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Abstract

If managers are reluctant to fully adjust dividends to changes in earnings, stock

returns and changes in the dividend yield will tend to be negatively correlated.

When this is the case, stock returns will exhibit positive autocorrelation, or mo-

mentum. This paper studies the pricing of options in such a situation, within a new

model in which the dividend yield is an a¢ ne function of past stock returns. The

model accommodates momentum in stock returns under complete markets, and,

moreover, it renders preference-free formulas for European options. A momentum-

inducing dividend yield implies that calls will be overpriced (underpriced) relative

to puts after stock price increases (declines), a prediction in line with the �ndings

of recent empirical research in �nance, and that the Black-Scholes formula with

constant dividend yield underprices out-of-the money options.
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1 Introduction

If a stock pays a stochastic dividend, the correlation between changes in the dividend

yield and the returns on the stock will at least partially determine the autocorrelation of

stock returns. A positive correlation between returns and the dividend yield will induce

return mean reversion; a negative correlation between returns and the dividend yield

will induce return continuation, or momentum. In reality, stock returns and changes in

the dividend yield are negatively correlated, which can be explained by the reluctance

of managers to fully adjust dividends to changes in earnings (see Lintner (1956)). As

a consequence of this managerial behavior, the returns on stocks paying a stochastic

dividend may exhibit a tendency to be positively autocorrelated.

Since the seminal work of Merton (1973), option valuation models of dividend paying

assets have usually assumed a constant dividend yield. This assumption can be justi�ed

in the case on an individual stock, because options are relatively short-lived contracts and

dividends are unlikely to change much during the life of an option. It is less appropriate

for an index, because there will normally be a random �ow of dividends paid on the index

underlying stocks even over a short period of time. Moreover, Harvey and Whaley (1992)

report that the assumption of a constant dividend yield, in the case of an index, can lead

to large pricing errors, and Broadie, Detemple, Ghysels and Torres (2000) document that

a stochastic dividend yield may partially a¤ect the early exercise decision of American

options.

Other consequences of a stochastic dividend yield on option pricing are also worth

exploring. If the dividend yield induces momentum, the variance of stock returns will

be larger than the variance corresponding to a random walk, and so the Black-Scholes

model will underprice options at all maturities. Moreover, the past performance of the

stock, through its in�uence on the dividend yield, may a¤ect the expected return on

the stock under the risk-neutral measure. If this happens, calls will look overpriced

(underpriced), and puts underpriced (overpriced), relative to Black Scholes, after a row

of positive (negative) returns.

These issues have more than a mere theoretical interest. In a recent paper, Amin,

Coval and Seyhun (2004) �nd evidence that past returns on the S&P100 index in�uence

OEX option prices. They document that violations of put-call parity condition (for

American options) depend on stock market momentum. In particular strongly positive

(negative) past market returns lead to these violations by increasing call (put) prices.

They also report that put-call volatility spreads depend on past market returns, with calls
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relatively overpriced after large stock market increases, and puts relatively overpriced

after large stock market declines.

In this paper I show that these empirical �ndings can be accounted for by an option

pricing model with a stochastic dividend yield. To study this issue, I introduce a model

in which the dividend yield is an a¢ ne function of past index performance. The model

accommodates momentum in stock returns under complete markets, and it has the stan-

dard Black-Scholes (1973) model as a special case. Moreover, the model exhibits depen-

dence of expected returns on past stock performance under the risk-neutral measure, and

renders preference-free formulas for European options. In line with Amin et al. (2004)

empirical �ndings, the model predicts that calls will be overpriced (underpriced) relative

to puts after stock market increases (declines), and that put-call volatility spreads will

be a¤ected likewise by stock price performance. The price e¤ects are more pronounced

for out-of-the-money options. In particular, the model prices out- of-the-money calls and

puts uniformly above the standard Black-Scholes formula, with call (put) price di¤er-

ences increasing (decreasing) with stock performance. These di¤erences are economically

signi�cant. For example, suppose that the annual interest rate is 5%, the current stock

price is 40, and the strike price is 45. With a 20% annual returns volatility and a 4%

constant dividend yield, the Black-Scholes price of a 6-month call, under the random

walk assumption, is 0.7073. Under a 4% mean stochastic dividend yield inducing a �rst

autocorrelation of monthly returns as low as 1.7%, the price of the same call is 0.7303

(3.26% di¤erence) after a 5% decline in the stock price, and 0.7618 (7.71% di¤erence)

after a 5% increase in the stock price. These results suggest that a momentum generating

dividend yield may partially explain known biases of the Black-Scholes model.

The key assumption of the model introduced in this paper is that the dividend yield

is an a¢ ne function of a weighted sum of past stock returns. This assumption makes

changes in the dividend yield perfectly negatively correlated with spot returns, and it is

aimed to capture the empirical fact that when stock prices move, dividends follow but

at a slower pace. As an example, in the postwar period the index S&P500, on which

many options are written, exhibits as correlation between index returns and changes in

the dividend yield of -90.5%, so a perfect negative correlation, although strong, seems

to be a reasonable assumption1. More importantly, this assumption leads to closed form

solutions for option prices, which, in the case of the model studied in this paper, are

preference-free and therefore potentially implementable.

1The correlation is calculated on monthly returns from 1-1946 to 12-2005. Data is taken from the
Shiller database (http://www.econ.yale.edu/~shiller/data.htm).
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The literature on option pricing with stochastic dividend yield is scarce. Geske (1978)

was the �rst to derive an option pricing formula when the underlying stock has a sto-

chastic dividend yield, and to point out that a major channel through which stochastic

dividends may a¤ect the option price is their impact on the variance of stock returns.

However, there are important di¤erences between Geske�s model and mine. First, due to

market incompleteness (he assumes that stock returns and dividend yield are imperfectly

correlated) Geske (1978) must rely on an equilibrium argument (Rubinstein (1976)) to

obtain the option formula, which depends on the CAPM market price of risk. Second,

Geske (1978) does not consider the possible impact of past stock performance on option

prices. Finally, although he suggests that a stochastic dividend yield may partly account

for Black-Scholes biases, Geske (1978) does not pursue systematically the issue in his

paper.

Lioui (2006) discusses derivative valuation of a stock with a stochastic dividend yield

under complete markets. However, one of the main points in Lioui (2006) is that, even

under market completeness, the stochastic dividend yield complicates the implementation

of option formulas, because it is necessary to compute a risk premium. In this paper

I �nd a parameterization of the dividend yield leading to option prices for which no

risk premium must be estimated, which suggests that Lioui�s (2006) results may not be

general. Moreover, Liuoi (2006) discusses neither momentum, nor the possible impact of

past stock performance on options pricing, as this paper does.

Another related paper is Lo and Wang (1995), who study option pricing when stock

returns are predictable. Lo and Wang (1995) argue that predictability will have an e¤ect

on option pricing through the estimation of the variance of stock returns. If returns are

predictable (and then autocorrelated), the estimate of the instantaneous variance can

be seriously mispeci�ed if it is computed under the wrong assumption that the stock

price follows a random walk. In particular, the variance will be underestimated when

stock returns are negatively autocorrelated, and overestimated when stock returns are

positively autocorrelated. Note that this implies that Black-Scholes underprices options

when returns exhibit mean reversion, and overprices options when returns exhibit mo-

mentum. Lo and Wang (1995) assume a nondividend paying stock. In contrast, in this

paper predictability e¤ects are induced by a stochastic dividend yield, and because of

this the pricing consequences di¤er strongly from the pricing consequences derived in Lo

and Wang (1995).

The structure of the paper is as follows. The model is presented in section 2 (some

mathematical derivations are included in an Appendix at the end of the paper). The price
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distribution under the martingale measure is obtained in section 3. Option prices are

derived in section 4. Section 5 presents numerical results. Finally, section 6 concludes.

2 Stock price dynamics

Let�s assume a frictionless �nancial market in which trading is continuous. The stock

price St satis�es the following di¤erential equation:

dSt
St

= (�� �t) dt+ �dWt; (1)

where � is the total instantaneous expected return, �t is the stochastic dividend yield,

and � is the instantaneous return volatility. The only source of risk in the economy is a

standard Wiener process, Wt, de�ned on a �ltered probability space (
;z;�).

Let�s now de�ne st = log (St) : Then, from equation (1):

dst =

�
�� 1

2
�2 � �t

�
dt+ �dWt; (2)

Now de�ne mt as a weighted sum of past stock log returns, as:

mt =

Z t

0

e�!(t�u)dsu; (3)

where ! � 0 determines the weight of past returns. Next, to capture the dependence of
the dividend yield on the price performance of the stock, let�s assume that the dividend

yield is an a¢ ne function of mt in the following way:

�t = � � �mt; (4)

where � is a constant and � � 0 is the loading of performance on the dividend yield.

If � = 0; we have a constant dividend yield. On the other hand, � > 0 makes the

dividend yield negatively related to past stock performance. This is aimed to capture

that dividends move in the direction of returns, but at a slower pace, a stylized fact that

can be explained by the reluctance of managers to fully adjust dividends to changes in

earnings2. By making explicit the dependence of the dividend yield on stock returns,

2For an early paper showing a model of partial adjustment of dividends to changes in earnings, see
Lintner (1956)
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equation (4) implies that past stock performance will a¤ect the prices of options, an

empirical fact �rst documented in Amin et al. (2004).

After these de�nitions, equation (2) can be rewritten as:

dst =

�
�� 1

2
�2 � �

�
dt+ �mtdt+ �dWt; (5)

Note that equations (3) and (5) determine endogenously the dynamics of mt: Di¤erenti-

ating both sides of equation (3) gives:

dmt = dst � !mtdt; (6)

which, after inserting equation (5), becomes:

dmt = � (! � �) (mt � �) dt+ �dWt; (7)

where � = �� 1
2
�2��

!�� : That is, mt follows an Ornstein-Uhlenbeck process with long run

mean � and mean reversion speed ! � �: To guaranty that the mt process is stationary,

the restriction !� � > 0 must be imposed. Equations (5) and (7) describe the evolution
of the stock price and the dividend yield. Note that, although (7) depends on the history

of the stock, the system (St;mt) is Markovian.

By construction, the dividend yield is instantaneously perfectly correlated to stock

returns, and this correlation is negative. As pointed out above, approximation is rea-

sonable for indices such as the S&P500, which has a correlation between changes in the

dividend yield and index returns of about -90%. Stock returns will show continuation, or

positive autocorrelation, when they are negatively correlated to changes in the dividend

yield. The following lemmas show this formally. First, de�ne � -period returns as:

�t+� = st+� � st:

Then, integrating equation (5) gives:

�t+� =
!

! � �

�
�� � � 1

2
�2
�
� +

�

! � � (mt � �)
�
1� e�(!��)�

�
+ (8)

�

Z t+�

t

�
1 +

�

! � �
�
1� e�(!��)(t+��u)

��
dWu:
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From equation (8) it is possible to calculate the unconditional variance of �t+� :

V ar (�t+� ) =
�2

(! � �)2
�
!2� � 2�

! � �

�
! � �

2

��
1� e�(!��)�

��
;

and the covariance between �t and �t+� (see the Appendix for details on the derivations

of these two equations):

Cov (�t; �t+� ) =
�2

(! � �)2
�

! � �

�
! � �

2

��
1� e�(!��)�

�2
:

Therefore, the autocorrelation of � -period returns can be expressed as:

� (�t; �t+� ) =

�
!��

�
! � �

2

� �
1� e�(!��)�

�2
!2� � 2�

!��
�
! � �

2

�
(1� e�(!��)� )

: (9)

The following two lemmas show that � > 0, that is, negative correlation between

changes in the convenience yield and stock returns is a su¢ cient condition for momentum.

Lemma 1 demonstrates that if � > 0 the unconditional variance of � -period returns is

larger than the variance corresponding to the random walk (� = 0) for � > 0: The second

lemma shows that the sign of the �rst autocorrelation of stock returns is equal to the

sign of �:

Lemma 1: If � > 0; V ar (�t+� ) � �2�: The inequality is strict for � > 0:

Proof: Write:

V ar (�t+� ) = �
2�
!2 � 2�

�
! � �

2

� (1�e�(!��)�)
(!��)�

(! � �)2
:

If � = 0; V ar (�t+� ) = �2� = 0: So it is necessary to show that for � > 0:

!2 � 2�
�
! � �

2

� (1�e�(!��)�)
(!��)�

(! � �)2
> 1:

Note that this follows from the fact that for � > 0:�
1� e�(!��)�

�
(! � �) � < 1:
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Then, for � > 0:

!2 � 2�
�
! � �

2

� �
1� e�(!��)�

�
(! � �) � > !2 � 2�

�
! � �

2

�
= (! � �)2 :

Therefore:

V ar (�t+� ) > �
2�
(! � �)2

(! � �)2
= �2�;

and the lemma is proved.

�

Note that V ar (�t+� ) t �2� for � t 0; and that for large �; V ar (�t+� ) t �2�
�

!
!��

�2
>

�2�:

Lemma 2: � > 0 implies positive autocorrelation of returns.

Proof: Note that from ! � � > 0 we have that:

sign Cov (�t; �t+� ) = sign �:

Also, from Lemma 1, the denominator in (9) is positive. Therefore:

sign � (�t; �t+� ) = sign �;

and this completes the proof of the lemma.

�

Momentum also implies that random shocks have great persistence in the long run.

To see this, note that, in equation (8), the expression in the integral inside the brackets

gives the "term structure of shocks". A shock that occurred at t has a residual impact on

st+� of 1� �
!��

�
1� e�(!��)�

�
: As � grows without bound, this residual impact converges

to:

1 +
�

! � � =
!

! � � � 1: (10)

Assume ! > 0: If � = 0; the stock price is a random walk. In this case, shocks have

permanent e¤ects, and their residual impact is exactly 1. In contrast, when � > 0, the

residual impact of a shock experienced at t, as � grows without bound, is !
!�� > 1: This
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means that shocks further propagate in the long run. This is the case of momentum.

The �nancial market is naturally complete through the dependence of mt on Wt, the

stock source of risk. Assume additionally that there are no arbitrage opportunities. Then,

there exists a unique probability measure Q, equivalent to �, such that the discounted

prices of the stock (cum dividend) and of other traded assets are martingales under Q

(Harrison and Kreps (1979)). In the next section I obtain the stock price process under

the Q-measure, and derive formulas for futures prices. It turns out that these formulas

are preference-free, an important feature of the model that allows to price derivative

contracts without the need to estimate the risk premium.

3 The price process under the Q-measure

In this section I obtain the risk-neutral stock price process and also derive a closed form

solution for forward prices. A stochastic dividend yield a¤ects not only options, but

forward and futures prices as well. As a portfolio containing a long call and a short

put, both on the same stock, and with the same strike and maturity, is equivalent to

a forward contract, the impact of the stochastic dividend yield on the forward price

explains perceived violations to the put-call parity calculated under the assumption that

the dividend yield is constant.

I show that, under the Q-measure, the stock price does not depend on the risk pre-

mium. This implies that forward and European options3 formulas are preference-free.

Market completeness is not the only source of this result. Lioui (2006) has studied the

general problem of pricing and hedging derivative securities when the underlying asset

pays a stochastic dividend yield, and concluded that a risk premium has to be speci�ed,

even when the stock and the dividend yield are driven by the same source of risk. As it

is shown below, what drives the result in the model studied in this paper is the special

structure of equation (4), in which the dividend yield is characterized as an a¢ ne function

of stock past performance.

Equation (1) de�nes � as the total expected return on the stock (capital gains plus

dividend yield). � is assumed constant. De�ne now r as the constant instantaneous

risk-free interest rate, and � as the risk premium. Then, the total expected return can

be decomposed as:

� � r + � (11)

3European options are discussed in the next section.
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Plugging (11) back in (1) gives the risk-neutralized stock price process:

dSt
St

= (r � �) dt+ �mtdt+ �

�
�

�
dt+ dWt

�
= (r � �) dt+ �mtdt+ �dBt; (12)

where Bt = �
�
t+Wt is a Brownian motion under the Q-measure: Thus, the total expected

return on the stock under Q is r. More importantly, the risk-neutralized process for mt

does not depend on the risk premium either. To see this, plug (11) in (7) to get:

dmt = � (! � �) (mt � ��) dt+ �
�
�

�
dt+ dWt

�
= � (! � �) (mt � ��) dt+ �dBt; (13)

where now:

�� =
r � 1

2
�2 � �

! � � : (14)

So neither St nor mt depend on � under Q. As a consequence, the model renders

preference-free formulas for contingent claims.

De�ne � = T � t as the time to maturity of a contract. To solve for the stock price
under Q replace � with r in equation (8). This shows that the stock price is a lognormal

process under the risk-neutral measure4. That is:

ln (ST ) ~N (st + 
� ;�� ) : (15)

From equation (8) we have that (under Q) the expected return, conditional on t, over an

interval of length � is:


� =
!

! � �

�
r � � � 1

2
�2
�
� +

�

! � � (mt � ��)
�
1� e�(!��)�

�
; (16)

and the conditional variance:

�� =
�2

(! � �)2
�
!2� � 2�!

! � �
�
1� e�(!��)�

�
+

�2

2 (! � �)
�
1� e�2(!��)�

��
: (17)

4As both � and r are constant, the stock price is a lognormal process under the statistical measure
as well.
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Note that if � = 0; �� = �2�: That is, the variance grows linearly with time to

maturity, which corresponds to the random walk case. If � > 0; an argument similar to

lemma 1 shows that �� > �2�: To see this, write:

�� = �
2�

 
(! � �)2 + 2�!k1 � �2k2

(! � �)2

!
; (18)

where:

k1 = 1�
1� e�(!��)�
(! � �) � ;

and:

k2 = 1�
1� e�2(!��)�
2 (! � �) � ;

It can be shown that for ! > � and � > 0; 2k1 > k2 (see Appendix): Then, it follows

that:

2�!k1 � �2k2 > �2 (2k1 � k2) > 0:

Therefore, the expression between parenthesis in equation (18) is larger than one.

The forward price for delivery of one share of the stock � periods ahead is the expected

stock price under the risk-neutral measure. Given the normality of log (St) under Q, the

forward price is easily obtained in closed form:

F� = E
Q
t (ST )

= St � exp
�

� +

1

2
��

�
: (19)

From equations (16) and (17), this formula does not include the risk premium, and

so it is preference-free.

4 Pricing options

The price of a European call option written on the stock, with maturity T and strike K,

is the expectation under Q of its payo¤ at maturity, discounted by the risk-free rate:

Ct = e
�r�EQt [Max (ST �K; 0)] : (20)
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Equation (20) can be written as:

Ct = e
�r�EQt

�
(ST )� 1fST>Kg

�
� e�r�KPQ (ST > K) ; (21)

where 1fST>Kg is the indicator function of the event fST > Kg ; E
Q
t

�
(ST )� 1fST>Kg

�
is the Q-expected value of the stock at maturity, conditioned on the event that the option

will be exercised at maturity, and PQ (ST > K) is the probability under Q of this event.

Due to the normality of log (St), the expectation in the �rst term of (23) can be solved

as:

EQt
�
(ST )� 1fST>Kg

�
= Ste


�+
1
2
��N (d1) ; (22)

where N (d1) is the value of the Normal cumulative distribution function at d1, and:

d1 =
log
�
St
K

�
+ 
� + ��p
��

: (23)

The probability of the option �nishing in -the-money is:

PQ (ST > K) = N (d2) ; (24)

where:

d2 = d1 �
p
�� : (25)

So:

Ct =
h
Ste


�+
1
2
��N (d1)�KN (d2)

i
e�r� : (26)

It is important to note that this formula, as the formula for the forward price (19),

does not include preference parameters.

The price of a European put on the same stock can be found using put-call parity.

That is, because buying a call and shorting a put, both with maturity T and strike K, is

equivalent to having a long position in a forward contract with maturity T and forward

price K, we can express the put price as:

Pt = Ct �
h
EQt (ST )�K

i
e�r� (27)
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Plugging (19) and (26) in (27) we get:

Pt =
h
KN (�d2)� Ste
�+

1
2
��N (�d1)

i
e�r� : (28)

4.1 The riskless hedge

The �nancial market in this paper is complete, so it is possible to construct a riskless

hedge by continuously trading in the stock and a riskless bond. This section shows how

to construct such riskless hedge.

Assume that a call has been written on the stock and that a hedging portfolio is

started consisting on the shorted call and a long position in the underlying stock. The

initial value of the portfolio is:

�t = �St � C (St;mt; t) : (29)

where � is the number of long units of the stock. The change in the value of the

portfolio over the next period is:

d�t = �dSt +�(� � �mt)Stdt (30)

� @C
@S
dSt �

@C

@m

1

St

�
dSt � St

�
1

2
�2 + !mt

�
dt

�
� @C
@t
dt� 1

2

@2C

@S2
�2S2t dt�

1

2

@2C

@m2
�2dt� @2C

@S@m
�2dt;

where in the fourth term of the equation I use the fact that

dst =
dSt
St
� 1
2
�2dt: (31)

The risk in the portfolio comes from its exposure toWt. To eliminate this risk, choose:

� =
@C

@S
+
@C

@m

1

St
: (32)

Note that to hedge the position it is necessary to eliminate not only the risk coming

from random changes in the stock (the �rst term in (32)), but also the risk coming from

the stochastic dividend yield (the second term in (32)). So plugging (32) in (30) cancels

the portfolio�s overall exposure to Wt. As the portfolio is now riskless, it must earn the
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riskless interest rate to preclude arbitrage:�
@C

@S
+
@C

@m

1

St

�
(� � �mt)St +

@C

@m
!mt � A (t) = r�t; (33)

where:

A (t) =
@C

@t
+
1

2

@2C

@S2
�2S2t +

1

2

@2C

@m2
�2dt+

@2C

@S@m
�2: (34)

Operating on (33) we get:

@C

@S
St (r � � + �mt) +

@C

@m

�
� (! � �)mt + r � � �

1

2
�2
�
+ A (t)� rC = 0; (35)

where the term in parenthesis multiplying @C
@m
can be written as: � (! � �) (mt � ��) :

So (35) is the fundamental partial di¤erential equation that all contingent claims written

on the stock must satisfy. The nature of the derivative at hand will be determined by

the boundary conditions.

It is possible to calculate the � of the call in closed form using equations (26) and

(32). We have:
@C

@S
= e
�+

1
2
��N (d1) e

�r� ; (36)

and:
@C

@m
= Ste


�+
1
2
��N (d1)

�

! � �
�
1� e�(!��)�

�
e�r� : (37)

Therefore:

� =
@C

@S
+
@C

@m

1

St
=
@C

@S

�
1 +

�

! � �
�
1� e�(!��)�

��
: (38)

Note that � � 0. Also, as expected, �!
�
1 if St>K
0 if St�K as � ! 0:

For details about these formulas and their derivation, see the Appendix.

5 Pricing implications

In this section I show that even a modest amount of momentum induced by the dividend

yield can have noticeable consequences on option prices, and that these consequences are
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consistent with the empirical �ndings in Amin et al. (2004).

To assess the empirical relevance of a momentum-inducing dividend yield I calibrate

the model in equation (8) to reproduce the behavior of a hypothetical stock or index, and

compare the pricing results to Black-Scholes prices under the random walk hypothesis.

The stock has total return � = 0:11; and instantaneous volatility � = 0:20: The annual

risk-free interest rate is r = 0:05. Results should not depend on an arti�cially in�ated

momentum, or on a dividend yield likely to become negative, so a main concern in

choosing values for � and ! is to guarantee that the �rst autocorrelation of returns and

the probability of a negative dividend yield are su¢ ciently low. I chose the parameters

in such a way that the probability of a negative dividend yield is 0.12% (that is, you will

observe a negative dividend once every 834 years), the �rst autocorrelation of monthly

returns is 1.17%, and the �rst autocorrelation of annual returns is 0.46%. These values

seem low enough to conduct the exercise. The values of the parameters are shown in

Table 1.

Table 1: Parameter values

Parameters

� 0.11

� 0.0417

� 0.20

� 0.25

! 7.50

r 0.05

S0 40

These parameters also imply an annual return volatility of 20.59% (equation 17), a

risk premium of 6%, and an average dividend yield of:

� � !

! � � �
�
�� 1

2
�2
�
� �

! � � = 0:04; (39)

or 4%, and an uncoditional volatility of the dividend yield of:

��p
2 (! � �)

= 0:013:

These values, together with the autocorrelations discussed above, are roughly in line

with data and with values used in similar studies.
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The �rst autocorrelation of stock returns as a function of the holding period depends

only on � and ! (see equation (9)). Figure 1 shows that for the values reported in table

1, this autocorrelation is never larger that 1.5%, and that it is close to zero for holding

periods above two years.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.005

0.01

0.015

Holding period (years)

Figure 1: First order autocorrelation of stock returns

The values of � and ! may underestimate the true autocorrelations, but they are

chosen to illustrate that even this modest momentum has the potential to generate sizable

pricing di¤erences with the standard Black-Scholes model.

As noted above, the benchmark case is the Black-Scholes price, computed under the

assumption that the stock is a random walk. In the benchmark case, the dividend yield

is constant and equal to 4%. Note that the benchmark dividend yield is di¤erent from

� (see table 1); which is the intercept in a regression on the stochastic dividend yield

against the mt measure of stock performance. Given the values of the other parameters,

� is calibrated to make the mean dividend yield equal to 4%. Also, the instantaneous

volatility of the benchmark case is � = 0:20: The volatility of longer holding periods is

computed as �
p
T ; which is consistent with the practice of a trader who, ignoring time

variation in the dividend yield, estimates the volatility using daily or weekly data and

then extrapolates to longer horizons using the rule of the square root5.

Table 2 compares Black-Scholes prices and prices obtained from equation (26) and

5Alternatively, the volatility can be computed using the adjustment suggested in Lo and Wang (1995)
to account for predictability in stock returns. With positive autocorrelation, this adjustment implies
an instantaneous volatility lower than �; and therefore option prices lower than Black-Scholes prices
obtained under the random walk assumption. Note that option prices under the Lo and Wang (1995)
adjustment do not depend on past stock performance.
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(28) for various holding periods (one week to one year) and strikes, and for three di¤erent

states of the variable mt: -0.05, 0, 0.05, corresponding to negative, zero and positive past

performance of returns, respectively.

There are two forces explaining the di¤erences between Black-Scholes prices and prices

obtained from equations (26) and (28) reported in Table 2. On the one hand, there is the

volatility e¤ect, arising from the fact that V ar (�t+� ) > �2� . On the other hand there is a

level e¤ect, stemming from the in�uence of past stock returns on the dividend yield. Note

that the level e¤ect is not a¤ected by the risk premium, because formulas (26) and (28)

are preference-free. The volatility e¤ect increases the prices of options relative to Black-

Scholes prices for all maturities and across all strikes, although this e¤ect is relatively

more pronounced for out-of-the money options. The level e¤ect is more complicated: it

increases the prices of calls and reduces the prices of puts after a stock rally (mt = 0:05),

because momentum implies that current good performance raises the probability of good

performance in the future (and thus of a lower dividend yield), and it reduces the prices

of calls and increases the prices of puts after a stock decline (mt = �0:05), as momentum
implies that current bad performance raises the probability of bad performance in the

future (and thus of a larger dividend yield). The level e¤ect applies also for all maturities

and across strikes.

Results reported in table 2 can be summarized as follows. At-the-money and in-

the-money call prices are lower than the corresponding Black-Scholes prices when mt =

�0:05, but increase with mt and eventually become higher than Black-Scholes prices as

mt = 0:05. Out-of-the money call prices are uniformly higher that Black-Scholes prices,

and the price di¤erences increase with mt. As an example, the price of a 3-month at-the-

money call struck at 45 is 2.6% higher than the Black-Scholes price when mt = �0:05,
while it is 8.7% higher when mt = 0:05. At the money and in-the-money put prices are

higher than the corresponding Black-Scholes prices for mt = �0:05, but decline as mt

increases to become lower than Black-Scholes as mt = 0:05. Out-of-the money put prices

are uniformly higher than Black-Scholes prices, and the price di¤erences decline as mt

increases. As an example, the price of a 3-month put struck at 35 is 11.4% higher than

the Black-Scholes price when mt = 0:05, while it is 1% higher when mt = 0:05.

Call prices increase withmt for all maturities and across all strikes. Put prices decline

with mt for all maturities and across all strikes. In particular, if prices are measured

under the incorrect assumption that the dividend yield is constant, the realignment of

option prices after a row of positive or negative returns will be seen as a violation of

put-call parity, consistent with Amin et al (2004). Suppose options are at-the-money,
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and maturity time is three months. Black-Scholes implies that C�P = 0.0989. Suppose
instead that the correct model has a stochastic dividend yield and that mt = 0:05, then

C � P = 0.1445, an increase of more than 45%. So violations of the put-call parity

depend on the past performance of returns through the stochastic dividend yield. The

same pattern appears for put-call volatility spreads. For the values in the example,

the put-call volatility spread is -0.0087 (mt = �0:05); -0.0015 (mt = 0); and 0.0058

(mt = 0:05):

Table 2: Call and Put Prices

Table 2 compares Black-Scholes call (BS call) and put (BS put) option prices under

geometric Brownian motion to call and put prices from equations (26) and (28). Para-

meters are as in table 1. The stock on which the options are written has a current value

of $40. In the case of Black-Scholes, the dividend yield is assumed constant and equal to

4%. In the case of equations (26) and (28), the average dividend yield is 4%. Prices are

compared for three values of the state variable mt : �0:05; 0; and 0:05; corresponding to
negative, constant, and positive performance of the stock, respectively. Please �nd the

table in the next page.
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Table 2: Call and Put Prices

BS Call (Eq. 26) BS Put (Eq. 28)

Strike Call �0:05 0:00 0:05 Put �0:05 0:00 0:05

Time to maturity: 7 days (T � t = 7=364)
30 9.9981 9.9879 9.9968 10.006 0.000 0.000 0.000 0.000

35 5.0029 4.9927 5.0016 5.0106 0.000 0.000 0.000 0.000

40 0.4460 0.4419 0.4464 0.4510 0.4384 0.4444 0.4400 0.4356

45 0.000 0.000 0.000 0.000 4.9875 4.9977 4.9888 4.9798

50 0.000 0.000 0.000 0.000 9.9827 9.9929 9.9840 9.9750

Time to maturity: 91 days (T � t = 91=364)
30 9.9765 9.9084 9.9654 10.0224 0.0018 0.0024 0.0023 0.0022

35 5.1846 5.1328 5.1851 5.2375 0.1478 0.1647 0.1598 0.1552

40 1.6272 1.6203 1.6504 1.6808 1.5283 1.5901 1.5630 1.5363

45 0.2588 0.2656 0.2734 0.2815 5.0978 5.1732 5.1240 5.0749

50 0.0212 0.0230 0.0240 0.0250 9.7981 9.8686 9.8124 9.7563

Time to maturity 182 days (T � t = 182=364)
30 9.9823 9.9051 9.9695 10.0342 0.0336 0.0412 0.0399 0.0387

35 5.5195 5.4803 5.5359 5.5918 0.4474 0.4930 0.4829 0.4729

40 2.3039 2.3137 2.3491 2.3849 2.1083 2.2029 2.1726 2.1426

45 0.7073 0.7303 0.7459 0.7618 5.3883 5.4961 5.4460 5.3960

50 0.1641 0.1772 0.1821 0.1871 9.7216 9.8195 9.7587 9.6979

Time to maturity: 273 days (T � t = 273=364)
30 10.0267 9.9540 10.0178 10.0818 0.1047 0.1243 0.1216 0.1189

35 5.8388 5.8150 5.8688 5.9229 0.7328 0.8013 0.7886 0.7760

40 2.8164 2.8407 2.8772 2.9140 2.5264 2.6430 2.6129 2.5831

45 1.1261 1.1642 1.1838 1.2037 5.6520 5.7824 5.7355 5.6887

50 0.3818 0.4094 0.4180 0.4267 9.7237 9.8436 9.7856 9.7277

Time to maturity: 364 days (T � t = 364=364)
30 10.0933 10.0276 10.0897 10.1519 0.1986 0.2313 0.2272 0.2232

35 6.1277 6.1161 6.1681 6.2203 0.9891 1.0759 1.0618 1.0478

40 3.2411 3.2764 3.3132 3.3503 2.8587 2.9924 2.9631 2.9340

45 1.5053 1.5556 1.5777 1.6000 5.8791 6.0277 5.9837 5.9398

50 0.6256 0.6667 0.6781 0.6898 9.7555 9.8949 9.8403 9.7857
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6 Conclusions

This paper studies the pricing of options with a stochastic dividend yield using a new

model in which the dividend yield is an a¢ ne function of past stock performance. The

model accommodates momentum in stock returns under complete markets, and it has the

standard Black-Scholes (1973) model as a special case. Moreover, the model exhibits de-

pendence of expected returns on past stock performance under the risk-neutral measure,

and renders preference-free formulas for European options.

The model shows that when stock returns and changes in the dividend yield are

negatively correlated, stock returns will exhibit positive autocorrelation. In this realistic

case, the model predicts that calls will be overpriced (underpriced) relative to puts after

stock market increases (declines), and that put-call volatility spreads will be a¤ected

likewise by stock price performance. These predictions are in line with the �ndings of

recent empirical research conducted by Amin et al. (2004).

Results obtained in this paper are economically signi�cant. Interestingly, they are

derived under the assumption of a positive autocorrelation of monthly returns as low as

1.7%. This suggests that a momentum inducing dividend yield, and return predictability

in general, may have a larger impact on option prices than previously thought.
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7 Appendix

In this Appendix I provide an overview of the derivation of second moments of returns,

and show how to obtain the delta of a call.

7.1 Second moments of returns

First, de�ne qt = mt � � and qt�� = mt�� � �: Then, from equation (7) in the main text

we have:

qt = qt��e
�(!��)� +

Z t

t��
e�(!��)(t�u)dWu;

and:

E (qtqt�� ) = e
�(!��)�V ar (qt�� ) = e

�(!��)� �2

2 (! � �) : (40)

From equation (8), the unconditional variance of returns is:

V ar (�t+� ) = E

�
�

! � � (mt � �)
�
1� e�(!��)�

�
+ �

Z t+�

t

�
1 +

�

! � �
�
1� e�(!��)(t+��u)

��
dWu

�2
=

�
�

! � �

�2
�2

2 (! � �)
�
1� e�(!��)�

�2
+

�2

(! � �)2
Z t+�

t

�
1� �e�(!��)(t+��u)

�2
du:

(41)

Solving the integral, and after some messy algebra, we get:

V ar (�t+� ) =
�2

(! � �)2
�
!2� � 2�

! � �

�
! � �

2

��
1� e�(!��)�

��
: (42)

The di¤erence between (42) and (17) is that (17) is a conditional variance, so only

the second term in (41) is used in the computation.

The formula for Cov (�t; �t+� ) is calculated in the same way, using now equation (40)

with � > 0 and taking care that the cross-products overlap.

7.2 2k1 � k2 > 0:

Proposition: For � > 0; 2k1 � k2 > 0:
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First I prove the following lemma:

Lemma: De�ne f (�) = (! � �) �; and g (�) = 3�4e�(!��)�+e�2(!��)�
2

: Then, for � > 0:

f (�) > g (�)

Proof: First note that:
f (0) = g (0) = 0;

and that:

f 0 (�) = ! � �:

Also:

g0 (�) = 2 (! � �) e�(!��)� � (! � �) e�2(!��)� :

Adding and subtracting ! � �, this last equation can be written as:

g0 (�) = (! � �)
h
1�

�
1� e�(!��)�

�2i
< (! � �) :

Now de�ne:

h (�) = f (�)� g (�) :

Then:

h (0) = f (0)� g (0) = 0;

and that for � > 0:

h0 (�) = f 0 (�)� g0 (�) > 0;

which implies h (�) > 0. Therefore, it must be that:

f (�) > g (�) ;

for � > 0; and the lemma is proved.

�
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Proof of the proposition: Assume, on the contrary, that 2k1 � k2 � 0: Then:

2

�
1� 1� e

�(!��)�

(! � �) �

�
� 1� 1� e

�2(!��)�

2 (! � �) � :

Operating on both sides:

2 (! � �) � � 2
�
1� e�(!��)�

�
(! � �) � �

2 (! � �) � �
�
1� e�2(!��)�

�
2 (! � �) �

:

Multiplying both sides by (! � �) � :

2 (! � �) � � 2
�
1� e�(!��)�

�
�
2 (! � �) � �

�
1� e�2(!��)�

�
2

:

Operating again:

(! � �) � � 3� 4e�(!��)� + e�2(!��)�
2

:

But this contradicts the previous lemma. So it must be that:

2k1 � k2 > 0;

completing the proof.

�

7.3 Derivation of delta

The following lemma will be useful in the derivation of delta:

Lemma: De�ne F� = Ste
�+
1
2
�� : Then:

F�N
0 (d1)�KN 0 (d2) = 0;

where d1 and d2 are as in equations (23) and (25).
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Proof: Recall that:
N 0 (x) =

1p
2�
e�

x2

2

and write d1 = d2 +
p
�� : Then:

N 0 (d1) =
1p
2�
exp

�
�d

2
2 + 2d2

p
�� + ��
2

�
= N 0 (d2) exp

�
�d2

p
�� �

1

2
��

�
= N 0 (d2)

K

F�
:

So:

F�N
0 (d1)�KN 0 (d2) = F�N

0 (d2)
K

F�
�KN 0 (d2) = 0;

and the lemma is proved.

�

Now it is straightforward to derive delta.

Proposition:

� =
@C

@S

�
1 +

�

! � �
�
1� e�(!��)�

��
Proof: Recall that:

� =
@C

@S
+
@C

@m

1

St
:

Deriving equation (26) with respecto to St gives:

@C

@S
=

�
@F�
@S

N (d1) + F�N
0 (d1)

@d1
@S

�KN 0 (d2)
@d2
@S

�
e�r� :

Noting that @d1
@S
= @d2

@S
;

@C

@S
=

�
@F�
@S

N (d1) + [F�N
0 (d1)�KN 0 (d2)]

@d2
@S

�
e�r� ;
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which, from the previous lemma, is:

@C

@S
=
@F�
@S

N (d1) e
�r� :

Now,

@C

@m
=

�
@F�
@m

N (d1) + F�N
0 (d1)

@d1
@S

@S

@m
�KN 0 (d2)

@d2
@S

@S

@m

�
e�r� :

Proceeding as before, we get:

@C

@m
=
@F�
@m

N (d1) e
�r� :

Noting that:
@F�
@m

= S
@C

@S

�

! � �
�
1� e�(!��)�

�
;

the result follows.

�
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