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Abstract

In this paper we present an approximation method to compute the reorder point

s in a (R; s;Q) inventory model with a service level restriction, where demand is

modelled as a compound Bernoulli process, that is, with a �xed probability there is

positive demand during a time unit, otherwise demand is zero. The demand size and

replenishment leadtime are stochastic variables. It is shown that this kind of mod-

elling is especially suitable for intermittent demand. Furthermore, an approximation

for the expected average physical stock is derived. The quality of both the reorder

point determination as well as the approximation for the expected average physical

stock turn out to be excellent, as is veri�ed by discrete event simulation.

1. Introduction

The (R; s;Q) inventory model has been studied exhaustively during the last decades.
Under the regime of this inventory policy, every R time units the inventory position is
monitored in order to make a replenishment decision. When the inventory position is below
s, an integral multiple of Q is ordered such that the inventory position is raised to a value
between s and s+Q. Many heuristic and optimal methods are developed to determine the
values of the control parameters: R, s and Q. Among these methods, mainly two directions
can be distinguished: methods that minimize total relevant costs (see e.g. Hadley and
Whitin (1963), Das (1976), Johansen and Thorstenson (1993)), and methods that are based
on achieving a pre-speci�ed customer service level (see e.g. Schneider (1981,1990), de Kok
(1991a,1991b), Tijms and Groenevelt (1984), and Tijms (1994)). As costs of shortages are
di�cult to quantify in practice, we focus on a service level approach. To be more precise,
we use as service criterion the fraction of demand delivered directly from shelf, which is
often denoted as the �ll rate or P2 service level (see Silver and Peterson (1985)). In this
approach we assume that customer orders which can not be satis�ed directly from shelf
are backordered.
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Dunsmuir and Snyder (1989) developed a model where intermittent demand is modelled
as a compound Bernoulli process, that is, with a �xed probability (0 < �D � 1) there is
positive demand during a time unit, otherwise demand is zero. The main intention of this
paper is to go into the details of the compound Bernoulli modelling concept.

The increasing importance of intermittent demand modelling can be argued as follows.
Firstly, the increasing information technology makes more detailed information available
for all kind of processes. Hence, it is easy to collect daily or weekly demand information
instead of monthly data. This, however, has consequences for the modeling of the demand
process. The probability that demand is positive during a month is often one, whereas
the probability that demand is positive during a day may be considerably less than one.
Shortening the time unit over which demand data are analysed, has the advantage that
the reaction time is short when sudden changes occur. This may be very important in
a dynamic world. The importance of intermittent demand modelling is also obvious in
spare parts environments, even with monthly demand. Further, we also observed inter-
mittent demand in inventory management of medicines in a medical center with many
departments: as management wants to keep inventories of certain medicines a low level
(nursing departments), it has the consequence that demand processes were intermittent on
that level.

Another important motivation for using the compound Bernoulli modelling, is forcast-
ing. When intermittent demand is forecasted, it appears (see e.g. Willemain et al. (1994))
that the separation idea (called `Croston's forecast procedure' in the forecast literature)
is better than the single exponential smoothing procedure, applied to the non-separated
demand data. These conclusions remain to hold for all kind of data scenarios: interarrivals
and demand occurrences cross-correlated or not, or interarrivals autocorrelated.

Basically, we will adapt the method presented by Dunsmuir and Snyder, such that the
compound Bernoulli modelling is applicable for a more general class of situations. It is
assumed that information is available on a daily basis. The review period, however, may
be once a week or once a month, hence we consider situations with a review period R is
larger than one. The reorder level is not required to be positive and the shortages at the
beginning of a replenishment cycle are not neglected. Finally, we include the undershoot,
which is evidently important in situations where demand is lumpy and not of unit size.

The paper is organized as follows. In section 2 a formal model description is given for
the demand process modelled as a compound Bernoulli process. In section 3 an approx-
imation method is presented for computing the reorder level s when the demand process
is a compound Bernoulli process. This method is called the compound Bernoulli method
(CBM), furthermore an approximation is given for the expected average physical stock
level. In section 4 the CBM as well as the approximation for the expected average physical
stock level are validated by simulation, and the results will be compared with the results
of the method presented by Dunsmuir and Snyder. Furthermore, examples are given how
these result can be used by the management in practical situations. Finally, in section 5
some conclusions are given.
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2. The Model

Let us assume that daily demand information is available. The demand size of the n-th
day is denoted by Dn, and D�k denotes the demand size of the k-th day on which demand
is positive. It is assumed that the Dn's as well as the D�k's are independent and identically
distributed random variables, with distribution functions FD(:) and FD�(:), respectively.

When the demand process is modelled as a compound Bernoulli process and the prob-
ability that demand is positive is denoted by �D, then the distribution functions FD(:) and
FD�(:) are related through

FD(y) =

(
1� �D if y = 0
1� �D + �DFD�(y) if y > 0

(1)

The relation between the moments of D and D� can easily be derived:

IEDk = �DIED
�k k = 1; 2; : : : (2)

Remark: For small time units the compound Bernoulli process is approximately a
compound Poisson process (e.g. see Feller(1970) pp. 153). Hence the compound Bernoulli
process can be seen as the discrete time variant of the compound Poisson process.

We assume that the leadtimes do not cross in time, implying that the leadtimes of
replenishment orders L1; L2; ::: are dependent random variables. For (s;Q)-modelling with
interrelated leadtimes we refer to Heuts and de Klein (1995). Because the demand process
is a discrete time process, we assume that the leadtimes are an integral number of days.
Furthermore, it is assumed that customer orders are handled at the beginning of a day,
whereas replenishment orders are handled at the end of the day. This aspect is important
in case the customer service measure is actually determined in practice or in the simulation
experiments.

Customer orders which cannot be delivered directly from stock will be backordered. As
performance measure the P2-service measure is used (see Silver and Peterson (1985)): the
long-run fraction of demand delivered directly from shelf, which is denoted by �(R; s;Q).

The inventory position in the (R; s;Q) model is not a regenerative proces. Nevertheless,
the following basic formula applies (see Tijms (1994) p.53)

1� �(R; s;Q) =
the expected shortage during an arbitrary replenishment cycle

the expected demand during an arbitrary replenishment cycle
(3)

Another important performance measure is the expected average physical stock needed
to maintain the required service level, denoted by �(R; s;Q). Denote H(R; s;Q) as the
expected area between the physical stock level and the time-axis during a replenishment
cycle, and C(R; s;Q) as the expected duration of a replenishment cycle. Based on the
renewal reward theorem (see Tijms (1994) p. 33) a simple expression for �(R; s;Q) is:

�(R; s;Q) =
H(R; s;Q)

C(R; s;Q)
(4)
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In order to derive expressions for �(R; s;Q) and �(R; s;Q) we de�ne

Z(n) := the total demand during n time periods;
Z�(n) := the total demand during n time periods, given that in

at least one period the demand is positive;
X(n) := the inventory position on time epoch n;
Tk := the point in time at which the inventory position drops below s

for the k-th time after 0;
Uk := s�X(Tk) (the k-th undershoot);
�k := the �rst review moment after Tk;
Wk := �k � Tk;

L̂k := Lk +Wk;
UR;k := s�X(�k);

Zk := Z(L̂k) + Uk = Z(Lk) + UR;k;

Z�k := Z�(L̂k) + Uk;

When the reorder quantity (Q) is large relative to the expected demand per time unit,

2R 3R 4R 5R0 R
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Z(L1)

L1T1 T2
τ1 τ2

W1

Z(L2)

L2

U1 U2
UR,1 UR,2
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Figure 1: Evolution of the net stock and inventory position during the �rst replenishment
cycle

or when the target service (�) is low, the target service can be realized, even when the
reorder level (s) is negative. Therefore, we do not require the reorder point to be positive.
Especially, in cases where Q and � are both small, the shortages at the beginning of
a replenishment cycle are relevant. Thus we do not neglect the expected shortage at the
beginning of a replenishment cycle. Consider the �rst replenishment cycle after zero. Given
that the backlog at the end of the cycle equals the sum of backlog at the start of the cycle
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and the unsatis�ed demand during the cycle, it can be derived (see e.g. de Kok(1991b))
that, for Q � IED (i.e. exactly one Q is ordered), s must satisfy the service equation
(Figure 1 may be enlightening):

�(R; s;Q) =

8>><
>>:

0 s � �Q

1 � IEZ2�s�IE(Z1�s�Q)+
Q

�Q < s � 0

1 � IE(Z2�s)+�IE(Z1�s�Q)+
Q

0 < s

(5)

where x+ := maxf0; xg. In the sequel of this paper we will use (5) as starting point to
derive expressions for �(R; s;Q). As in Tijms and Groenevelt (1984) to obtain values for
(the incomplete moments) IE(Z2 � s)+ and IE(Z1 � s�Q)+ for given values for s and Q,
we assume that the Z1 has a generalized Erlang distribution, which is uniquely determined
by its �rst two moments. The smallest value for s which satis�es (5) can then be �nd by
using a local search procedure such as Golden Section search.

To obtain an expression for �(R; s;Q) we consider the �rst replenishment cycle after
zero. Based on results from renewal theory we derive (see Appendix 1):

�(R; s;Q) =

8>>>>><
>>>>>:

0 s � �Q
s+QR
0

(s+Q�x)2
2Q

dFZ(L̂1)(x) �Q < s � 0

s+QR
0

(s+Q�x)2
2Q

dF
Z(L̂1)

(x)�
sR
0

(s�x)2
2Q

dF
Z(L̂2)

(x) s > 0

(6)

3. The compound Bernoulli method

The motivation behind the compound Bernoulli model is the distinction between the
situations that the demand during L̂k is zero or positive. Due to this distinction, the
service equation (5) has to be adjusted. We denote the L̂k's as the pseudo leadtimes and
the probability of positive demand during the pseudo leadtime as �L̂, i.e. �L̂ = IP (Z(L̂k) >
0); k � 1. In the situation that the demand during the pseudo leadtime is zero, which occurs
with probability 1 � �

L̂
, backlogs only occurs when the undershoot is larger than s, the

value of the reorder point. However, for the situation that the demand during the pseudo
leadtime is positive, backlog occurs when the demand during the pseudo leadtime (given
it is positive) plus the undershoot is larger than s. Combining both possible situations,
analogously to (5) the following relation can be derived, considering the �rst replenishment
cycle after zero:

�(R; s;Q) =

8>>>>><
>>>>>:

0 s � �Q

1 �
�
L̂

�
IEZ�

2
�s�IE(Z�

1
�s�Q)+

�
+(1��

L̂
)

�
IEU2�s�IE(U1�s�Q)+

�
Q

�Q < s � 0

1 �
�
L̂

�
IE(Z�

2
�s)+�IE(Z�

1
�s�Q)+

�
+(1��

L̂
)

�
IE(U2�s)+�IE(U1�s�Q)+

�
Q

0 < s

(7)

To compute (7) we again approximate the distribution functions of Z�
1
and U1 by that of

a generalized Erlang distribution. Hence, the �rst two moments of Z�
1
and U1, and the
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probability �
L̂
are su�cient to calculate the �(R; s;Q) for given R, s and Q. To obtain

values for �(R; s;Q) also approximation of relevant distribution functions by a generalized
Erlang distribution is used to compute the integrals of expression (6). Hence, only the �rst
two moments of Z(L̂1) are required. The expressions for �L̂, the �rst two moments of U1,

Z(L̂1) and Z�1 are derived below.
For the �rst two moments of U1 we use the asymptotic results for the �rst two moments

of the residual lifetime distribution, which yields according to (2)

IEU1 '
IE(D�)2

2IED�
=
IED2

2IED
(8)

IEU2

1
'

IE(D�)3

3IED�
=
IED3

3IED
(9)

We calculate �L̂ from the generating function of L̂1, denoted by PL̂1(:), via

�
L̂

= 1� IE(1� �D)
L̂1 (10)

= 1� PL̂1(1� �D) (11)

Because L̂1 is a convolution of two discrete random variables, a closed form expression for
PL̂1(:) will not be available in general. Therefore we use the method of Adan et al.(1994)
to �t a discrete distribution using the �rst two moments. This method is based on the ap-
proach used by Tijms (1994) for continuous random variables, and results in a distribution
from the classes: Poisson, mixture of binomial, mixture of negative-binomial and mixture
of geometric distributions (see Appendix 2). For any of these distributions the generating
function can be determined. To obtain the �rst two moments of L̂1 we need the �rst two
moments of L1, which are assumed to be given, and the �rst two moments of W1. It can
be shown that (see Appendix 3) W1 is uniformly distributed over f0; 1; : : : ; R� 1g: Hence

IEW1 = 1

2
(R � 1) (12)

IEW 2

1
= 1

6
(R � 1)(2R � 1) (13)

Because L1 and W1 are independent, one obtains

IEL̂1 = IEL1 + IEW1 (14)

IEL̂2

1
= IEL2

1
+ 2IEL1IEW1 + IEW 2

1
(15)

Since Z(L̂1) is a stochastic sum of i.i.d. random variables, we have

IEZ(L̂1) = IEL̂1IED (16)

�2(Z(L̂1)) = IEL̂1�
2(D) + �2(L̂1)(IED)

2 (17)

What remains is expressions for the �rst two moments of Z�
1
, and therefore expressions

for the �rst two moments of Z�(L̂1). For this purpose we use that the probability of positive
demand during the pseudo leadtime is a Bernoulli experiment (with probabilty �

L̂
). From

�2(D�) � 0 it follows by using (2) with k = 1 and k = 2 that in case the compound
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Bernoulli modelling is applied c2D � (1 � �D)=�D. Then using the appropriate analogy of
this condition we conclude that only under special conditions moments for Z�(L̂1) can be
derived, namely when c2

Z(L̂1)
� (1 � �L̂)=�L̂:

IEZ�(L̂1) =
IEZ(L̂1)

�L̂
(18)

�2(Z�(L̂1)) =
�2(Z(L̂))

�L̂
�

(1� �L̂)IEZ(L̂1)2

�2
L̂

(19)

Hence when c2
Z(L̂1)

< (1 � �L̂)=�L̂ the compound Bernoulli model can not be applied.

In this situation we propose to use expressions (8),(9),(16) and (17) to obtain values for
the �rst two moments of Z1, and use service equation (5) to calculate the reorder point s.

We are now able to calculate the �rst two moments of Z�
1
, Z(L̂1) and U1, which enables

us to calculate the reorder level and the associated average physical stock level. However,
it should be noted that the moments are based on asymptotic relations obtained from
renewal theory, which makes this method an approximation, even in case the distribution
functions of Z�

1
, Z(L̂1) and U1 truely are generalized Erlang distributions. To validate the

quality of this approximation we use simulation (see section 4).

4. Numerical results

To show the impact of the extensions of the CBM with respect to the method presented
by Dunsmuir and Snyder, we use all cases that are considered in their paper. The reorder
levels calculated according to Dunsmuir and Snyder as well as the reorder level calculated
by the CBM are both validated by simulation. Putting it more precisely, the actual re-
sulting service level is computed via simulation, given a value for the reorder point, and
this level is compared to the required service level. The closer these two levels are to each
other the better the method performs. The number of sub-runs is �xed at 10 (exclusive
the initialisation run), and the sub-run length is chosen such that 100.000 customers are
evaluated. The results are tabulated in table 4.1., in which s1 denotes the reorder point
calculated by Dunsmuir and Snyder with the associated actual service level �1 (between
brackets the 95% con�dence interval is given), and s2 denotes the reorder point calculated
by the CBM with the associated actual service level �2.
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Table 4.1.: Simulation results for � = 0:95 and (IEL1 ; �(L1)) = (2 ; 0)

Dunsmuir & Snyder CBM
�D IED� �(D�) Q s1 �1 s2 �2
0.36 3.00 1.41 2 6.00 0.8521 ( � 0.0010 ) 8.14 0.9480 ( � 0.0011 )

3 5.00 0.8115 ( � 0.0010 ) 7.74 0.9481 ( � 0.0008 )
4 4.30 0.7891 ( � 0.0016 ) 7.38 0.9485 ( � 0.0013 )

0.28 10.30 3.51 5 18.30 0.8586 ( � 0.0022 ) 24.15 0.9477 ( � 0.0016 )
7 17.00 0.8492 ( � 0.0023 ) 23.32 0.9479 ( � 0.0015 )
10 15.00 0.8324 ( � 0.0026 ) 22.17 0.9480 ( � 0.0015 )

0.45 201.60 212.40 200 730.00 0.8956 ( � 0.0037 ) 942.24 0.9492 ( � 0.0031 )
300 640.00 0.8782 ( � 0.0038 ) 898.73 0.9490 ( � 0.0028 )
400 570.00 0.8670 ( � 0.0037 ) 858.56 0.9493 ( � 0.0029 )

0.64 846.60 384.60 1100 1975.00 0.8517 ( � 0.0022 ) 2575.06 0.9509 ( � 0.0008 )
1700 1725.00 0.8444 ( � 0.0018 ) 2384.73 0.9502 ( � 0.0008 )
2200 1600.00 0.8519 ( � 0.0018 ) 2251.34 0.9499 ( � 0.0009 )

The cases considered by Dunsmuir and Snyder are such that the undershoot appears to be
very important, which is shown by the bad service performance in case the undershoot is
neglected (�1 < � = 0:95). On the contrary, the CBM has an excellent performance for
all cases considered by Dunsmuir and Snyder (�2 � � = 0:95), this in spite of the small
values of Q when compared with IED�.

Next we use simulation to validate the quality of the CBM in terms of service per-
formance and expected average physical stock for a wide range of parameter values. The
results are given in Table 4.2., in which s1 denotes the reorder point calculated by the CBM
with the associated actual service level �1 (between brackets the 95% con�dence interval
is given), and �(R; s;Q) the expected physical stock calculated by expression (6) with the
associated actual physical stock �1. From these simulation results it can be concluded that
the performance of the CBM and the quality of expression (6) for the expected average
physical stock, are excellent for most situations considered. However, for the situation
that �D = 0:9 and (IEL1 ; �(L1)) = (10 ; 4) (see bold printed results in Table 4.2.) the
actual service is too large. A possible explanation for this is, that in these situations the
replenishment orders might cross in time, because of the relative long leadtimes and high
demand rates. This violates the previous made assumption that the replenishment orders
do not cross. Moreover, notice that for small values of Q (Q=10) the method is still valid
in some cases. Furthermore, it can be concluded that the approximation for the expected
average physical stock is excellent for all situations considered.
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Table 4.2.: Simulation results to validate the CBM with IED� = 5

R �D �(D�) Q (IEL1 ; �(L1)) � �1 s1 X(R; s;Q) X1

1 0.10 5 10 ( 1 ; 0 ) 0.99 0.9902 (� 0.0015 ) 20.81 25.32 25.30

1 0.10 5 10 ( 10 ; 4 ) 0.99 0.9909 (� 0.0015 ) 34.96 35.00 34.95

1 0.90 5 10 ( 1 ; 0 ) 0.99 0.9899 (� 0.0009 ) 28.37 28.88 28.86

1 0.90 5 10 ( 10 ; 4 ) 0.99 0.9991 (� 0.0002 ) 118.18 78.30 78.05

1 0.10 10 10 ( 1 ; 0 ) 0.99 0.9914 (� 0.0022 ) 65.60 70.10 70.11

1 0.10 10 10 ( 10 ; 4 ) 0.99 0.9909 (� 0.0035 ) 80.13 80.18 80.12

1 0.90 10 10 ( 1 ; 0 ) 0.99 0.9901 (� 0.0014 ) 76.44 76.95 76.94

1 0.90 10 10 ( 10 ; 4 ) 0.99 0.9945 (� 0.0013 ) 174.61 134.76 134.50

5 0.10 5 10 ( 1 ; 0 ) 0.95 0.9501 (� 0.0037 ) 14.75 18.33 18.30

5 0.10 5 10 ( 10 ; 4 ) 0.95 0.9518 (� 0.0032 ) 24.77 23.97 23.85

5 0.90 5 10 ( 1 ; 0 ) 0.95 0.9515 (� 0.0013 ) 36.53 28.24 28.18

5 0.90 5 10 ( 10 ; 4 ) 0.95 0.9672 (� 0.0016 ) 102.79 54.43 53.83

5 0.10 10 10 ( 1 ; 0 ) 0.95 0.9520 (� 0.0047 ) 41.66 45.24 45.21

5 0.10 10 10 ( 10 ; 4 ) 0.95 0.9509 (� 0.0062 ) 52.44 51.68 51.58

5 0.90 10 10 ( 1 ; 0 ) 0.95 0.9492 (� 0.0026 ) 66.99 58.85 58.76

5 0.90 10 10 ( 10 ; 4 ) 0.95 0.9555 (� 0.0035 ) 140.08 92.02 91.52

1 0.10 5 50 ( 1 ; 0 ) 0.95 0.9500 (� 0.0023 ) 4.32 28.84 28.77

1 0.10 5 50 ( 10 ; 4 ) 0.95 0.9486 (� 0.0038 ) 12.41 32.59 32.44

1 0.90 5 50 ( 1 ; 0 ) 0.95 0.9497 (� 0.0012 ) 10.01 30.57 30.57

1 0.90 5 50 ( 10 ; 4 ) 0.95 0.9585 (� 0.0025 ) 75.65 56.28 55.80

1 0.10 10 50 ( 1 ; 0 ) 0.95 0.9521 (� 0.0042 ) 24.84 49.37 49.42

1 0.10 10 50 ( 10 ; 4 ) 0.95 0.9530 (� 0.0039 ) 35.13 55.34 55.21

1 0.90 10 50 ( 1 ; 0 ) 0.95 0.9489 (� 0.0026 ) 32.83 53.45 53.39

1 0.90 10 50 ( 10 ; 4 ) 0.95 0.9571 (� 0.0021 ) 109.19 90.02 89.50

5 0.10 5 50 ( 1 ; 0 ) 0.99 0.9901 (� 0.0009 ) 16.03 39.55 39.49

5 0.10 5 50 ( 10 ; 4 ) 0.99 0.9898 (� 0.0017 ) 27.31 46.35 46.34

5 0.90 5 50 ( 1 ; 0 ) 0.99 0.9915 (� 0.0010 ) 40.20 51.74 51.71

5 0.90 5 50 ( 10 ; 4 ) 0.99 0.9947 (� 0.0009 ) 116.61 87.72 87.31

5 0.10 10 50 ( 1 ; 0 ) 0.99 0.9911 (� 0.0023 ) 54.68 78.19 78.18

5 0.10 10 50 ( 10 ; 4 ) 0.99 0.9912 (� 0.0022 ) 67.95 87.00 86.88

5 0.90 10 50 ( 1 ; 0 ) 0.99 0.9898 (� 0.0017 ) 84.72 96.29 96.16

5 0.90 10 50 ( 10 ; 4 ) 0.99 0.9925 (� 0.0015 ) 173.68 144.86 144.50

To illustrate that negative values for the reorder level may be appropriate, we consider
two situations. In the �rst situation a low service is required, whereas in the second sit-
uation the reorder quantity is large relatively to IED�, see tabel 4.3. Moreover, notice
the excellent results in these situations of both the CBM as the approximations for the
expected average physical stock.
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Table 4.3.: Simulation results to illustrate negative reorder levels

R �D �(D�) Q (IEL1;�(L1)) � �1 s1 X(R; s;Q) X1

1 0.10 5 50 ( 1 ; 0 ) 0.50 0.5022 (� 0.0045 ) -19.51 9.04 9.06
1 0.10 5 50 ( 10 ; 4 ) 0.50 0.5028 (� 0.0048 ) -15.13 9.42 9.47
1 0.90 5 50 ( 1 ; 0 ) 0.50 0.5004 (� 0.0016 ) -15.54 9.22 9.22
1 0.90 5 50 ( 10 ; 4 ) 0.50 0.4844 (� 0.0041 ) 22.46 12.35 11.99
1 0.10 10 50 ( 1 ; 0 ) 0.50 0.4983 (� 0.0069 ) -13.28 13.23 13.24
1 0.10 10 50 ( 10 ; 4 ) 0.50 0.4995 (� 0.0079 ) -9.52 13.68 13.70
1 0.90 10 50 ( 1 ; 0 ) 0.50 0.4989 (� 0.0031 ) -9.76 13.61 13.61
1 0.90 10 50 ( 10 ; 4 ) 0.50 0.4845 (� 0.0044 ) 25.81 18.14 17.43
1 0.10 5 500 ( 1 ; 0 ) 0.90 0.9003 (� 0.0017 ) -44.49 207.04 206.18
1 0.10 5 500 ( 10 ; 4 ) 0.90 0.8995 (� 0.0021 ) -40.02 207.06 206.32
1 0.90 5 500 ( 1 ; 0 ) 0.90 0.8999 (� 0.0004 ) -40.50 207.05 206.81
1 0.90 5 500 ( 10 ; 4 ) 0.90 0.8996 (� 0.0025 ) -0.00 207.60 207.27
1 0.10 10 500 ( 1 ; 0 ) 0.90 0.8994 (� 0.0041 ) -37.00 213.92 212.88
1 0.10 10 500 ( 10 ; 4 ) 0.90 0.8990 (� 0.0048 ) -32.51 214.03 212.98
1 0.90 10 500 ( 1 ; 0 ) 0.90 0.8995 (� 0.0014 ) -33.01 213.99 213.99
1 0.90 10 500 ( 10 ; 4 ) 0.90 0.8993 (� 0.0025 ) 7.57 215.21 215.04

To conclude we indicate some restrictions to the application of the compound Bernoulli
model. Note, that when the demand process is a compound renewal process, it is in
general not true that the Dn's are independent identically distributed. Denote A as the
actual interarrival time of customers when monitored continously. For situations with
IEA = 1=�D and �2(A) < (1 � �D)=�2D or �2(A) > (1 � �D)=�2D the compound Bernoulli
modelling is not appropriate. In the latter situations the independency assumption of the
Dn's and D�k's is violated. For a more rigorous treatment of these situations we refer to
Janssen et al. (1996), who give an alternative modelling approach for the demand process,
namely the compound renewal modelling; see also Sahin (1983).

Secondly, when the probability distribution of the demand size is concentrated in a
small number of points, it is in general false to assume that the distribution function of Z1,
Z(L̂1) and U1 are generalized Erlang distributions. Also, the expressions for the undershoot
((8) and (9)) as well as the result that W1 is distributed uniformly on f0; 1; ::; R� 1g, are
based on asymptotic results from renewal theory. Hence, for values of Q small as compare
to IED, these relations do not hold.

From a managerial point of view it is interesting to represent graphically various service
levels versus the expected average physical stock level; see �gures 2 and 3. In �gures 2 and
3 we consider the situations with R = 1, IED� = 5, �D = 0:5, IEL1 = 5, and �(L1) = 2. In
order to make a trade o� between the customer service and the associated required average
physical stock, the graph can be used as an aid for determining the target service level.

For the determination of the replenishment quantity Q often the economic order quan-
tity is used (e.g see Silver and Peterson (1985)), which is also known as the Wilson lot size
formula. A more sophisticated approach would be to minimize the ordering cost plus the
holding cost subject to the service level constraint (see Moon and Choi (1994)). Following
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Figure 2: Expected average physical
stock level versus � 2 (0:80; :::; 0:99)).
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Figure 3: Expected average physical
stock level versus � 2 (0:99; :::; 0:999).

the same approach as Moon and Choi yields

MIN
n

TRC(R; s;Q) =
AIED

Q
+ h�(R; s;Q)

o
s.t. �(R; s;Q) � �

Q � 0

where h denotes the stock keeping costs per time unit and A the �xed ordering costs. This
optimization problem can be solved by using the CBM to determine s for given Q such
that �(R; s;Q) = � using (6), to compute the value of the object function. Golden section
search enables us to compute the optimal solution (s�; Q�).

Consider the following example,R = 1, (IED�;�(D�) = (5; 5), �D = 0:50, (IEL;�(L)) =
(10; 2), � = 0:95, A = 50 $ and h varies between 1; 5 and 10 $ / year (= 200 days). Notice

that in this case the EOQ is given by
q
10000=h. In table 4.4 the results are given for the

optimal replenishment quantity Q� of the optimization problem described above.
Table 4.4.: The optimal replenishment quantities as function of the holding costs

h EOQ Q�

10 100 114
5 141 157
1 316 335

Figure 4 shows that the solution for Q� is robust for small values of h. Hence, in these
situations the EOQ is nearly optimal.

11



0.0

1500.0

3000.0

4500.0

6000.0

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0
Q1 Q2 Q3 Q

T
R

C
(Q

)

 h =    10  h =     5  h =     1 

Figure 4: The expected ordering and holding costs.

5. Conclusions

In this paper we developed a method (the CBM) for the determination of the reorder
point s in a (R; s;Q) inventory model subject to a service level constraint, especially when
the demand process is intermittent. Therefore, we modelled the demand process as a
compound Bernoulli process. The motivation behind the compound Bernoulli model is the
distinction between the situations that the demand during the pseudo leadtime is zero or
positive. The presented method is an extention of the method introduced by Dunsmuir
and Snyder (1989). The CBM as well as the approximation for the expected physical stock
level turned out to perform excellent, in almost all situations considered. Finally, we point
out that due to the speed of the computations for both the CBM as the approximation for
the expected average physical stock, these result are extremely useful for scenario analysis,
in order to support the management.
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Appendix 1: Proof of relation (6)

Given a random variable X with distribution function F (:) and a random variable Y with
distribution function G(:), then the distibution function of the convolution of X and Y

will be denoted by F �G(:). The n�fold distribution of X with itself is denoted by F n�(:).

Lemma A.1.1.

Let M(:) be the renewal function (i.e. M(x) :=
1P
n=0

F n�
X (x)) generated by the random

process Xn, n = 1; 2; : : : (with 0 < IEX1 < 1), and let U(:) the equilibrium excess
distribution of X, then

M � U(x) =
x

IEX
(A.1.1)

Proof:

Let ~X(s) be the Laplace transform of X (0 < IEX < 1), thus ~X(s) =
1R
0

e�sxdFX(x): As

~U(s) = (1 � ~X(s))=(sIEX) and ~M(s) = 1=(1 � ~X(s)), it follows that the Laplace trans-
form of the convolution equals 1=(sIEX). Hence, taking the inverse Laplace transform of
1=(sIEX) yields M � U(x) = x=IEX.
2

Lemma A.1.2.

Let M(:) be the renewal function generated by the random process Xn, n = 1; 2; : : : (with
0 < IEX <1), and let U(:) the equilibrium excess distribution of X. Further, let Y be a
positive random variable with distribution function FY (:), then for s > 0 it holds that

sZ
0

s�xZ
0

(s� x� y)dM(y)dFY � U(x) =

sZ
0

(s� x)2

2IEX
dFY (x) (A.1.2)

Proof:

Using lemma A.1.1. it easily follows

sZ
0

s�xZ
0

(s� x� y)dM(y)dFY � U(x)

=

sZ
0

s�xZ
0

(s� x� y)dM � U(y)dFY (x)

=
1

IEX

sZ
0

s�xZ
0

(s� x� y)dydFY (x)

=

sZ
0

(s� x)2

2IEX
dFY (x)
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2

Proof of relation (6).
De�ne H(x) as the expected area between the physical inventory level and the zero level, in
case the physical stock level on epoch 0 equals x (x � 0), and there are no replenishments.
Then conditioning with respect to the demand in the next period using relation (1), results
in

H(x) = x+

xZ
0

�DH(x� y)dF �D(y) + (1� �D)H(x) (A.1.3)

hence

H(x) =
x

�D
+

xZ
0

H(x� y)dF �D(y) (A.1.4)

then we �nd

H(x) =

xZ
0

x� y

�D
dM(y) (A.1.5)

which can be veri�ed by substitution in (A.1.5), where M(:) is the renewal function with
respect to the D� process.
Consider the �rst replenishment cycle after 0 (see Figure 1). In the sequel of the proof
we will assume that s > 0, as for s < 0 the same approach can be applied. The expected
physical stock at the beginning of the replenishment cycle (just after the replenishment
arrived) at epoch �1+L1, denoted by I1, is equal to s+Q�U1+Z(L̂1), whereas the expected
physical stock at the end of the replenishment cycle (just before the replenishment arrives)
, denoted by I2, is equal to s�U2 +Z(L̂2). Then it is easy to see that H(R; s;Q) is given
by H(I1)�H(I2). Conditioning with respect to I1 and I2, using (A.1.5) and lemma A.1.2,
we �nd

H(R; s;Q) =

s+QZ
0

H(s+Q� x)dF
Z(L̂1)

� FU1(x)�

sZ
0

H(s � x)dF
Z(L̂2)

� FU2(x)

=

s+QZ
0

s+Q�xZ
0

s+Q� x� y

�D
dM(y)dFZ(L̂1) � FU1(x)

�

sZ
0

s�xZ
0

s� x� y

�D
dM(y)dF

Z(L̂2)
� FU2(x)

=

s+QZ
0

(s+Q� x)2

2�DIED�
dFZ(L̂1)(x)�

sZ
0

(s� x)2

2�DIED�
dFZ(L̂2)(x)
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Notice that the expected duration of a replenishment cycle is given by Q

IED
, hence for s > 0

�(R; s;Q) =

s+QZ
0

(s+Q� x)2

2Q
dFZ(L̂1)(x)�

sZ
0

(s� x)2

2Q
dFZ(L̂2)(x) (A.1.6)

2
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Appendix 2: Two moment �t for the distribution

function of a discrete random variable

This appendix is based on Adan et al. (1994).
Lemma A.2.1.

For a pair of non-negative, real numbers (�x; cX). there exists a random variable X on the
non-negative integers with mean �x and coe�cient of variation cX if and only if

c2X �
2k + 1

�x
�
k(k + 1)

(�x)2
� 1 (A.1.7)

where k is the unique integer satisfying k � �x < k+1. For the proof of Lemma A.2.1. we
refer to Adan et al. (1994). Let X a random variable on the non-negative integers. De�ne
a := c2X � 1=IEX, then it follows from lemma A.2.1. that a � �1. The method is based
on a selection out of four classes of distributions: Poisson, mixture of binomials, mixture
of negative-binomials, and a mixture of geometric distributions. De�ne

Poisson distribution P (�; x) :=
xP
i=0

�i

i!
e�� x = 0; 1; : : :

Negative-binomial distribution NB(k; p; x) :=
xP
i=0

�
k+i�1
k�1

�
pk(1 � p)i x = 0; 1; : : :

Binomial distribution BIN(k; p; x) :=
xP
i=0

�
k

i

�
pi(1� p)k�i x = 0; 1; : : : ; k

Geometric distribution G(p; x) :=
xP
i=0

p(1 � p)i x = 0; 1; : : :

Then there exists a random variable Y which matches the �rst two moments of X, if the
distribution function of Y is chosen such that:

if �1
k
� a � �1

k+1
FY (x) = qBIN(k; p; x) + (1� q)BIN(k + 1; p; x) x = 0; 1; : : : ; k + 1

where q =
1+a(1+k)+

p
�ak(1+k)�k

1+a
and p = 1� �x

k+1�q

if a = 0 FY (x) = P (�; x) x = 0; 1; : : :
where � = �x

if 1

k+1
� a � 1

k
FY (x) = qNB(k; p; x) + (1� q)NB(k + 1; p; x) x = 0; 1; : : : ; k + 1

where q =
a(1+k)�

p
(1+k)(1�ak

1+a
and p = 1 � �x

k+1�q+�x

if a > 1 FY (x) = qG(p1; x) + (1 � q)G(p2; x) x = 0; 1; : : :
where q = 1

1+a+
p
a2�1 and p1 =

2

2+�x(1+a+
p
a2�1)

p1 =
2

2+�x(1+a�
p
a2�1)
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Appendix 3:

Proof W1 is uniformly distributed over f0; 1; : : : ; R� 1g:

De�ne W (x) as the time between the moment of undershoot of the reorderlevel s for the
�rst time after zero and the next review epoch, given that the inventory position minus
the reorder level equals x at time epoch 0, where x > 0.
Then for 0 � k < R

IP (W (x) = k) =
1X
m=1

IP (
mR�kX
n=1

ZT;n > x;
mR�k�1X
n=1

ZT;n � x)

=
1X
m=1

�
IP (

mR�k�1X
n=1

ZT;n � x)� IP (
mR�k�1X
n=1

ZT;n � x;
mR�kX
n=1

ZT;n � x)
�

=
1X
m=1

�
F

(mR�k�1)�
ZT;1

(x)� F
(mR�k)�
ZT;1

(x)
�

(A.3.1)

Taking the Laplace transforms at both sides yields

~Wk(s) :=

1Z
0

e�sxIP (W (x) = k)dx

=
1

s

1Z
0

e�sxdxIP (W (x) = k)

=
1

s

1X
m=1

� 1Z
0

e�sxdF
(mR�k�1)�
ZT;1

(x)�

1Z
0

e�sxdF
(mR�k)�
ZT;1

(x)
�

= ~FR�k
ZT;1

(s)
1� ~FZT;1(s)

s(1� ~FR
ZT;1

(s))
(A.3.2)

where ~FZT;1(s) :=
1R
0

e�sxdFZT;1(x)

Since

lim
x!1

IP (W (x) = k) = lim
s#0

s ~Wk(s) (A.3.3)

we conclude from (A.3.2) that

lim
x!1

IP (W (x) = k) = lim
s#0

~FR�k
ZT;1

(s)
1 � ~FZT;1(s)

1 � ~FR
ZT;1

(s)
(A.3.4)

which implies, using l'Hopital's rule

lim
x!1

IP (W (x) = k) =
1

R
(A.3.5)

which completes the proof.

19


