, FX(t) = IP({ω|X(ω) ≤ t}) for all t ∈ IR. Next, define

F(Γ) = {FX|X ∈ L(Γ)} to be the set of distribution functions corresponding to the

random payoffs in L(Γ). Now, let (Fk)k∈IN be a sequence in F(Γ). Then the sequence

(Fk)k∈IN weakly converges to F ∈ F(Γ), denoted by Fk
w→ F , if limk→∞ Fk(t) = F (t)

for all t ∈ {t′ ∈ IR|F is continuous in t′}. Subsequently, we say that a sequence (Xk)k∈IN

of random variables converges to the random variable X if and only if the corresponding

sequence (Fk)k∈IN of probability distribution functions weakly converges to the probability

distribution function F of X. Furthermore, let (F(Γ), ρ) be a metric space with

ρ(F,G) =
∫ ∞
−∞
|F (t)−G(t)|e−|t|dt

for all F,G ∈ F(Γ). The following two results can be found in Feller (1950) and Feller

(1966).

Proposition 2.1 Fk
w→ F if and only if limk→∞ ρ(Fk, F ) = 0.

Proposition 2.2 Let (dk)k∈IN and (rk)k∈IN be convergent sequences in IR with limits d and

r, respectively. Take X ∈ L(Γ). Denote by F the distribution function of d + rX and by

Fk the distribution function of dk + rkX for all k ∈ IN. Then Fk
w→ F .

This proposition has the following implication which will be frequently used in the

remainder of this paper. Let a subset O ⊂ F(Γ) be called open if for each F ∈ O there

exists ε > 0 such that {G ∈ F(Γ)|ρ(F,G) < ε} ⊂ O. Furthermore, let (dk)k∈IN and

(rk)k∈IN be convergent sequences in IR with limits d and r, respectively. Take X ∈ L(Γ)

and denote by F and Fk the distribution function of d + rX and dk + rkX, respectively.

Next, let O ⊂ F(Γ) be an open set such that F ∈ O. Proposition 2.2 and the definition of

an open subset then imply that there exists k0 such that Fk ∈ O for all k > k0.
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For the introduction of a nucleolus we focus on cooperative games with stochastic

payoffs Γ = (N, (XS)S⊂N , ( �∼i)i∈N ) where the preferences of each player satisfy the

following additional conditions:

(C1) continuity, i.e., {FX ∈ F(Γ)|X �∼iY } and {FX ∈ F(Γ)|X ≺∼iY } are closed sets in

(F(Γ), ρ) for all Y ∈ L(Γ), 1 2

(C2) for any X, Y ∈ L(Γ) there exist d̄, d ∈ IR such that X + d ≺i Y ≺i X + d̄,

(C3) for all X ∈ L(Γ) and all d > 0 we have that X + d �i X.

Example 2.3 Let the preferences �∼αi with αi ∈ (0, 1) be such that X �∼αiY if and only

if uXαi := sup{t|FX(t) < αi} ≥ uYαi := sup{t|FY (t) < αi}, where uXαi denotes the αi-

quantile of X. This type of preferences may appear in insurance problems. They are

used by insurance companies if the premium is determined on the basis of the percentile

principle. This type of preferences satisfies conditions (C1) - (C3). To see this, note that

udi+riXαi
= di + riu

X
αi

. Then, it is clear that �∼αi satisfies (C2) and (C3). For continuity, take

Y ∈ L(Γ). We have to show that the set {X ∈ L(Γ)|X �∼αiY } is a closed set. Therefore,

let (dki + rkiX)k∈IN be a convergent sequence in {X ∈ L(Γ)|X �∼αiY } and denote its limit

by X̄. So, dki + rki u
X
αi
≥ uYαi for all k ∈ IN. It is sufficient to show that X̄ �∼αiY , i.e.,

uX̄αi ≥ uYαi. Since the sequence converges we know from Lemma A.3 in Appendix A that

there exist convergent subsequences (dli)l∈IN and (rli)l∈IN with limits di and ri, respectively,

such that di + riX = X̄ . Since dli + rliX �∼αiY implies dli + rliu
X
αi
≥ uYαi it follows that

di + riu
X
αi
≥ uYαi. Consequently, we have that uX̄αi ≥ uYαi .

1Since the preferences are complete, an equivalent statement is that {FX ∈ F(Γ)|X �i Y } and {FX ∈

F(Γ)|X ≺i Y } are open sets in (F(Γ), ρ) for all Y ∈ L(Γ).
2For ease of notation, the sets {FX ∈ F(Γ)|X �∼iY } and {FX ∈ F(Γ)|X ≺∼iY } are often denoted by

{X ∈ L(Γ)|X �∼iY } and {X ∈ L(Γ)|X ≺∼iY }, respectively.
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Example 2.4 Let �∼
bi with bi ∈ IR describe the following preferences. For X, Y ∈ L(Γ)

it holds that X �∼
biY if E(X) + bi

√
V (X) ≥ E(Y ) + bi

√
V (Y ), where E denotes the

expectation and V the variance. This type of preferences can be found for example in

portfolio decision theory, where an agent’s evaluation of a portfolio depends on the expected

revenue of the portfolio and the standard deviation of the revenue. These preferences satisfy

conditions (C1) - (C3). To see this, note that

E(di + riX) + bi
√
V (di + riX) = di + riE(X) + biri

√
V (X)

holds for di ∈ IR and ri ∈ [0, 1]. Then the same arguments as in Example 2.3 can be used

to show that �∼
bi satisfies conditions (C1) - (C3).

Example 2.5 Let �∼i describe the preferences of an expected utility maximizing player.

So, X �∼iY if E(ui(X)) ≥ E(ui(Y )), where E denotes the expectation and ui is the

monotonically increasing utility function of player i. These preferences satisfy conditions

(C1) - (C3) if for all S ⊂ N eitherXS ≥ 0 or XS ≤ 0. So, the random payoff of a coalition

cannot have both positive and negative realizations. From the fact that ui is increasing

it follows that (C2) and (C3) are satisfied. For the continuity condition (C1) we refer to

Lemma A.4 in Appendix A.

In order to define a nucleolus one needs to specify for each coalition S ⊂ N an excess

function ES. The excess function assigns to each allocation (d, r) of the grand coalition

N a real number representing the complaint of coalition S. The larger the complaint of a

coalition the more this coalition is dissatisfied with the proposed allocation. For the excess

function introduced in this paper we need the following notation. Define

IS(Γ) = {(d, r) ∈ IRS ×RS |∀i∈S : di + riXS �∼iX{i}},

as the set of possibly nonfeasible individually rational allocations for coalition S. Here, an

allocation (d, r) ∈ IS(Γ) is called feasible if
∑
i∈S di ≤ 0. Furthermore, define

IRS(Γ) = {(d, r) ∈ IS(Γ)|
∑
i∈S

di ≤ 0},
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as the set of feasible individually rational allocations for coalition S and

POS(Γ) = {(d, r) ∈ IRS(Γ)| 6 ∃(d′,r′)∈IRS(Γ)∀i∈S : d′i + r′iXS �i di + riXS},

as the set of feasible Pareto optimal allocations for S. Note that assumption (C3) implies

that
∑
i∈S di = 0 whenever (d, r) ∈ POS(Γ). Finally, we make another assumption,

namely,

(C4) IS(Γ) 6= ∅ for all S ⊂ N .

Note that this assumption is satisfied if Γ is superadditive3. Moreover, it should be noted

that a coalition S is unlikely to be formed when IS(Γ) = ∅. Since in that case for every

allocation ofXS there is at least one member of S whose payoff is not individually rational.

Hence, he would be better off by leaving coalition S and form a coalition on his own.

Finally, denote by CG(N) the class of all cooperative games with stochastic payoffs with

player set N satisfying conditions (C1) - (C4).

For gaining a clearer insight into the situation and the (forthcoming) mathematics in

particular, we make use of a simplified graphical representation of the problem. At the

moment this might seem a bit overdone, but for the remainder of this paper these figures

might turn out to be very helpful. The notions introduced in the preceding paragraph are

illustrated in Figure 1.

Figure 1 represents a cooperative game with stochastic payoffs with two expected utility

maximizing players. The axes represent the utility levels of the players. For simplicity,

we have assumed that payoffs are individually rational if and only if the corresponding

expected utility is greater than or equal to zero. So, the set IS(Γ) is represented by the

positive orthant. Furthermore, the set IRS(Γ) of individually rational allocations is depicted

by the shaded area, and the set POS(Γ) of Pareto optimal allocations is depicted by the

3A game Γ = (N, (XS)S⊂N , (�∼i)i∈N ) is called superadditive if for all disjunct S, T ⊂ N the following

statement is true. For each allocation (dS, rS) of XS and each allocation (dT , rT ) of XT there exists an

allocation (d, r) ofXS∪T such that di+riXS∪T �∼id
S
i +rSi XS for all i ∈ S and di+riXS∪T �∼id

T
i +rTi XS

for all i ∈ T . So whatever the allocation of XS and XT are, there is always an allocation ofXS∪T such that

all members of S ∪ T are (weakly) better off.
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FIGURE 1: Individually rational and Pareto optimal allocations in a two-player example.

bold printed curve. Finally, note that this and the forthcoming figures do not arise from a

concrete example.

In Figure 1 both IRS(Γ) and POS(Γ) are compact subsets. The following propositions

show that this holds in general for the class CG(N) of cooperative games with stochastic

payoffs.

Proposition 2.6 IRS(Γ) is a compact subset of IS(Γ) for each coalition S ⊂ N .

PROOF: See Appendix B. 2

Proposition 2.7 The set of Pareto optimal allocationsPOS(Γ) is a compact subset of IS(Γ)

for each coalition S ⊂ N .

PROOF: See Appendix B. 2
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Furthermore, we need to consider the following sets. Define for each S ⊂ N

PDS(Γ) = {(d, r) ∈ IS(Γ)|∃(d′,r′)∈POS(Γ) ∀i∈S : d′i + r′iXS �∼i di + riX}

as the set of (possibly nonfeasible) allocations that are (weakly) dominated by a Pareto

optimal allocation, and

NPDS(Γ) = {(d, r) ∈ IS(Γ)| 6 ∃(d′,r′)∈POS(Γ) ∀i∈S : d′i + r′iXS �∼i di + riX}

as the set of (possibly nonfeasible) allocations that are not dominated by Pareto optimal

allocations. Note that IRS(Γ) ⊂ PDS(Γ). The reverse, however, need not be true, as the

next example shows.

Example 2.8 Consider the following two player example. Let XS be such that −XS is

exponentially distributed with expectation equal to 1 for all S ⊂ N . Furthermore let

players 1 and 2 be expected utility maximizers with utility functions u1(t) = −e−0.5t and

u2(t) = −e−0.25t, respectively. Then E(u1(d1 + r1X{1,2})) = −e−d1 1
1−0.5r1

and E(u2(d2 −

r2X{1,2})) = −e−d2 1
1−0.25r2

. An allocation (d, r) ∈ I{1,2}(Γ) is individually rational if

E(u1(d1 + r1X{1,2})) ≥ −2 and E(u2(d2 + r2X{1,2})) ≥ −1.25. Furthermore, (d, r∗) is

Pareto optimal if and only if r∗1 = 1
3

and r∗2 = 2
3

(see Wilson (1968)). Now, consider the

allocation (d, r) with d1 = 0.1, d2 = 0.1, r1 = 1 and r2 = 0. Since d1 + d2 > 0 this

allocation is nonfeasible. However, the Pareto optimal allocation (d∗, r∗) with d∗1 = −0.9,

d∗2 = 0.9, r∗1 = 1
3

and r∗2 = 2
3

is feasible and preferred by both players. Indeed,

E(u1(d
∗
1 + r∗1X{1,2})) = −1.8820 > −1.9025 = E(u1(d1 + r1X{1,2}))

and

E(u2(d
∗
2 + r∗2X{1,2})) = −0.9582 > −0.9753 = E(u2(d2 + r2X{1,2})).

So even nonfeasible allocations can be Pareto dominated.

The next proposition states a very intuitive result. Namely that for every Pareto dominat-

ed allocation (d, r) and every non-Pareto dominated allocation (d′, r′), which all members
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of S weakly prefer to the Pareto dominated allocation (d, r), there exists a Pareto optimal

allocation such that for each player the Pareto optimal allocation is weakly better than (d, r)

but weakly worse than (d′, r′).

Proposition 2.9 Let Γ ∈ CG(N). Take (d, r) ∈ PDS(Γ) and (d̃, r̃) ∈ NPDS(Γ) such

that di + riXS ≺∼id̃i + r̃iXS for all i ∈ S. Then there exists (d̂, r̂) ∈ POS(Γ) such that

di + riXS ≺∼i d̂i + r̂iXS ≺∼i d̃i + r̃iXS

for all i ∈ S.

PROOF: See Appendix B. 2

A direct consequence of this proposition is that for each allocation (d, r) ∈ IRS(Γ)

there exists a Pareto optimal allocation (d′, r′) such that d′i + r′iXS �∼i di + riXS for all

i ∈ S. Moreover, since IS(Γ) is nonempty by assumption (C4) we have that for each

(d, r) ∈ NPDS(Γ) there exists (d′, r′) ∈ POS(Γ) such that d′i + r′iXS ≺∼i di + riXS for all

i ∈ S.

Finally, we introduce three more sets. Therefore, let (d, r) ∈ IRN(Γ) be an individually

rational allocation for the grand coalition N . Take S ⊂ N and define

WS((d, r)) = {(d′, r′) ∈ IRS(Γ)|∀i∈S : d′i + r′iXS ≺∼i di + riXN}

as the set of individually rational allocations for coalitions S which are weakly worse than

the payoff di + riXN for every member of S, and,

BS((d, r)) = {(d′, r′) ∈ IRS(Γ)|∀i∈S : d′i + r′iXS �∼i di + riXN}

as the set of individually rational allocations for coalition S which are weakly better than

the payoff di + riXN for every member of S. Furthermore, define

PO∗S((d, r)) = (WS((d, r)) ∪BS((d, r))) ∩ POS(Γ),

as the set of Pareto optimal allocations for coalition S which are either weakly worse than

di + riXN for all members of S or weakly better than di + riXN for all members of S.

These three sets are illustrated in Figure 2. Note that BS((d, r)) can be empty.
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FIGURE 2: Examples of WS((d, r)), BS((d, r)) and PO∗S((d, r)).

3 A nucleolus for stochastic cooperative games

With the definitions and notions introduced in the previous section we can now define

an excess function and, consequently, a nucleolus for cooperative games with stochastic

payoffs. The excess functionES : IRN(Γ)→ IR of coaltition S is defined as follows. Take

(d, r) ∈ IRN (Γ). Then the excess for coalition S is defined by

ES((d, r)) = min
(d′,r′)∈PO∗S((d,r))

{
∑
i∈S

δi|∀i∈S : δi ∈ IR and d′i + r′iXS ∼i di + riXN + δi}.

For an interpretation of the excess, let us focus on the core conditions. So, given a proposed

allocation (d, r) does a coalition S have an incentive to leave the grand coalition or not.

First, consider again the excess as used in Schmeidler (1969). There, the excess can

be interpeted as the minimum amount of money a coalition needs on top of what they

already receive from the proposed allocation such that they are indifferent between staying

in the grand coalition and leaving the grand coalition. This interpretation is now applied

to stochastic cooperative games. For this, note that given an allocation (d, r) ∈ IRN(Γ)

a coalition S is indifferent between staying in the grand coalition N and leaving if there

exists an allocation (d′, r′) ∈ PO∗S((d, r)) such that each player i ∈ S is indifferent between
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receiving the payoff d′i + r′iXS and the payoff di + riXN . So, coalition cannot do strictly

better by leaving the grand coalition but if they do split off they can allocate their payoff in

such a way that no member is strictly worse off.

Now, suppose that a coalition S has an incentive to part company with the grand

coalition N . So, there exists an allocation (d̃, r̃) ∈ IRS(Γ) such that each player i ∈ S

strictly prefers the payoff d̃i + r̃iXS to the payoff di + riXN . To keep this coalition in the

grand coalition the payoff to the members of S must increase. This can be done by giving

each member i ∈ S a deterministic amount of money δi. Hence, their payoff becomes

di + δi + riXN . The excess of coalition S then equals the minimal amount of money they

need so that they are just willing to stay in the grand coalition.

Next, suppose that a coalition S does not have an incentive to split off from the

grand coalition. Hence, this coalition receives more than they can achieve on their own.

Consequently, one can decrease the payoff of each member i ∈ S with a deterministic

amount δi. Then the excess equals the maximal amount of money that can be taken away

from this coalition such that they are still staying in the grand coalition.

Summarizing, the excess ES((d, r)) represents the minimum amount of money that

coalition S needs in order to be satisfied with the allocation (d, r). Moreover, if (d, r) and

(d′, r′) are allocations ofXN such that each player i ∈ S prefersdi+riXN to d′i+r
′
iXN then

ES((d, r)) < ES((d′, r′)). Hence, the excess decreases when each player i ∈ S improves

his payoff. So, in a specific way the excess ES((d, r)) describes how much coalition S is

satisfied with the allocation (d, r). Finally, since all players’ preferences are monotonically

increasing in the amount of money d they receive (see assumption (C3)) it is reasonable to

say that one coalition is more satisfied with a particular allocation than another coalition if

the first coalition needs less money to be satisfied than the latter one, or, in other words, if

the excess of the first coalition is less than the excess of the latter. This last observation

leads to the following definition of a nucleolus.

Let Γ = (N, (XS)S⊂N , (�∼i)i∈N) be a cooperative game with stochastic payoffs and let

ES((d, r)) = min
(d′,r′)∈PO∗S((d,r))

{
∑
i∈S

δi| ∀i∈S : (d′, r′)i ∼i (d, r)i + δi}. (2)
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describe the excess of coalition S at allocation (d, r) ∈ IRN(Γ). Next, denote by E((d, r))

the vector of excesses at allocation (d, r) and let θ ◦E((d, r)) denote the vector of excesses

ordered in a decreasing order. The nucleolus

N (Γ) of the game Γ ∈ CG(N) is then defined by

N (Γ) = {(d, r) ∈ IRN (Γ)|∀(d′,r′)∈IRN(Γ) : θ ◦ E((d, r)) ≤lex θ ◦ E((d′, r′))}, (3)

where≤lex is the lexicographic ordering. Next, we show that the nucleolus is a well defined

solution concept for the games discussed in this paper.

In proving the nonemptiness of the nucleolus N (Γ) we make use of the results stated

in Maschler, Potters and Tijs (1992). They introduced a nucleolus for a more a general

framework and showed that the nucleolus is nonempty if the domain is compact and the

excess functions are continuous. Thus, we have to show that IRN(Γ) is compact and

that ES((d, r)) is continuous in (d, r) for each (d, r) ∈ IRN (Γ) and each S ⊂ N . The

compactness of IRN(Γ) follows immediately from Proposition 2.6. The continuity proof

is a bit more complicated and consists of the following parts.

First we show that PO∗S((d, r)) is a nonempty compact subset of POS(Γ). Then we

introduce the following multifunction

ES((d, r)) = {
∑
i∈S

δi|∃(d′,r′)∈PO∗S((d,r)) : d′i + r′iXS ∼i di + riXN + δi}.

Hence, ES((d, r)) = minES((d, r)). In the next step we show that ES((d, r)) is a compact

subset of IR for each allocation (d, r) ∈ IRN(Γ). This implies that the minimum in

(2) exists. Subsequently, we show that this multifunction is both upper and lower semi

continuous, which then implies that the excess function ES is continuous.

Proposition 3.1 PO∗S((d, r)) is a nonempty compact subset of POS(Γ).

PROOF: That PO∗S((d, r)) is compact follows from the facts thatWS((d, r)) andBS((d, r))

are closed by the continuity condition (C1) and POS(Γ) is compact. To show that it is

nonempty let us distinguish two cases.
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First, letBS((d, r)) 6= ∅. Then there exists (d′, r′) ∈ IRS(Γ) such that d′i+r
′
iXS �∼idi+

riXS for all i ∈ S. Since (d′, r′) ∈ IRS(Γ) we know from Proposition 2.9 that there exists

(d̄, r̄) ∈ POS(Γ) such that d̄i + r̄iXS �∼id
′
i + r′iXS for all i ∈ S. Hence, (d̄, r̄) ∈ POS(Γ)

and (d̄, r̄) ∈ BS((d, r)). Consequently, (d̄, r̄) ∈ PO∗S((d, r)).

Second, let BS((d, r)) = ∅. Take (d̃, r̃) ∈ IS(Γ) such that d̃i + r̃iXS ∼i di + riXN for

all i ∈ S. From BS((d, r)) = ∅ it follows that (d̃, r̃) ∈ NPDS(Γ). Proposition 2.9 then

implies that there exists (d̄, r̄) ∈ POS(Γ) such that d̄i + r̄iXS ≺∼id̃i + r̃iXS for all i ∈ S.

Hence, (d̄, r̄) ∈ WS((d, r)) and, consequently, (d̄, r̄) ∈ PO∗S((d, r)). 2

Next, consider again the multifunction ES : IRN (Γ)→→IR defined by

ES((d, r)) = {
∑
i∈S

δi|∃(d′,r′)∈PO∗S((d,r)) : d′i + r′iXS ∼i di + riXN + δi}.

Proposition 3.2 Let (d, r) ∈ IRN(Γ). Then ES((d, r)) is a compact subset of IR.

PROOF: We have to show that ES((d, r)) is closed and bounded. That ES((d, r)) is bound-

ed follows from the compactness of PO∗S((d, r)) and the fact that for each (d′, r′) ∈

PO∗S((d, r)) the number δi is uniquely determined by conditions (C1) - (C2). To see

that ES((d, r)) is closed, let (
∑
i∈S δ

k
i )k∈IN be a convergent sequence4 in ES((d, r)) with

limit
∑
i∈S δi. We have to show that

∑
i∈S δi ∈ ES((d, r)). Therefore, let ((d̄k, r̄k))k∈IN

be a sequence in PO∗S((d, r)) such that d̄ki + r̄kiXS ∼i di + δki + riXN for all i ∈ S.

Since PO∗S((d, r)) is compact there exists a convergent subsequence ((d̄l, r̄l))l∈IN with limit

(d̄, r̄) ∈ PO∗S((d, r)). Take δ̄i ∈ IR such that d̄i + r̄iXS ∼i di + δ̄i + riXN for all i ∈ S.

Note that
∑
i∈S δ̄i ∈ ES((d, r)). The proof is finished if we can show that δi = δ̄i for all

i ∈ S. Therefore, let ε > 0 and i ∈ S. Define

V ε
i = {Y ∈ L(Γ)|d̄i + r̄iXS − ε ≺i Y ≺i d̄i + r̄iXS + ε}.

4Formally, it would be more correct to start with a convergent sequence (ak)k∈N in ES((d, r)). Then

ak ∈ ES((d, r)) and the definition of ES imply that there exist δki such that di + δki + riXN ∼i d′i + r′iXS

(i ∈ S) for some (d′, r′) ∈ PO∗S((d, r)) and
∑
i∈S δ

k
i = ak. Consequently, the sequence (ak)k∈IN can be

replaced by a sequence (
∑
i∈S δ

k
i )k∈IN.
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Since V ε
i is open by the continuity of �∼i, (d̄l, r̄l)→ (d̄, r̄) and d̄i + r̄iXS ∈ V ε

i there exists

Lε ∈ IN such that d̄li + r̄liXS ∈ V ε
i for all l > Lε. This implies that di + δli + riXN ∈ V ε

i

for all l > Lε. Since ε > 0 was arbitrarily chosen it follows that

lim
l→∞

(
di + δli + rliXN

)
= di + δi + riXN ∈ ∩ε>0V

ε
i .

Hence, di + δi + riXN ∼i d̄i + r̄iXS . Since by definition it holds that d̄i + r̄iXS ∼i

di + δ̄i + riXN it follows by assumption (C3) that δi = δ̄i. 2

Lemma 3.3 ES((d, r)) is upper semi continuous in (d, r) for all (d, r) ∈ IRN (Γ).

PROOF: Let ((dk, rk))k∈IN be a sequence in IRN(Γ) converging to (d, r). Take
∑
i∈S δ

k
i ∈

ES((dk, rk)) such that
∑
i∈S δ

k
i converges to

∑
i∈S δi. For upper semi continuity to be

satisfied it is sufficient to show that
∑
i∈S δi ∈ ES((d, r)).

First, take (d̄k, r̄k) ∈ PO∗S((d
k, rk)) such that d̄ki + r̄kiXS ∼i dki + δki + rkiXN for

all i ∈ S. Since ((d̄k, r̄k))k∈IN is a sequence in the compact set POS(Γ) there exists a

convergent subsequence ((d̄l, r̄l))l∈IN with limit (d̄, r̄) ∈ POS(Γ). Moreover, it holds that

d̄i + r̄iXS ∼i di + δi + riXN for all i ∈ S. To see this, take ε > 0 and i ∈ S. Define

V ε
i = {Y ∈ L(Γ)|d̄i + r̄iXS − ε ≺i Y ≺i d̄i + r̄iXS + ε}.

Since V ε
i is open by the continuity of �∼i, (d̄l, r̄l)→ (d̄, r̄) and d̄i + r̄iXS ∈ V ε

i there exists

Lε ∈ IN such that d̄li + r̄liXS ∈ V ε
i for all l > Lε. This implies that dli + δli + rliXN ∈ V ε

i

for all l > Lε. Since ε > 0 is arbitrary we have that

lim
l→∞

(
dli + δli + rliXN

)
= di + δi + riXN ∼i d̄i + r̄iXS .

The proof is finished if we can show that (d̄, r̄) ∈ PO∗S((d, r)). Therefore, take ε > 0

and define

W ε
S((d, r)) = {(d′, r′) ∈ IRS(Γ)|∀i∈S : d′i + r′iXS ≺∼idi + riXN + ε},

Bε
S((d, r)) = {(d′, r′) ∈ IRS(Γ)|∀i∈S : d′i + r′iXS �∼idi + riXN − ε},

PO∗εS ((d, r)) = (W ε
S((d, r)) ∪B

ε
S((d, r))) ∩ POS(Γ).
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FIGURE 3: A graphical representation of PO∗εS ((d, r)) and PO∗S((d
l, rl)).

We refer to the left figure of Figure 3 for a graphical interpretation of these sets. Note

that WS((d, r)) = ∩ε>0W
ε
S((d, r)), BS((d, r)) = ∩ε>0B

ε
S((d, r)) and PO∗S((d, r)) =

∩ε>0PO
∗ε
S ((d, r)). Furthermore, define

V ε = {Y ∈ L(Γ)S |∀i∈S : di + riXN − ε ≺i Yi ≺i di + riXN + ε}.

Since V ε is open by the continuity of �∼i, (dl, rl) → (d, r) and (di + riXN )i∈S ∈ V ε

there exists Lε ∈ IN such that (dli + rliXN )i∈S ∈ V ε for all l > Lε. This implies that

(dl, rl) ∈ W ε
S((d, r)) and (dl, rl) ∈ Bε

S((d, r)) for all l > Lε (see also the right figure in

Figure 3). Hence, WS((dl, rl)) ⊂ W ε
S((d, r)) and BS((dl, rl)) ⊂ Bε

S((d, r)) for all l > Lε.

Consequently, we have for all l > Lε that PO∗S((d
l, rl)) ⊂ PO∗εS ((d, r)). In particular, we

have (d̄l, r̄l) ∈ PO∗εS ((d, r)) for all l > Lε. Hence,

lim
l→∞

(d̄l, r̄l) = (d̄, r̄) ∈ ∩ε>0PO
∗ε
S ((d, r)) = PO∗S((d, r)). 2

Lemma 3.4 ES((d, r)) is lower semi continuous in (d, r) for all (d, r) ∈ IRN(Γ).



18

PROOF: Let ((dk, rk))k∈IN be a sequence converging to (d, r) and let
∑
i∈S δi ∈ ES((d, r)).

To prove lower semi continuity it suffices to show that there exists a sequence (
∑
i∈S δ

k
i )k∈IN

with
∑
i∈S δ

k
i ∈ ES((d

k, rk)) for all k ∈ IN such that
∑
i∈S δ

k
i converges to

∑
i∈S δi.

First, note that since IRN(Γ) is compact and ES is upper semi continuous that

ES(IRN(Γ)) = ∪(d,r)∈IRN(Γ)ES((d, r))

is a compact subset of IR. Second, note that if there exists a sequence (
∑
i∈S δ

k
i )k∈IN

with
∑
i∈S δ

k
i ∈ ES((d

k, rk)) for each k ∈ IN such that every convergent subsequence

(
∑
i∈S δ

l
i)l∈IN converges to

∑
i∈S δi then the compactness of ES(IRN(Γ)) implies that the

sequence (
∑
i∈S δ

k
i )k∈IN converges to

∑
i∈S δi.

Take (d̄, r̄) ∈ PO∗S((d, r)) such that d̄i + r̄iXS ∼i di + δi + riXN for all i ∈ S. Let

ε > 0 and define

V ε =

Y ∈ L(Γ)S

∣∣∣∣∣∣∣
∀i∈S : Yi �i d̄i + r̄iXS − ε or

∀i∈S : Yi ≺i d̄i + r̄iXS + ε

 ,
and

Cε =

Y ∈ L(Γ)S

∣∣∣∣∣∣∣
∀i∈S : Yi �∼id̄i + r̄iXS − ε or

∀i∈S : Yi ≺∼id̄i + r̄iXS + ε

 .
Note that V ε is open and Cε is closed by the continuity of �∼i for each i ∈ S. Next,

we show that if (dki + rkiXN )i∈S ∈ V ε then there exists (d̄k, r̄k) ∈ PO∗S((d
k, rk)) such

that (d̄ki + r̄kiXS)i∈S ∈ V ε. Therefore, let k ∈ IN be such that (dk, rk) ∈ V ε and let

(d̃, r̃) ∈ IS(Γ) be such that d̃i + r̃iXS ∼i dki + rkiXN for all i ∈ S . We distinguish the

following three cases.

First, suppose that (d̃, r̃) ∈ NPDS(Γ). Since (d̃i + r̃iXS)i∈S ∈ V ε it holds that

d̃i + r̃iXS �i d̄i + r̄iXS − ε for all i ∈ S. From (d̄ − 1
2
(ε, ε, . . . , ε), r̄) ∈ PDS(Γ) and

Proposition 2.9 it follows that there exists (d̄k, r̄k) ∈ POS(Γ) such that

d̄i + r̄iXS − 1
2
ε ≺∼i d̄

k
i + r̄kiXS ≺∼i d̃i + r̃iXS

for all i ∈ S. Thus, (d̄ki + r̄kiXS)i∈S ∈ V ε. Since d̃i + r̃iXS ∼i dki + rkiXN for all i ∈ S it

holds that (d̄k, r̄k) ∈WS((dk, rk)). Hence, (d̄k, r̄k) ∈ PO∗S((d
k, rk)).
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Second, suppose that (d̃, r̃) ∈ PDS(Γ) and that d̃i + r̃iXS ≺i d̄i + r̄iXS + ε for all

i ∈ S. Since the Pareto optimality of (d̄, r̄) implies that (d̄+ 1
2
(ε, ε, . . . , ε), r̄) ∈ NPDS(Γ)

it follows from Proposition 2.9 that there exists (d̄k, r̄k) ∈ POS(Γ) such that

d̃i + r̃iXS ≺∼i d̄
k
i + r̄kiXS ≺∼i d̄i + r̄iXS + 1

2
ε

for all i ∈ S. Thus, (d̄ki + r̄kiXS)i∈S ∈ V ε. Since d̃i + r̃iXS ∼i dki + rkiXN for all i ∈ S it

holds that (d̄k, r̄k) ∈ BS((dk, rk)). Hence, (d̄k, r̄k) ∈ PO∗S((d
k, rk)).

Finally, suppose that (d̃, r̃) ∈ PDS(Γ) and that d̃i + r̃iXS �i d̄i + r̄iXS − ε for all

i ∈ S. Then Proposition 2.9 implies that there exists (d̄k, r̄k) ∈ POS(Γ) such that

d̄i + r̄iXS − ε ≺∼i d̃i + r̃iXS ≺∼i d̄
k
i + r̄kiXS

for all i ∈ S. Thus, (d̄k, r̄k) ∈ BS((dk, rk)). Therefore we have that (d̄k, r̄k) ∈

PO∗S((d
k, rk)). Moreover, (d̄ki + r̄kiXS)i∈S ∈ V ε.

Now we are able to construct a sequence (
∑
i∈S δ

k
i )k∈IN with

∑
i∈S δ

k
i ∈ PO

∗
S((d

k, rk))

for each k ∈ IN such that each convergent subsequence converges to
∑
i∈S δi.

Let (εm)m∈IN be a strictly decreasing sequence such that εm > 0 for all m ∈ IN

and limm→∞ ε
m = 0. Hence, (V εm)m∈IN is a decreasing sequence in the sense that

V εm ⊂ V εm
′

if m > m′. Define V 0 = ∩ε>0V
ε. From (d̄, r̄) ∈ PO∗S((d, r)) it follows that

(di + riXN )i∈S ∈ V 0. Hence, (di + riXN )i∈S ∈ V ε for all ε > 0. Since (dk, rk) converges

to (d, r) there exists K1 ∈ IN such that for all k > K1 it holds that (dki + rkiXS)i∈S ∈ V ε1 .

Next, take k ∈ IN. If k ≤ K1 then take
∑
i∈S δ

k
i ∈ ES((d

k, rk)) arbitrary. If k > K1 we

distinguish the following two cases.

In the first case, suppose that (dki + rkiXN )i∈S ∈ V 0. Then (d̄, r̄) ∈ PO∗S((d
k, rk)) and

(d̄i + r̄iXS)i∈S ∈ V 0. So, we can take (d̄k, r̄k) equal to (d̄, r̄) (See the left figure of Figure

4 ).

In the second case, let (dki + rkiXN )i∈S 6∈ V 0. Then there exists m(k) ∈ IN such that

(dki + rkiXN )i∈S ∈ V εm(k)
\V εm(k)+1

. Subsequently, take (d̄k, r̄k) ∈ PO∗S((d
k, rk)) such

that (d̄ki + r̄kiXS)i∈S ∈ V εm(k)
(See the right figure of Figure 4, where the bold printed

curve represents the set of allocations that belong to both PO∗S((d
k, rk)) and V εm(k)

). That
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FIGURE 4: The choice of the allocation (dk, rk) for the two different cases.

such (d̄k, r̄k) exists can be seen as follows. Let (d′, r′) ∈ IS(Γ) be such that d′i + r′iXS ∼i

dki + rkiXN for all i ∈ S. Then either (d′, r′) ∈ PDS(Γ) or (d′, r′) ∈ NPDS(Γ).

For the case that (d′, r′) ∈ PDS(Γ) then (dki + rkiXN )i∈S ∈ V εm(k)
implies that (d′i +

r′iXS)i∈S ∈ V εm(k)
and, consequently, that

d′i + r′iXS �∼id̄i + r̄iXS − ε
m(k)

for all i ∈ S or

d′i + r′iXS ≺∼id̄i + r̄iXS + εm(k)

for all i ∈ S. If the first statement is true then it follows from Proposition 2.9 that there

exists (d̄k, r̄k) ∈ POS(Γ) such that d̄ki + r̄kiXS �∼id
′
i + r′iXS for all i ∈ S. This implies that

(d̄ki + r̄kiXS)i∈S ∈ V εm(k)
and (d̄k, r̄k) ∈ PO∗S((d

k, rk)). If the second statement is true then

it follows from (d′, r′) ∈ PDS(Γ) and Proposition 2.9 that there exists (d̄k, r̄k) ∈ POS(Γ)

satisfying

dki + rkiXN ∼i d
′
i + r′iXS ≺∼i d̄

k
i + r̄kiXS ≺∼i d̄i + r̄iXS + εm(k)

for all i ∈ S. Hence, (d̄k, r̄k) ∈ PO∗S((d
k, rk)) and (d̄ki + r̄kiXS)i∈S ∈ V εm(k)

.
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For the case that (d′, r′) ∈ NPDS(Γ) a similar argument holds.

Next, let δki be such that d̄ki + r̄kiXS ∼i dki + rkiXN + δki for all i ∈ S. Note that for

k > K1 we have
∑
i∈S δ

k
i ∈ ES((d

k, rk)) and (d̄ki + r̄kiXS)i∈S ∈ V 0 if (dki +rkiXN )i∈S ∈ V 0

and (d̄ki + r̄kiXS)i∈S ∈ V εm(k)
if (dki +rkiXN )i∈S 6∈ V 0. Since (

∑
i∈S δ

k
i )k∈IN is a sequence in

the compact set ES(IRS(Γ)) there exists a convergent subsequence (
∑
i∈S δ

l
i)l∈IN with limit∑

i∈S δ̃i. Corresponding to this convergent subsequence there is a sequence (d̄li + r̄liXS)l∈IN

such that (d̄li + r̄liXS)i∈S ∈ V 0 if (dli + rliXN )i∈S ∈ V 0 and (d̄li + r̄liXS)i∈S ∈ V εm(l)

if (dli + rliXN )i∈S 6∈ V 0. Moreover, it holds that d̄li + r̄liXS ∼i dli + rliXN + δli for

all i ∈ S. This implies that (dli + rliXN + δli)i∈S ∈ V 0 if (dli + rliXN )i∈S ∈ V 0 and

(dli + rliXN + δli)i∈S ∈ V
εm(l)

if (dli + rliXN )i∈S 6∈ V 0. From V 0 = ∩l∈INV
εm(l)

it follows

that

lim
l→∞

(dli + rliXN + δli)i∈S = (di + riXN + δ̃i)i∈S ∈ V
0.

This implies that di+riXN+δ̃i ∼i d̄i+r̄iXS for all i ∈ S. Since d̄i+r̄iXS ∼i di+riXN+δi

for all i ∈ S assumption (C3) implies that δ̃i = δi for all i ∈ S. Consequently, it holds that

lim
l→∞

∑
i∈S

δli =
∑
i∈S

δ̃i =
∑
i∈S

δi.

So, each convergent subsequence (
∑
i∈S δ

l
i)l∈IN converges to

∑
i∈S δi. Hence, (

∑
i∈S δ

k
i )k∈IN

converges to
∑
i∈S δi, which completes the proof. 2

Proposition 3.5 The excess function ES((d, r)) is continuous in (d, r) for each (d, r) ∈

IRS(Γ).

PROOF: Let ((dk, rk))k∈IN be a sequence in IRN(Γ) converging to (d, r) ∈ IRN(Γ).

We have to show that limk→∞ES((dk, rk)) = ES((d, r)). Since (ES((dk, rk)))k∈IN is a se-

quence in the compact set ES(IRN(Γ)) there exists a convergent subsequence

(ES((dl, rl)))l∈IN with limit η. Note that the upper semi continuity of ES implies that
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η ∈ ES((d, r)). Since ES is lower semi continuous there exists a sequence (
∑
i∈S δ

l
i)l∈IN

such that
∑
i∈S δ

l
i ∈ ES((d

l, rl)) for all l ∈ IN and liml→∞
∑
i∈S δ

l
i = ES((d, r)). Then

liml→∞ES((dl, rl)) ≤ liml→∞
∑
i∈S δ

l
i = ES((d, r))

≤ η = liml→∞ES((dl, rl)).

Hence, liml→∞
∑
i∈S ES((d

l, rl)) = ES((d, r)). Thus, every convergent subsequence of

(ES((dk, rk)))k∈IN converges to ES((d, r)). The compactness of ES(IRN(Γ)) then implies

that limk→∞ES((dk, rk)) = ES((d, r)). 2

Summarizing, it is shown that the domain IRN (Γ) is compact and that the excess

function ES is continuous for each coalition S ⊂ N . From the results stated in Maschler

et al. (1992) it then follows that the nucleolusN (Γ) as defined in (3) is a nonempty subset

of IRN(Γ) for each stochastic cooperative game Γ ∈ CG(N).

4 The nucleolus, the core and deterministic equivalents

For deterministic cooperative games it is known that the nucleolus as defined in Schmeidler

(1969) is a core allocation whenever the core is nonempty. A similar result can be derived

for the nucleolus N (Γ) introduced in this paper. For this, recall that an allocation (d, r) ∈

IRN(Γ) is a core allocation for the game Γ if for each coalition S ⊂ N there exists no

allocation (d̄, r̄) ∈ IRS(Γ) such that d̄i + r̄iXS �i di + riXN for all i ∈ S. The set of all

core allocations is denoted by Core(Γ).

Theorem 4.1 Let Γ ∈ CG(N). If Core(Γ) 6= ∅ thenN (Γ) ⊂ Core(Γ).

PROOF: Take (d, r) ∈ IRN (Γ) andS ⊂ N . Let (d̃S , r̃S) ∈ IS(Γ) be such that d̃Si +r̃Si XS ∼i

di + riXN for all i ∈ S. Moreover, let (d̄, r̄) ∈ PO∗S((d, r)) and δ ∈ IRS be such that

d̄i + r̄iXS ∼i di + riXN + δi for all i ∈ S and
∑
i∈S δi = ES((d, r)). Regarding the sign

of the excess, we distinguish three cases.



23

First, suppose (d̃S, r̃S) ∈ PDS(Γ)\POS(Γ). Then d̄i + r̄iXS �∼id̃
S
i + r̃Si XS for all

i ∈ S. Hence, δi ≥ 0 for all i ∈ S. Since (d̃S , r̃S) is not Pareto optimal there exists

j ∈ S such that d̄j + r̄jXS �j d̃Sj + r̃Sj XS ∼j dj + rjXN . Then δj > 0 and, consequently,

ES((d, r)) =
∑
i∈S δi > 0.

Second, suppose (d̃S, r̃S) ∈ POS(Γ). This implies that 0 ∈ ES((d, r)). Hence,

ES((d, r)) ≤ 0.

Third, suppose (d̃S, r̃S) ∈ NPDS(Γ)\POS(Γ). Then d̄i + r̄iXS ≺∼id̃
S
i + r̃Si XS for

all i ∈ S. Hence, δi ≤ 0 for all i ∈ S. Moreover, since (d̃S, r̃S) is not Pareto optimal

there exists j ∈ S such that d̄j + r̄jXS ≺j d̃Si + r̃Sj XS ∼j dj + rjXN . So, δj < 0 and,

consequently, ES((d, r)) =
∑
i∈S δi < 0.

Now we show that the excess vector corresponding to a core allocation is lexicograph-

ically smaller then the excess vector corresponding to an allocation that does not belong to

the core. This implies that the latter allocation cannot belong to the nucleolus of the game

whenever core allocations exist. Hence, the nucleolus must be a subset of the core.

Take (d, r) ∈ Core(Γ) and (d′, r′) 6∈ Core(Γ). Since (d, r) ∈ Core(Γ) it follows from

the core conditions that (d̃S , r̃S) ∈ NPDS(Γ) for all S ⊂ N . Hence, ES((d, r)) ≤ 0

for all S ⊂ N . Since (d′, r′) 6∈ Core(Γ) there exists a coalition S ⊂ N and an allo-

cation (d̂, r̂) ∈ IRS(Γ) for S such that d̂i + r̂iXS �i d′i + r′iXN for all i ∈ S. Hence,

(d̃′S, r̃′S) ∈ PDS(Γ)\POS(Γ) and, consequently, ES((d′, r′)) > 0. This implies that

θ ◦ ES((d, r)) <lex θ ◦ ES((d′, r′)). Thus (d′, r′) 6∈ N (Γ). 2

Next, consider the class MG(N) of cooperative games with stochastic payoffs intro-

duced in Suijs and Borm (1996). For this particular class of games it was shown that the

core of a game Γ = (N, (XS)S⊂N , ( �∼i)i∈N) is nonempty if and only if the core of a

corresponding deterministic game ∆Γ = (N, (xS)S⊂N , ( �∼i)i∈N) is nonempty. This de-

terministic game ∆Γ is called the deterministic equivalent of Γ. The preferences �∼i of a

game Γ ∈ MG(N) are such that there exists a functionmi : L1(IR)→ IR satisfying

(M1) for all X ∈ L1(IR) : X ∼i mi(X),

(M2) for all X, Y ∈ L1(IR) : X �∼iY if and only if mi(X) ≥ mi(Y ),



24

(M3) for all d ∈ IR : mi(d) = d,

(M4) for all X ∈ L1(IR) and all d ∈ IR : mi(X + d) = d+mi(X),

with L1(IR) the set of all random variables with finite expectation. Here,mi(X) represents

the deterministic equivalent of the random payoff X according to player i. So, player i is

indifferent between receiving the random payoffX and receiving the amount mi(X) with

certainty. Furthermore, the payoff xS of coalition S in the game ∆Γ is defined by

xS = max
(d,r)∈IRS(Γ)

∑
i∈S

mi(di + riXS),

for all S ⊂ N . Moreover, Suijs and Borm (1996) also showed that an allocation (d, r) ∈

IRS(Γ) is Pareto optimal if and only if for the corresponding allocation (mi(di+riXS))i∈S

in ∆Γ it holds that
∑
i∈Smi(di + riXS) = xS. Finally, note that �∼i satisfies conditions

(C2) and (C3) for all i ∈ N and that the preferences discussed in Example 2.3 and Example

2.4 satisfy (M1) - (M4). Moreover, if the utility functions discussed in Example 2.5 are

exponential then conditions (M1) - (M4) are also satisfied.

In the remainder of this section we show that the nucleolusN (∆Γ) of the deterministic

equivalent coincides with the nucleolus introduced by Schmeidler (1969). Moreover, we

show that an allocation (d, r) ∈ IRN (G) belongs to the nucleolus N (Γ) if and only if the

corresponding allocation (mi(di + riXN ))i∈N in the deterministic equivalent ∆Γ belongs

to the nucleolusN (∆Γ) of ∆Γ.

Let Γ ∈ CG(N) be such that conditions (M1)-(M4) are satisfied. For the deterministic

equivalent ∆Γ of Γ it holds that

IS(∆Γ) = {y ∈ IRS|∀i∈S : yi ≥ x{i}}

is the set of (non feasible) individually rational allocations for coalition S,

IRS(∆Γ) = {y ∈ IS(Γ)|
∑
i∈S

yi ≤ xS}

is the set of feasible individually rational allocations for S and

POS(∆Γ) = {y ∈ IRS(∆Γ)| 6 ∃y′∈IRS(∆Γ)∀i∈S : y′i > yi},
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is the set of Pareto optimal allocations of S. Obviously, IRS(∆Γ) and POS(∆Γ) are

compact. Next, note that for each allocation y ∈ IRN(∆Γ) and each S ⊂ N we have that

WS(y) = {y′ ∈ IRS(∆Γ)|∀i∈S : y′i ≤ yi},

BS(y) = {y′ ∈ IRS(∆Γ)|∀i∈S : y′i ≥ yi},

PO∗S(y) = (WS(y) ∪ BS(y)) ∩ POS(∆Γ).

So PO∗S(y) is the set of Pareto optimal allocations for S such that all members of S prefer

the allocation y to such a Pareto optimal allocation or all members of S prefer the Pareto

optimal allocation to y. The excess function ES : IRN(∆Γ)→ IR can now be rewritten as

ES(y) = min
y′∈PO∗S(y)

{
∑
i∈S

δi|∀i∈S : y′i = yi + δi}.

Since δi = y′i− yi and
∑
i∈S y

′
i = xS it follows that ES(y) = xS−

∑
i∈S yi. Hence,N (∆G)

coincides with the traditional nucleolus for the game ∆Γ.

Now, take (d, r) ∈ IRN(Γ). The excess of coalition S then equals

ES((d, r)) = min
(d′,r′)∈PO∗S((d,r))

{
∑
i∈S

δi|∀i∈S : d′i + r′iXS ∼i di + riXN + δi}

= min
(d′,r′)∈PO∗

S
((d,r))
{
∑
i∈S

δi|∀i∈S : mi(d
′
i + r′iXS) = mi(di + riXN + δi)}

= min
(d′,r′)∈PO∗

S
((d,r))
{
∑
i∈S

δi|∀i∈S : mi(d
′
i + r′iXS) = δi +mi(di + riXN )}

= min
(d′,r′)∈PO∗S((d,r))

∑
i∈S

(mi(d
′
i + r′iXS)−mi(di + riXN ))

= xS −
∑
i∈S

mi(di + riXN ) = ES((mi(di + riXN ))i∈N).

So, the excess of coalition S at allocation (d, r) equals the excess introduced by Schmeidler

(1969) of coalitionS at the corresponding allocation (mi(di+riXN ))i∈N in the deterministic

equivalent ∆Γ. Moreover, for each allocation (d, r) ∈ PON (Γ) in Γ the vector (mi(di +

riXN ))i∈N is an allocation of xN in ∆Γ and, vice versa, for each allocation y of xN in

∆Γ there exists an allocation (d, r) ∈ PON (Γ) in Γ such that mi(di + riXN ) = yi for all

i ∈ N . This result has the following three implications.

First, since the deterministic equivalent of a deterministic cooperative game is the de-

terministic game itself it follows that the nucleolusN coincides with Scmeidler’s nucleolus

on the class of deterministic cooperative games.
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Second, an allocation (d, r) belongs to the nucleolusN (Γ) of the game Γ if and only if

the corresponding allocation (mi(di + riXN ))i∈N belongs to the nucleolus N (∆Γ) of the

corresponding deterministic equivalent ∆Γ.

Third, the nucleolus N (∆Γ) is nonempty if IRN(∆Γ) 6= ∅. Hence, for all games

Γ ∈ MG(N) the nucleolus N (Γ) is nonempty if IRN(∆Γ) 6= ∅. This is in particular

interesting since Suijs and Borm (1996) also showed that the relation between stochastic

cooperative games Γ ∈ MG(N) and their deterministic equivalents ∆Γ also holds if the

following more general definition of an allocation is used. Instead of a pair (d, r) ∈ HS×∆S

an allocation of the random payoffXS is described by a pair (d, Y ) ∈ HS×L1(IR)S , where

Y is an S-dimensional vector of random variables such that
∑
i∈S Yi = XS . Furthermore,

note that the preferences discussed in Example 2.3, Example 2.4 and Example 2.5 are

not continuous on the set L1(IR) of all random variables with finite expectation. Hence,

condition (C1) is not satisfied in case this definition of an allocation is used. For a stochastic

cooperative game Γ ∈MG(N), however, the nucleolus still exists.

Example 4.2 Consider the following three player game Γ. Let −X{i} ∼ Exp(1) for

i = 1, 2, 3 and let XS =
∑
i∈SX{i} if |S| ≥ 2. So, each player individually faces a random

cost which is exponentially distributed with expectation equal to 1. The cost of a coalition

then equals the sum of the cost of the members of this coalition. Furthermore, all players

are expected utility maximizers with utility functions u1(t) = −e−0.5t, u2(t) = −e−0.33t

and u3(t) = −e−0.25t, respectively. For the deterministic equivalent mi it holds that

mi(di + riXS) = u−1
i (E(ui(di + riXS))). For the deterministic equivalent ∆Γ of Γ

we then get x{1} = −1.3863, x{2} = −1.2164, x{3} = −1.1507, x{1,2} = −2.2314,

x{1,3} = −2.1878, x{2,3} = −2.1582 and x{1,2,3} = −3.1800. The nucleolus N (∆Γ) of

this game is equal to (−1.0933,−1.0633,−1.0234). To determine the nucleolus N (Γ)

note that an allocation (d, r) is Pareto optimal if and only if r = 1
9
(2, 3, 4). Then the only

allocation (d, r) for which (mi(di + riXN ))i∈N = N (∆Γ) is the allocation (d∗, r∗) with

d∗ = (−0.3865,−0.0034, 0.3899) and r∗ = 1
9
(2, 3, 4). Hence, N (Γ) = {(d∗, r∗)}.
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Appendix A

For the following lemma stated in this appendix we use the following notation. Let

X, Y ∈ L(Γ) and let (dk)k∈IN and (rk)k∈IN be sequences in IR and [0, 1], respectively.

Denote by F , F k and G the probability distribution functions of X, dk + rkX and Y ,

respectively. Moreover, note that

F k(t) = IP({ω|dk + rkX(ω) ≤ t}) = IP({ω|X(ω) ≤ t−δk

rk
}) = F ( t−dk

rk
),

if rk 6= 0.

Lemma A.3 If F k w→ G then there exists d ∈ IR and r ∈ [0, 1] such that Y = d+ rX.

PROOF: First, since (rk)k∈IN is a sequence in [0, 1] we may assume without loss of gen-

erality that (rk)k∈IN converges to r ∈ [0, 1]. Second, note that F k w
→ G implies that

limk→∞ F
k(t) = G(t) for all t ∈ CG = {t ∈ IR|G is continuous in t}. Note that IR\CG is

a countable set.

Consider the following two cases.

I: r = 0. In this case we have thatY is a degenerate random variable, i.e, IP({ω|Y (ω) =

d}) = 1 for some d ∈ IR. Hence, F k w→ G implies that limk→∞ d
k = d.

II: r > 0. In this case we show that limk→∞ d
k = d for some d ∈ IR. Suppose that the

sequence (dk)k∈IN does not converge. Then there are three possibilities.

First, it holds that limk→∞ d
k = +∞. Then limk→∞ F

k(t) = limk→∞ F ( t−dk
rk

) = 0

for all t ∈ CG. Consequently, it must hold that G(t) = 0 for all t ∈ CG. Clearly, this

is a contradiction.

Second, it holds that limk→∞ d
k = −∞. Then limk→∞ F

k(t) = limk→∞ F ( t−dk
rk

) = 1

for all t ∈ CG. Consequently, it must be true that G(t) = 1 for all t ∈ CG. Again,

this is a contradiction.

Third, there exist convergent subsequences (dl)l∈IN and (dm)m∈IN with limits d and

d̄, respectively, such that d > d̄. Let t1 ∈ CG. Since limk→∞ F
k(t1) = G(t1)
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it follows that liml→∞ F
l(t1) = liml→∞ F ( t1−d

l

rl
) = G(t1) and limm→∞ F

m(t1) =

limm→∞ F ( t1−d
m

rm
) = G(t1). So, liml→∞ F ( t1−d

l

rl
) = limm→∞ F ( t1−d

m

rm
). From the

fact that probability distribution functions are nondecreasing and continuous from

the right it follows that F is constant on the interval [ t1−d
r
, t1−d̄

r
). To be more precisely,

F (t) = liml→∞ F ( t1−d
l

rl
) for all t ∈ [ t1−d

r
, t1−d̄

r
). This implies that G is constant on the

interval [t1, t1+d−d̄). To see this, take τ ∈ [t1, t1+d−d̄). IfG is continuous in τ then

it follows from F k w
→ G that G(τ ) = liml→∞ F ( τ−dl

rl
) = limm→∞ F ( τ−dm

rm
). Since

either τ−d
r
∈ [ t1−d

r
, t1−d̄

r
) or τ−d̄

r
∈ [ t1−d

r
, t1−d̄

r
) it holds that G(τ ) = liml→∞ F ( t1−d

l

rl
).

If G is not continuous in τ then there exists τ1, τ2 ∈ CG such that t1 ≤ τ1 <

τ < τ2 < t1 + d − d̄. Hence, by the same argument as above we have that

G(τ1) = G(τ2) = liml→∞ F ( t1−d
l

rl
). Since G is nondecreasing it holds that G(τ1) ≤

G(τ ) ≤ G(τ2). Thus G(τ ) = liml→∞ F ( t1−d
l

rl
). Consequently, G is constant on the

interval [t1, t1 + d− d̄).

Next, take t ∈ [t1, t1 + d− d̄). By the same argument as above it follows that F is

constant on [ t−d
r
, t−d̄
r

) and thatG is constant on [t, t+ d− d̄). Hence,G is constant on

the interval [t1, t1 + 2(d− d̄)). Repeating this argument yields that G is constant on

(t1,∞). Finally, since this holds for all t1 ∈ CG it follows that G is constant on IR.

Obviously, this is a contradiction.

Next, letFd denote the probability distribution function of d+rX. Since limk→∞ d
k = d

and limk→∞ r
k = r it follows that F k w

→ Fd. Hence, Fd(t) = G(t) for all t ∈ CG. Since

Fd and G are continuous from the right it follows that Fd(t) = G(t) for all t ∈ IR. Conse-

quently, Y = d+ rX. 2

Lemma A.4 The preference relation �∼i arising from an expected utility maximizing player

satisfies the continuity condition (C1).

PROOF: Let X be random variable and let (dki + rkiX)k∈IN be a convergent sequence with

limit X̄. From Lemma A.3 we know that there exists di and ri such that limk→∞ d
k
i = di,
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limk→∞ r
k
i = ri and X̄ = di+riXS. It is sufficient to show that limk→∞E(ui(dki +r

k
iX)) =

E(ui(di + riX)).

Suppose that (E(ui(d
k
i + rkiX)) does not converge toE(ui(di + riX)). Then there are

three posssibilities

(i) there exists ε > 0 and Kε ∈ IN such that E(ui(dki + rkiX)) < E(ui(di + riX)) − ε

for all k ≥ Kε,

(ii) there exists ε > 0 and Kε ∈ IN such that E(ui(dki + rkiX)) > E(ui(di + riX)) + ε

for all k ≥ Kε.

(iii) there exists subsequences (E(ui(dmi + rmi X)))m∈IN and (E(ui(dli + rliX)))l∈IN such

that eitherE(ui(dmi +rmi X)) < E(ui(di+riX))−ε for some ε > 0 and allm > Mε

or E(ui(dli + rliX)) > E(ui(di + riX)) + ε for some ε > 0 and all l > Lε or both.

In the first case, define d̄ki = infl≥k dki and r̄ki = infl≥k rki if X ≥ 0 and r̄ki = supl≥k r
k
i

if X ≤ 0 for all k ∈ IN. Then (d̄ki + r̄kiX(ω))k∈IN is an increasing sequence with limit

d + rX(ω) for all ω ∈ Ω. Moreover, d̄ki + r̄kiX(ω) ≤ dki + rkiX(ω) for all k ∈ IN and all

ω ∈ Ω. Hence, E(ui(d̄ki + r̄kiX)) ≤ E(ui(dki + rkiX)) for all k ∈ IN. Next, let V ⊂ IR be

a compact set and Kε ∈ IN such that∣∣∣∣∫
V c
ui(di + rit)dF (t)

∣∣∣∣ < 1
4
ε

and ∣∣∣∣∫
V c
ui(d̄

Kε

i + r̄K
ε

i t)dF (t)
∣∣∣∣ < 1

4
ε,

where V c denotes the complement of V and F the probability distribution function of X.

Then

0 ≤
∫
V c
ui(di + rit)dF (t)−

∫
V c
ui(d̄

Kε

i + r̄K
ε

i t)dF (t) =∣∣∣∣∫
V c
ui(di + rit)dF (t)−

∫
V c
ui(d̄

Kε

i + r̄K
ε

i t)dF (t)

∣∣∣∣ < 1
2
ε.

Since (d̄ki )k∈IN and (r̄ki )k∈IN are increasing sequences and ui is an increasing function we

have that

0 ≤
∫
V c
ui(di + rit)dF (t)−

∫
V c
ui(d̄

k
i + r̄ki t)dF (t) < 1

2
ε,
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for all k ≥ Kε. The compactness of V implies that there exists Lε ≥ Kε such that

0 ≤
∫
V
ui(di + rit)dF (t)−

∫
V
ui(d̄

k
i + r̄ki t)dF (t) < 1

2
ε,

for all k ≥ Lε. Hence,

0 ≤
∫ ∞
−∞

ui(di + rit)dF (t)−
∫ ∞
−∞

ui(d̄
k
i + r̄ki t)dF (t) < ε,

for all k ≥ Lε. This implies that∫ ∞
−∞

ui(di + rit)dF (t)− ε <
∫ ∞
−∞

ui(d̄
k
i + r̄ki t)dF (t) ≤

∫ ∞
−∞

ui(d
k
i + rki t)dF (t),

for all k ≥ Lε. This contradicts the fact that∫ ∞
−∞

ui(d
k
i + rki t)dF (t) <

∫ ∞
−∞

ui(di + rit)dF (t)− ε

for all k ≥ Lε.

For the second case, one can derive a contradiction in a similar way as for the first

case. Finally, in the third case a contradiction can be derived by applying the argument of

the first two cases to the appropriate subsequences. Hence, limk→∞E(ui(dki + rkiX)) =

E(ui(di + riX)). 2
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Appendix B

PROOF OF PROPOSITION 2.6: Since IRS(Γ) ⊂ IS(Γ) ⊂ IRS × IRS it is sufficient to prove

that IRS(Γ) is closed and bounded in IRS × IRS . Since

IRS(Γ) = {(d, r) ∈ IS(Γ)|
∑
i∈S

di ≤ 0}

and IS(Γ) is closed by the continuity of �∼i for all i ∈ S it follows that IRS(Γ) is closed.

To see that IRS(Γ) is bounded, define for each i ∈ S and each ri ∈ [0, 1]

di(ri) = min{di|di + riXS �∼iX{i}}.

Note that di(ri) exists by assumptions (C1) and (C2) and that di(ri) + riXS ∼i X{i}. To

show that minri∈[0,1] di(ri) exists it suffices to show that di(ri) is continuous in ri. Therefore,

consider the sequence (rki )k∈IN with rki ∈ [0, 1] and limk→∞ r
k
i = ri. By definition we have

for all k ∈ IN that di(r
k
i ) + rkiXS ∼i X{i}. Hence, di(r

k
i ) + rkiXS ∼i di(ri) + riXS for all

i ∈ S. Since �∼i is continuous it follows that

lim
k→∞

(
di(r

k
i ) + rkiXS

)
= lim

k→∞
di(r

k
i ) + riXS ∼i di(ri) + riXS

Then assumption (C3) implies that limk→∞ di(r
k
i ) = di(ri). Consequently, di(ri) is con-

tinuous in ri and

di = min
ri∈[0,1]

di(ri)

exists and is finite for all i ∈ S.

Since (d, r) ∈ IRS(Γ) implies that di+riXS �∼iX{i} for all i ∈ S it follows by condition

(C3) that di ≥ di for all i ∈ S. Hence, (d, r) ∈ IRS(Γ) implies that

d ∈ {d̃ ∈ IRS |∀i∈S : d̃i ≥ di,
∑
i∈S

d̃i ≤ 0}

and r ∈ ∆S. Since both sets are bounded, we have that IRS(Γ) is bounded. 2

PROOF OF PROPOSITION 2.7: Since POS(Γ) ⊂ IRS(Γ) and IRS(Γ) is compact it is suf-

ficient to show that POS(Γ) is closed in IRS(Γ). Let (d, r) ∈ IRS(Γ) be such that

(d, r) 6∈ POS(Γ). Then there exists (d̄, r̄) ∈ IRS(Γ) such that d̄i + r̄iXS �i di + riXS
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for all i ∈ S. Next, consider the set {(d′, r′) ∈ IRS(Γ)|d′i + r′iXS ≺i d̄i + r̄iXS}. By

the continuity of �∼i this set is open in IRS(Γ). Indeed, by the continuity of �∼i we have

that {Y ∈ L(Γ)S |∃i∈S : Yi �∼id̄i + r̄iXS} is closed. Hence, Proposition 2.6 implies that

{(d′, r′) ∈ IRS(Γ)|∃i∈S : d′i + r′iXS �∼id̄i + r̄iXS} is closed in IS(Γ). Hence, it is also

closed in IRS(Γ). Consequently, {(d′, r′) ∈ IRS(Γ)|∀i∈S : d′i + r′iXS ≺i d̄i + r̄iXS}must

be open in IRS(Γ). Since (d, r) belongs to the latter set there exists an open neighbourhood

O of (d, r) in IRS(Γ) such that O ⊂ {(d′, r′) ∈ IRS(Γ)|∀i∈S : d′i + r′iXS ≺i d̄i + r̄iXS}.

This implies that (d̃, r̃) 6∈ POS(Γ) whenever (d̃, r̃) ∈ O. Hence, IRS(Γ)\POS(Γ) is open

in IRS(Γ) and, consequently, POS(Γ) is closed in IRS(Γ). 2

PROOF OF PROPOSITION 2.9: Let (d, r) ∈ PDS(Γ) and (d̃, r̃) ∈ NPDS(Γ). Without

loss of generality we may assume that (d, r) ∈ IRS(Γ).5 Take δi ∈ IR be such that

di + δi + riXS ∼i d̃i + r̃iXS . Note that δi ≥ 0 by condition (C3). Next, take r̄ ∈ ∆S

and t ∈ [0, 1]. Let d̄i(r̄, t) be such that d̄i(r̄, t) + r̄iXS ∼i di + tδi + riXS. Note that the

allocation (d̄(r̄, t), r̄) is feasible if and only if
∑
i∈S d̄i(r̄, t) ≤ 0. First, we show that d̄i(r̄, t)

is continuous in (r̄, t).

Let ((r̄k, tk))k∈IN be a convergent sequence with limit (r̄, t). We have to show that

limk→∞ d̄i(r̄
k, tk) = d̄i(r̄, t). Note that d̄i(r̄k, tk)+ r̄kiXS ∼i di+ tkδi+riXS for all k ∈ IN.

Define for ε > 0

V ε
i = {Y ∈ L(Γ)|di + tδi + riXS − ε ≺i Y ≺i di + tδi + riXS + ε}.

Since tk → t there exists Kε ∈ IN such that di + tkδi + riXS ∈ V ε
i for all k > Kε.

Consequently, we have that d̄i(r̄k, tk) + r̄kiXS ∈ V ε
i for all k > Kε. This implies that

limk→∞

(
d̄i(r̄k, tk) + r̄kiXS

)
∈ ∩ε>0V

ε
i . So,

lim
k→∞

(
d̄i(r̄

k, tk) + r̄kiXS

)
= lim

k→∞
d̄i(r̄

k, tk) + r̄iXS ∼i di + tδi + riXS .

Since d̄i(r̄, t)+r̄iXS ∼i di+tδi+riXS it follows from condition (C3) that limk→∞ d̄i(r̄k, tk) =

d̄i(r̄, t).

5If (d, r) 6∈ IRS(Γ) then there exists (d′, r′) ∈ IRS(Γ) such that d′i + r′iXS �i di + riXS for all i ∈ S.

If δ′i < 0 is such that d′i+ δ′i + r′iXS ∼i di + riXS for all i ∈ S then (d′+ δ′, r′) is still a feasible allocation.

Thus, (d′+ δ′, r′) ∈ IRS(Γ). Continuing the proof with the allocation (d, r) replaced by (d′+ δ′, r′) would

yould the same result.
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Next, define f(t) = minr̄∈∆S

∑
i∈S d̄i(r̄, t) for all t ∈ [0, 1]. Then f is a continuous

function. Moreover, since (d, r) ∈ IRS(Γ) and d̄i(r, 0) = di for all i ∈ S it follows

from the feasibility of (d, r) that f(0) ≤
∑
i∈S d̄i(r, 0) =

∑
i∈S di ≤ 0. Furthermore,

since di + δi + riXS ∼i d̃i + r̃iXS for all i ∈ S and (d̃, r̃) ∈ NPDS(Γ) it follows that

(d + δ, r) ∈ NPDS(Γ). This implies that f(1) ≥ 0. For, if f(1) < 0 then there exists

r∗ ∈ ∆S such that
∑
i∈S d̄i(r

∗, 1) < 0 and d̄i(r∗, 1) + r∗iXS ∼i di + δi + riXS for all i ∈ S.

Consequently, the allocation yielding the payoffs

d̄i(r
∗, 1) − 1

|S|

∑
i∈S

d̄i(r
∗, 1) + r∗iXS

for each i ∈ S is feasible and preferred to di + δi + riXS by all players i ∈ S. Clearly, this

contradicts the fact that (d + δ, r) ∈ NPDS(Γ). Thus, f(0) ≤ 0 ≤ f(1). The continuity

of f then implies that there exists t̂ such that f(t̂) = 0.

Let r̂ ∈ ∆S be such that
∑
i∈S d̄i(r̂, t̂) = 0. Then the allocation (d̄(r̂, t̂), r̂) is Pareto

optimal. To see this, first note that
∑
i∈S d̄i(r̄, t̂) ≥ 0 for all r̄ ∈ ∆S. Second, note that the

definition of d̄i(r̄, t) implies that

d̄i(r̂, t̂) + r̂iXS ∼i d̄i(r̄, t̂) + r̄iXS (4)

for all i ∈ S and all r̄ ∈ ∆S. Next, take r̄ ∈ ∆S. If
∑
i∈S d̄i(r̄, t̂) > 0 then the allocation

(d̄(r̄, t̂), r̄) is not feasible. From expression (4) it then follows that there exists no feasible

allocation (d̄, r̄) which all players i ∈ S prefer to the allocation (d̄(r̂, t̂), r̂).

If
∑
i∈S d̄i(r̄, t̂) = 0 then the allocation (d̄(r̄, t̂), r̄) is feasible. Moreover, an allocation

(d̄, r̄) that all players i ∈ S prefer to (d̄(r̄, t̂), r̄) must be infeasible by condition (C3) and

expression (4). Hence, there exists no feasible allocation (d̄, r̄) which all players i ∈ S

prefer to (d̄(r̂, t̂), r̂). Consequently, (d̄(r̂, t̂), r̂) is Pareto optimal. 0 ≤ t̂ ≤ 1 then implies

that

di + riXS ≺∼i d̄i(r̂, t̂) + r̂iXS ≺∼i di + δi + riXS ∼i d̃i + r̃iXS

for all i ∈ S. 2
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