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Abstract

We develop a revealed preference approach to analyze non-unitary con-

sumption models with intrahousehold allocations deviating from the cooper-

ative (or Pareto e¢ cient) solution. At a theoretical level, we establish re-

vealed preference conditions of household consumption models with varying

degrees of cooperation. Using these conditions, we show independence (or

non-nestedness) of the di¤erent (cooperative-noncooperative) models. At a

practical level, we show that our characterization implies testable conditions

for a whole spectrum of cooperative-noncooperative models that can be veri�ed

by means of mixed integer programming (MIP) methods. This MIP formula-

tion is particularly attractive in view of empirical analysis. An application to

data drawn from the Russia Longitudinal Monitoring Survey (RLMS) demon-

strates the empirical relevance of consumption models that account for limited

intrahousehold cooperation.
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1 Introduction

We present a nonparametric revealed preference characterization of non-unitary

household consumption models that are identi�ed by varying degrees of coopera-

tion. This characterization allows us to develop a practical method for analyzing a

whole spectrum of noncooperative-cooperative consumption models. In addition, it

enables us to derive some interesting theoretical results, such as independence (or

non-nestedness) of consumption models with di¤erent degrees of cooperation. We

use our method to analyze household consumption data taken from the Russia Lon-

gitudinal Monitoring Survey (RLMS). To the best of our knowledge, this is the �rst

empirical application of consumption models that account for household behavior

that is not fully cooperative. This introductory section motivates our main research

questions, and relates them to the existing literature.

Non-unitary household consumption and cooperation. There is a growing
consensus that multi-person household consumption behavior should no longer be

treated as if it the household were a single decision maker that optimizes a household

utility function subject to the household budget constraint. Indeed, this so-called

unitary model of household consumption imposes empirically testable restrictions on

the household demand function (e.g. Slutsky symmetry) that are frequently rejected

when confronted with consumption or labor supply data of multi-person households.

See, for example, Fortin and Lacroix (1997), Browning and Chiappori (1998) and

Cherchye and Vermeulen (2008).

Because of these empirical problems of the unitary model, an emerging literature

explicitly acknowledges that households are composed of distinct individuals who are

endowed with their own preferences, and that household consumption decisions are

determined by an underlying intrahousehold decision mechanism. We refer to this

approach as the non-unitary approach to household consumption. Typically, non-

unitary consumption models allow for privately consumed goods as well as publicly

consumed goods within the household. In addition, following Apps and Rees (1988)

and Chiappori (1988, 1992), the usual assumption is that household allocations are

Pareto e¢ cient; in the household consumption literature, Pareto e¢ ciency corre-

sponds to the so-called cooperative within-household solution of the intrahousehold

allocation problem.1 However, the Pareto e¢ ciency assumption has been questioned

for the publicly consumed goods. Most notably, it has been argued that the informa-

tional requirement and the resulting cost of implementing cooperation may often be

unrealistic. See, for example, Browning, Chiappori and Lechene (2007) and Lechene

and Preston (2005, 2008).

In this paper we develop a framework for distinguishing between di¤erent non-

1Following Chiappori (1988, 1992), the consumption literature often refers to the cooperative
model as the �collective�model of household behavior.
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unitary consumption models in terms of the degree of cooperation. At this point,

it is worth noting that we see at least two reasons why it is important to know the

magnitude of intrahousehold cooperation. First, from a welfarist perspective, it gives

an idea of the welfare improvement that is possible within a certain household. If

it is possible to link the level of cooperation to household characteristics, it may be

possible to use this knowledge for welfare enhancement measures that correct the e¢ -

ciency loss originating from household behavior that is not fully cooperative. Second,

the issue has also important implications for the structure of optimal taxation and

policies that target to alter the intrahousehold income distribution. See, for exam-

ple, Blundell, Chiappori and Meghir (2005) for a discussion on such targeting issues

in a non-unitary setting. In this respect, di¤erent (cooperative-noncooperative) con-

sumption models may lead to other intrahousehold allocations. In fact, the literature

has revealed a need for non-unitary household consumption models situated between

a fully cooperative case and a fully noncooperative situation, in order to obtain a

realistic modeling of observed behavior. See, for example, d�Aspremont and Dos

Santos Ferreira (2009) for discussion.

In what follows, we will provide a characterization of the whole cooperative-

noncooperative spectrum. At the one extreme, the fully cooperative solution corre-

sponds to the Pareto e¢ cient within-household allocation mentioned before. At the

other extreme, the fully noncooperative solution corresponds to a Nash equilibrium

allocation within the household. Finally, we also characterize the semicooperative

case, which is situated on a continuum between the cooperative case and the non-

cooperative case. We will argue that our characterization of this semicooperative

case has a natural interpretation in terms of the degree of cooperation within the

household.

The cooperative-noncooperative spectrum: literature review. By now,
the modeling of the fully cooperative case is quite complete. Browning and Chiap-

pori (1998) provide a local di¤erential characterization of the cooperative model. A

general �nding is that if the household acts cooperatively, then the unitary condition

of Slutsky symmetry no longer holds. By contrast, cooperative behavior imposes

that there exists a household pseudo-Slutsky matrix that can be decomposed as the

sum of a symmetric negative semi-de�nite matrix and a matrix of rank 1 (in the

case of two household members). As shown by Chiappori and Ekeland (2006), this

condition, together with homogeneity and adding up, is also locally su¢ cient for

the existence of individual utility functions and Pareto weights that reproduce the

observed behavior. Cherchye, De Rock and Vermeulen (2007, 2009a,b) complement

these local di¤erential results by presenting a global revealed preference characteri-

zation of the same cooperative model. In the tradition of Afriat (1967) and Varian
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(1982),2 they derived necessary and su¢ cient conditions for household consumption

data to be consistent with the model. For the publicly consumed quantities, these

conditions require the existence of suitable Lindahl prices such that each individual

in the household satis�es the Generalized Axiom of Revealed Preference (garp; see

Section 2) when using these individual Lindahl prices to evaluate the public goods.

At the other extreme of the spectrum, the fully noncooperative model assumes

that each individual within the household maximizes her/his own utility given the

consumption of the other household members. In this case, the household consump-

tion decision is determined by the Nash equilibrium solution with voluntary contri-

butions for the publicly consumed goods. See, among others, Lundberg and Pollak

(1993), Browning, Chiappori and Lechene (2007) and Lechene and Preston (2005,

2008). As for the (local) di¤erential characterization of this model, data consistency

with the noncooperative model requires the existence of a pseudo-Slutsky matrix that

can be decomposed as a symmetric negative semide�nite matrix and a matrix with

rank less than the number of public goods plus 1 (again in the case of two household

members). Three remarks are important in view of our following exposition. First,

at present it is not known whether these noncooperative conditions are also (locally)

su¢ cient. Second, these noncooperative conditions are nested with the (di¤erential)

cooperative conditions mentioned above: data consistency with the cooperative con-

ditions always implies data consistency with the noncooperative conditions, but not

vice versa. Finally, to the best of our knowledge a complementary global revealed

preference characterization of the noncooperative household consumption model is

nonexistent in the literature.3

Between the two (cooperative and noncooperative) extremes, we can conceive a

continuum of semicooperative cases. These cases di¤er in the degree to which a cer-

tain household member behaves cooperatively towards the other household members.

We are aware of only one study that investigates these intermediate cases. Speci�-

cally, d�Aspremont and Dos Santos Ferreira (2009) consider a semicooperative model

where the willingness to pay for public goods is between the Lindahl price vector

associated with the cooperative equilibrium and the market price vector. Focusing

on the local di¤erential characterization of this semicooperative behavior, they also

derive corresponding rank conditions on the pseudo-Slutsky matrix. We will discuss

the characterization of d�Aspremont and Dos Santos Ferreira in more depth when

we relate it to our characterization of semicooperative behavior. At this point, it

is important to indicate that the above three remarks for the noncooperative model

extend to the semicooperative model of d�Aspremont and Dos Santos Ferreira.

2See also Samuelson (1938), Houthakker (1950) and Diewert (1973) for seminal contributions on
the revealed preference approach to analyzing consumption behavior.

3However, see Sprumont (2000) for a revealed preference characterization of the noncooperative
Nash solution in a choice-theoretic framework à la Richter (1966).

4



This study. We will develop an alternative framework for modeling household
consumption behavior characterized by varying degrees of cooperation; this frame-

work will contain the fully cooperative model and the fully noncooperative model

as limiting cases. We will explicitly discuss the relationship between our framework

and the one of d�Aspremont and Dos Santos Ferreira (2009). In contrast to most

research in the literature, we focus on the revealed preference characterization of

(cooperative, noncooperative and semicooperative) consumption behavior.

The revealed preference approach has a number of attractive features. First of

all, our characterization is global, which contrasts with the local characterization

obtained by the standard di¤erential approach. Speci�cally, we get global conditions

that enable checking consistency of a given data set with a particular consumption

model; in the spirit of Varian (1982), we refer to this as �testing�data consistency

with the model under study. Second, we are able to verify these conditions while

keeping their inherent nonparametric nature, i.e. the associated tests do not require

an a priori (typically non-veri�able) parametric speci�cation of the intrahousehold

decision process (e.g. individual preferences). By contrast, the di¤erential approach

(until present) usually maintains additional assumptions concerning the functional

form for the demand function (and thus individual preferences) when verifying the

abovementioned rank conditions of the pseudo-Slutsky matrix (e.g. Browning and

Chiappori (1998) start from a quadratic almost ideal demand system in their em-

pirical analysis). More speci�cally, our nonparametric tests apply mixed integer

programming (MIP) methods, which combine linear constraints with binary integer

variables. This MIP formulation is particularly attractive from a practical point

of view: for a given data set, it allows for testing data consistency with a speci�c

consumption model by applying standard MIP solution techniques.

Two further features imply notable di¤erences with the di¤erential results de-

scribed above. First, the testable revealed preference conditions are not only neces-

sary but also su¢ cient for data consistency with speci�c (cooperative, noncooperative

and semicooperative) consumption models. Second, we will show that the conditions

for the semicooperative model (or, in a limiting case, the conditions of the fully non-

cooperative model) are not nested with the cooperative conditions: data consistency

with the (global) semicooperative conditions is neither necessary nor su¢ cient for

data consistency with the (global) cooperative conditions. This makes it interesting

to compare the empirical validity of di¤erent models. In fact, we can meaningfully

verify data consistency with a given model (and compare di¤erent models) even if

there are only a few observations and without restriction on the number of privately

consumed goods (see Section 4.4 and Section 5).

We demonstrate the practical usefulness of our approach through an empirical ap-

plication to data taken from the RLMS. As indicated above, as far as we know, this is
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the �rst application of noncooperative and semicooperative household consumption

models to a real-life data set. Interestingly, this application demonstrates the empir-

ical relevance of our theoretical insights on independence (or non-nestedness) of, on

the one hand, the revealed preference conditions for the fully cooperative model and,

on the other hand, the revealed preference conditions for other (not fully coopera-

tive) models. As such, it motivates considering noncooperative and semicooperative

models in addition to the (more common) cooperative model in empirical analysis of

household consumption behavior.

The rest of this study is organized as follows. To set the stage, Section 2 re-

captures the revealed preference characterization of individually rational behavior.

Section 3 introduces a general household game concept, which applies to the con-

sumption decisions of multi-person households. This concept will provide the starting

point for our discussion in Section 4, which gives a revealed preference characteriza-

tion of the cooperative-noncooperative spectrum introduced above. This section also

discusses independence (or non-nestedness) between the conditions of non-unitary

consumption models characterized by di¤erent degrees of cooperation. Section 5 in-

troduces the MIP approach for empirical veri�cation of the di¤erent conditions, and

presents our empirical application. Section 6 summarizes and formulates a number

of concluding remarks.

2 The rational individual benchmark

In this section, we provide a brief introduction to the theory of revealed preferences.

Speci�cally, we consider the optimization problem of a rational single individual.

This will ease our following discussion of non-unitary consumption models, which

assume rational individuals.

Consider an individual with a utility function U . Throughout, we will assume that

utility functions U are continuous, concave, non-satiated and non-decreasing in their

arguments. Let T = f1; : : : ; jT jg be a set of observations. Given a (strictly positive)
price vector pt and income Yt (t 2 T ), we assume that the rational individual chooses
the consumption bundle q in her/his budget set that maximizes her/his utility. In

particular, the rational individual solves the following optimization problem (OP-I):4

qt 2 argmax
q
U (q) s:t: hpt;qi � Yt

A data set S = fpt; qtgt2T consists of a collection of strictly positive price vectors
pt and a collection of positive demand vectors qt. We use the following concept of

4Observe that, under our maintained assumptions for the utility function U , we have that in
equilibrium the budget restriction should hold with equality. The same applies to problems OP-H.A
and OP-H.B below.
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individual-rationalizability.

De�nition 1 (individual-rationalizability) Consider a data set S = fpt; qtgt2T .
The set S is individual-rationalizable if there exist a utility function U such that for

all t 2 T , the bundle qt solves OP-I given the price vector pt and income Yt = hpt;qti.

Varian (1982) established that the set S is individual-rationalizable if and only if

it satis�es the Generalized Axiom of Revealed Preference (garp).

De�nition 2 (garp) Consider a data set S = fpt; qtgt2T . The set S satis�es

garp if there exists a binary relation R such that the following holds. If hpt;qti �
hpt;qvi then qtRqv. Next, qtRqv if qtRqs; qsRql; :::; qzRqv for some sequence s; l; :::;
z. Finally, if qtRqv then hpv;qvi � hpv;qti.

In words, R captures the revealed preference relation in the data set S. We have

qtRqv if qt is directly revealed preferred to qv (i.e. hpt;qti � hpt;qvi) or indirectly
revealed preferred to qv (i.e. there exists a sequence s; l; :::; z such that qtRqs; qsRql;

:::; qzRqv). Finally, if qtRqv, then we must have hpv;qvi � hpv;qti, i.e. qv cannot be
more expensive than any revealed preferred qt.

The following theorem is probably the single most important result in revealed

preference theory (see Varian, 1982, based on Afriat, 1967).

Theorem 1 Consider a data set S = fpt; qtgt2T . The following conditions are equiv-
alent:

1. There exists a utility function U that individual-rationalizes S.

2. S satis�es garp.

3. For all t 2 T , there exist a positive number Ut and a strict positive number �t
such that, for all t; v 2 T ,

Ut � Uv � �v hpv;qt � qvi :

This result has two important implications. First, data consistency with garp

is necessary and su¢ cient for individual-rationalizability of the data; see condition

2. Next, condition 3 provides an equivalent characterization in terms of the so-

called Afriat inequalities, which allow an explicit construction of the utility levels

associated with each observation t (i.e. utility level Ut for observed qt). In our

following discussion of consumption models, we will mainly concentrate on the garp

characterization of rational individual behavior. As we will show, this focus on garp

enables us to formulate testable implications of consumption models in mixed integer

programming (MIP) terms (see Section 5). However, in principle our garp-based

characterization of consumption models can equivalently be expressed in terms of

Afriat inequalities (by building on Theorem 1; see also the proof of Theorem 4).
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3 The household game

To keep our exposition simple, we focus on 2-person (A and B) households in

what follows. However, extensions to households with more than 2 members are

fairly straightforward. Individuals have to decide over the consumption of a bun-

dle of jJ j private goods (J = f1; : : : ; jJ jg) and a bundle of jKj public goods (K =

f1; : : : ; jKjg). Given private and public consumption in the household, the util-

ity of the individuals A and B is given by the functions UA(qA; QA + QB) and

UB(qB; QA+QB), with qA and qB the private consumption bundles of A and B, and

QA and QB the contributions to the public goods from A and B.5 The fact that we

explicitly distinguish between A and B�s contributions to the public consumption

may seem a bit unconventional. However, this distinction will be essential for mod-

eling behavior that deviates from fully cooperative (or Pareto e¢ cient) household

behavior (e.g. Lechene and Preston, 2005, 2008, and d�Aspremont and Dos Santos

Ferreira (2009) make similar distinctions).

The household consumption levels depend on the intrahousehold decision making

process. As discussed in the Introduction, we will consider three types of non-unitary

household models, which will have di¤erent equilibrium characterizations: the coop-

erative case, which assumes a Pareto e¢ cient intrahousehold solution; the nonco-

operative case, which assumes a noncooperative Nash equilibrium solution; and the

semi-cooperative case, which is situated on a continuum between the cooperative and

the non-cooperative solutions. To formalize this idea, we will discuss the three mod-

els as particular cases of what we call the household game. Essentially, this household

game describes each consumption decision as resulting from a two-step process. In

a certain sense, this two-step representation generalizes the two-step representation

of the cooperative consumption model; see, for example, Chiappori (1988, 1992).

Just like for the cooperative model, it is important to remark that our two-step

representation of the household game should not necessarily correspond to the ac-

tual decision making process within the household. We only assume that observed

household behavior can be represented as if it follows from a two-step procedure.

In the �rst step of the household game, the total household income Y is divided

between A and B, which de�nes the individual incomes Y A and Y B (with Y A +

Y B = Y ). In this study, we abstract from explicitly modeling this �rst step. In

general, however, this intrahousehold income distribution can be seen as a function

of exogenous variables such as prices, household expenditures and other variables

that a¤ect household decisions but not the preferences or the household budget (i.e.

5Throughout, we will abstract from externalities associated with privately consumed quantities.
Importantly, however, our setting can actually account for such externalities. Speci�cally, if an in-
dividual is the exclusive consumer of a particular private good, then we can account for externalities
for this good by formally treating it as a public good.
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so-called extra-environmental parameters in the terminology of McElroy (1990) or

distribution factors in the terminology of Browning, Bourguignon, Chiappori, and

Lechene (1994)). In the second step, each individual (A and B) decides on the

optimal level of the own private consumption and the own contribution to the level

of public goods, by maximizing her/his own utility subject to a personalized budget

constraint de�ned by the individual income. In doing so, the individual faces the price

vectors p and P for her/his choice of private consumption and public contribution.

In addition, in the general version of the household game, each individual receives

a donation from the other individual per unit of public good that she/he purchases.

We denote these donations for each good k 2 K by �Ak and �
B
k ; �

A and �B represent

the vectors of donations. We see at least two interpretations for these intrahousehold

donations related to public goods. First, one can see these donations as voluntary

contributions: as B bene�ts from the purchase of QAk , it may be the case that

she/he is willing to contribute to the purchase of this bundle. Next, one can also

interpret them as representing an implicit tax that B has to pay for the bene�t of

receiving QAk . Both interpretations express that intrahousehold donations (i.e. a

given speci�cation of �Ak and �
B
k ) refer to the degree of (voluntary or obligatory)

cooperation within the household. This donation concept will play a crucial role in

our further exposition. Speci�cally, it will allow us to characterize a whole spectrum

of cooperative-noncooperative household consumption models.

The empirical analysis of the household game starts from a data set S = fpt;
Pt; qt; Qtgt2T . For every observation t 2 T , the vectors Qt and qt (= qAt + q

B
t )

represent the household bundles of public and private goods demanded at t; and we

write qt;j, and Qt;k for the demanded quantity of private good j or public good k at

t (j 2 J , k 2 K). Thus, using pt for the (strictly positive) price vector of the private
commodities, Pt for the (strictly positive) price vector of the public commodities and

Yt for household income, the household faces the following budget constraint:

hpt;qi+ hPt; Qi � Yt;

The �rst step of the household game then de�nes the individual incomes Y At and

Y Bt (Y At + Y Bt = Yt). Throughout, we will assume that the empirical analyst only

observes Yt and not Y At and Y Bt . In the second step, individual A pays


pt;q

A
�
and


Pt; Q
A
�
for her/his purchase of private and public goods corresponding to any choice

of qA and QA. In addition, she/he receives the amount �Bt Q
A from B while she/he

pays �At Q
B to B for any QB representing B�s contribution to the public goods. Thus,

A�s optimization problem in this second step is given by (OP-H.A)

�
qAt ; Q

A
t

	
2 arg max

qA;QA
U
�
qA; QA +QBt

�
s:t:



pt;q

A
�
+


Pt � �Bt ;QA

�
+


�At ;Q

B
t

�
� Y At :
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Similarly, B solves (OP-H.B)

�
qBt ; Q

B
t

	
2 arg max

qB ;QB
U
�
qB; QAt +Q

B
�
s:t:



pt;q

B
�
+


Pt � �At ;QB

�
+


�Bt ;Q

A
t

�
� Y Bt :

In what follows, we de�ne an equilibrium of the household game as an allocation

fqAt ; qBt ; QAt ; QBt g that simultaneously solves OP-H.A and OP-H.B for a particu-

lar choice of Y At ; Y
B
t , �

A
t and �

B
t . In the next section, we will see that the three

equilibrium concepts in this paper depend entirely on the choice of �At and �
B
t .

Before considering these equilibrium concepts in more detail, we characterize

the equilibrium for the general version of the household game. To this end, we

consider the marginal utility levels UAQt and U
B
Qt
of A and B at the equilibrium

allocation.6 Further, let us introduce the notation ~PAt = U
A
Qt
=�At and ~P

B
t = U

B
Qt
=�Bt ,

with �At and �
B
t the Lagrange multipliers (associated with the budget constraint) at

the equilibrium for A and B evaluated in observation t. The vectors ~PAt and ~PBt

represent the marginal willingness to pay (MWTP) for the bundle of public goods

associated withA andB. In particular, ~PAt;k represents the amount of income thatA is

willing to give up (at equilibrium) in order to receive one additional unit of the public

good k. For each public good k (which is consumed by a strictly positive amount),

the �rst order equilibrium conditions for OP-H.A and OP-H.B (for Qt;k > 0) imply

maxf ~PAt;k + �Bt;k; ~PBt;k + �At;kg = Pt;k: (1)

This equality requirement is easily interpreted as an equilibrium condition. To see

this, let us consider the two possible inequality situations. First, if ~PAt;k + �
B
t;k > Pt;k

then the MWTP of A for one additional unit of k (i.e. ~PAt;k) is larger than the price

A has to pay for it (i.e. Pt;k � �Bt ). Hence, A will increase her/his contribution to
good k. A directly similar interpretation applies to the situation ~PBt;k + �

A
t;k > Pt;k.

And, thus, maxf ~PAt;k + �Bt;k; ~PBt;k + �At;kg > Pt;k implies a disequilibrium. Next, if

maxf ~PAt;k+ �Bt;k; ~PBt;k+ �At;kg < Pt;k then either A or B (whoever contributes positively
to good k) will want to decrease her/his contribution to k. Again, this implies a

disequilibrium situation.

As a concluding remark, we point out two assumptions that we will maintain

in the next two sections. First, we will assume that the empirical analyst only

observes the aggregate private demands qt, and not the individual bundles qAt and

qBt . However, it is easy to extend our analysis to include information on q
A
t and q

B
t ,

i.e. the private consumption of the individuals A and B is partly observed. See our

empirical application in Section 5 for a speci�c example. Next, we will assume that

all components of the aggregate demands Qt are strict positive. Again, we could

6If UA and UB are not di¤erentiable, we can take the subdi¤erentials that characterize the
optimal allocation.
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easily relax this assumption by introducing some additional notation, but this would

only complicate the discussion while not really adding any new insights. In fact, our

empirical application in Section 5 will consider data sets with some components of

Qt equal to zero; our basic theoretical insights developed below apply with equal

strength to this setting.

4 The cooperative-noncooperative spectrum

The household game discussed in the previous section allows us to provide a revealed

preference characterization of a whole spectrum of cooperative-noncooperative mod-

els of household consumption. As indicated above, di¤erent degrees of intrahousehold

cooperation then correspond to di¤erent speci�cations of the intrahousehold dona-

tions (i.e. �Ak and �
B
k ). To formalize this idea, we �rst discuss the two extreme

cases mentioned in the Introduction, i.e. the fully cooperative model and the fully

noncooperative model. Subsequently, we present the semicooperative model, which

is situated on a continuum between these two limiting models.

4.1 The cooperative solution

The cooperative model assumes that the household consumption decision coincides

with a Pareto optimal allocation. An allocation fqAt ; qBt ; QAt ; QBt g is Pareto optimal
if for all allocations fq0A; q0B; Q0A+ Q0Bg that satisfy the same household budget
constraint, UA(q0A; Q0A + Q0B) > UA(qAt ; Q

A
t + Q

B
t ) implies U

B(q0B; Q0A + Q0B) <

UB(qBt ; Q
A
t + Q

B
t ). For our setting with concave utility functions, a Pareto optimal

allocation fqAt ; qBt ; QAt ; QBt g is usually characterized as maximizing a weighted sum
of individual utilities UA and UB subject to the given budget constraint; in this

characterization, the weights of UA and UB are commonly referred to as Pareto

weights. The revealed preference characterization of this cooperative model has been

discussed by Cherchye, De Rock and Vermeulen (2007, 2009b). In what follows, we

brie�y recapture this characterization by integrating it with the household game

framework set out in the previous section. This will set the stage for our next

discussion of the noncooperative and semicooperative models.

As discussed in the previous section, the household game de�nes an equilibrium

bundle fqAt ; qBt ; QAt ; QBt g for a given income distribution Y At ; Y Bt and vectors �At ,

�Bt . Now assume that (in equilibrium) A considers to buy an additional unit of good

k. In order to pay for this extra consumption, A receives from B a contribution of

�Bt;k. In a cooperative equilibrium, a natural assumption is that B pays according

to her/his valuation of this extra consumption. In other words, B agrees to pay

exactly her/his MWTP for this additional consumption; and this value is given by

11



~PBt;k. Thus, for the cooperative solution we have

�Bt = ~PBt ;

so that the equilibrium condition (1) becomes

maxf ~PAt;k + ~PBt;k;
~PBt;k +

~PAt;kg = Pt;k; or
~PAt;k +

~PBt;k = Pt;k: (2)

In words, for every public good k and at each observation t, the sum of the MWTP

of individuals A and B ( ~PAt;k and ~PBt;k) must equal the price Pt;k. As such, ~P
A
t;k and

~PBt;k can be interpreted as Lindahl prices and, thus, in this case the household game

equilibrium corresponds to an equilibrium with Lindahl prices. This conforms to the

well-known one-to-one correspondence between Lindahl price equilibria (with varying

incomes Y At and Y Bt ) and the set of Pareto optimal allocations (with varying Pareto

weights for the individuals).

Given all this, we can next introduce the revealed preference characterization

of this cooperative consumption model. We �rst de�ne the concept of cooperative-

rationalizability.

De�nition 3 (cooperative-rationalizability) Consider a data set S = fpt; Pt;
qt; Qtgt2T . The set S is cooperative-rationalizable if there exist utility functions
UA and UB, individual private consumption bundles qAt ; q

B
t 2 R

jJ j
+ that sum to qt and

public consumption bundles QAt ; Q
B
t 2 R

jKj
+ that sum to Qt such that fqAt ; qBt ; QAt ; QBt g

simultaneously solves OP-H.A and OP-H.B under the condition �At = ~PAt and �
B
t =

~PBt .

The next result gives the revealed preference conditions corresponding with such

cooperative-rationalizability.

Theorem 2 Consider a data set S = fpt; Pt; qt; Qtgt2T . The following conditions
are equivalent:

1. There exists a pair of utility functions UA, UB that cooperative-rationalizes S.

2. For all t 2 T , there exist price vectors ~PAt ; ~PBt 2 RjKj+ and quantity vectors

qAt ; q
B
t 2 R

jJ j
+ such that

qAt + q
B
t = qt; (C.1)

~PAt + ~PBt = Pt; and (C.2)

fpt; ~PAt ; qAt ; Qtgt2T and fpt; ~PBt ; qBt ; QTgt2T satisfy garp. (C.3)

12



Condition C.3 implies that cooperative-rationalizability implies a garp condition

(i.e. individual-rationalizability) at the level of individuals A and B. The speci�city

of the cooperative model is that these garp conditions use Lindahl prices ( ~PAt and
~PBt ) for evaluating the publicly consumed quantities; see condition C.2. It will be

interesting to compare this condition with the conditions that apply to the fully

noncooperative model and the semicooperative model.

Before doing so, we brie�y recapture the so-called sharing rule concept that is

intrinsic to the cooperative model of consumption behavior. Essentially, the sharing

rule de�nes the individual income shares Y At and Y Bt corresponding to cooperative-

rationalizable household consumption behavior; see, for example, Chiappori (1988,

1992) for extensive discussion. In this respect, we recall that a data set S only

contains information on Yt and not on Y At and Y
B
t . However, in principle it is possible

to empirically identify Y At and Y Bt (i.e. the sharing rule) if the set S is cooperative-

rationalizable. Note that, from (2) the intrahousehold income distribution is given

as 

pt;q

A
t

�
+
D
~PAt ;Qt

E
= Y At and



pt;q

B
t

�
+
D
~PBt ;Qt

E
= Y Bt : (3)

Thus, for a given data set S, if we can identify qAt , q
B
t , ~P

A
t and ~P

B
t (given the empirical

conditions C.1-C.3), then we can identify the income shares Y At and Y
B
t that underlie

the observed cooperative consumption behavior. We refer to Cherchye, De Rock and

Vermeulen (2009b) for a detailed discussion of this identi�ability result that starts

from the revealed preference characterization in Theorem 2.7 In what follows, we will

see that this identi�ability result does not hold in general for consumption models

that are not fully cooperative.

4.2 The noncooperative solution

Fully noncooperative household behavior means that individual A is not willing to

contribute to the purchase of QB and vice versa, which implies �At = �Bt = 0. In

this instance, the programs OP-H.A and OP-H.B correspond to the usual de�nition

of a Nash equilibrium; see, for example, Lechene and Preston (2005, 2008). Given

�At = �
B
t = 0, the equilibrium condition (1) for the household game reduces to

maxf ~PAt;k; ~PBt;kg = Pt;k: (4)

The interpretation of this condition is directly analogous to the one of (1) discussed

above.

Let us then consider the revealed preference conditions of this noncooperative

model for a data set S = fpt; Pt; qt; Qtgt2T . Similar to before, we de�ne the concept
7Chiappori and Ekeland (2009) provide related identi�ability results that start from a di¤erential

characterization of the cooperative model.
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of noncooperative-rationalizability.

De�nition 4 (noncooperative-rationalizability) Consider a data set S = fpt;
Pt; qt; Qtgt2T . The set S is noncooperative-rationalizable if there exist utility func-
tions UA and UB, individual private consumption bundles qAt ; q

B
t 2 RjJ j+ that sum

to qt and public consumption bundles QAt ; Q
B
t 2 RjKj+ that sum to Qt such that

fqAt ; qBt ; QAt ; QBt g simultaneously solve OP-H.A and OP-H.B under the condition

�At = �
B
t = 0.

We obtain the following result.

Theorem 3 Consider a data set S = fpt; Pt; qt; Qtgt2T . The following conditions
are equivalent:

1. There exists a pair of utility functions UA, UB that noncooperative-rationalizes

S.

2. For all t 2 T and k 2 K; there exist price vectors ~PAt ; ~PBt 2 R
jKj
+ and quantity

vectors qAt ; q
B
t 2 R

jJ j
+ such that

qAt + q
B
t = qt; (NC.1)

max
n
~PAt;k;

~PBt;k

o
= Pt;k, and (NC.2)

fpt; ~PAt ; qAt ; Qtgt2Tand fpt; ~PBt ; qBt ; Qtgt2T satisfy garp. (NC.3)

Moreover, it follows that

~PAt;k < Pt;k if and only if Q
A
t;k = 0 and Q

B
t;k = Qt;k, and (NC.4)

~PBt;k < Pt;k if and only if Q
B
t;k = 0 and Q

A
t;k = Qt;k. (NC.5)

The interpretation of NC.1-NC.3 is similar to the one of C.1-C.3 in Theorem 2.

The main di¤erence is restriction NC.2 in Theorem 3, which replaces restriction C.2

in Theorem 2. The restrictions NC.4 and NC.5 follow from the fact that, if ~PAt;k < Pt;k
( ~PBt;k < Pt;k), then A (B) will sell back any positive amount of the public good k. This

implies QAt;k = 0 (Q
B
t;k = 0) and, thus, Q

B
t;k = Qt;k (Q

A
t;k = Qt;k). Note that we can

have ~PAt;k + ~PBt;k > Pt;k, which contrasts with (2) that applies to the cooperative case.

In fact, this di¤erence between ~PAt;k + ~PBt;k and Pt;k indicates an e¢ ciency loss in the

consumption of public goods caused by Pareto ine¢ cient (or not fully cooperative)

behavior.

Two further remarks are in order. First, if we had imposed the additional as-

sumption that for all t 2 T and k 2 K the contributions QAt;k and Q
B
t;k are everywhere
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strictly positive, then we would have derived a simpler characterization of noncoop-

erative behavior. Speci�cally, it can be veri�ed that condition NC.3 in Theorem 3

would have reduced to requiring bundles qAt and q
B
t that sum to qt such that the

sets fpt; Pt; qAt ; Qtgt2T and fpt; Pt; qBt ; Qtgt2T both satisfy garp. However, the as-
sumption that all QAt;k and Q

B
t;k are positive is problematic. Speci�cally, Browning,

Chiappori and Lechene (2007) have shown that generically (i.e. in all but a partic-

ular set of cases) the number of public goods to which both individuals contribute

is less than or equal to one. This suggests only assuming that QAt;k and Q
B
t;k are

non-negative, which e¤ectively obtains the characterization in Theorem 3.8

The �nal remark pertains to our earlier discussion of (3) for the cooperative

model. We have indicated that, in principle, under cooperative-rationalizability the

(unobserved) within-household income distribution (i.e. the sharing rule) can be

identi�ed from the observed set S. This identi�ability result does not generally hold

under noncooperative-rationalizability. Speci�cally, it directly follows from the bud-

get constraints in OP-H.A and OP-H.B that, under noncooperative-rationalizability,

the income shares of the two individuals are given by:



pt;q

A
t

�
+


Pt;Q

A
t

�
= Y At and



pt;q

B
t

�
+


Pt;Q

B
t

�
= Y Bt : (5)

Given this, conditions NC.4 and NC.5 imply that Y At and Y Bt are uniquely identi�ed

only if for all k and t we have ~PAt;k < Pt;k (so that QAt;k = 0 and QBt;k = Qt;k) or
~PBt;k < Pt;k (so that QBt;k = 0 and QAt;k = Qt;k). This last situation conforms to

the so-called separate spheres Nash equilibrium concept; see Lundberg and Pollak

(1993) and Browning, Chiappori and Lechene (2007). On the other hand, as soon

as there is one public good k to which both individuals contribute for some t (i.e.
~PAt;k =

~PBt;k = Pk), it is impossible to exactly recover the income shares Y At and

Y Bt that underlie the observed noncooperative behavior. Speci�cally, in this case

QAt;k and Q
B
t;k can take any value (under the sole condition Q

A
t;k + Q

B
t;k = Q

B
t;k) and,

thus, the expenditures on good k can not be assigned to the individual household

members. Interestingly, this result complies with the so-called local income pooling

result, which also applies to situations where both individuals contribute to the

same public good in a noncooperative setting; see Kemp (1984), Bergstrom, Blume

and Varian (1986) and Browning, Chiappori and Lechene (2007). However, even

though we cannot identify Y At and Y Bt in such a situation, it is still possible to

recover upper and lower bounds on values for Y At and Y Bt that are consistent with a

noncooperative-rationalization of the given data set. These bounds then account for

the total (non-assignable) expenditures on the jointly contributed public goods.

8However, see Lechene and Preston (2005) for some example settings where the assumption of
strictly positive QAt;k and Q

B
t;k is always satis�ed.
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4.3 The semicooperative solution

In contrast to the cooperative and noncooperative cases discussed before, there is

no obvious way to model semicooperative household consumption behavior. In this

section, we forward a model that extends the interpretation of the previous (limiting)

models to situations characterized by intermediate levels of intrahousehold coopera-

tion. We believe this model captures most characteristics of both models in a realistic

and intuitive way. To enhance the intuition of the model, we will compare it with -to

the best of our knowledge- the only alternative semicooperative model that has been

suggested in the literature, i.e. the model of d�Aspremont and Dos Santos Ferreira

(2009).

Following our reasoning in the previous sections, we characterize the semicoop-

erative model in terms of the parameters �At and �
B
t . We recall that the cooperative

case corresponds to �At = ~PAt and �Bt = ~PBt , while the noncooperative case corre-

sponds to �At = �
B
t = 0. This naturally suggests to characterize the semicooperative

case by �At , �
B
t such that

0 � �At � ~PAt and 0 � �Bt � ~PBt , or

�At;k = �
A
t;k
~PAt;k and �Bt;k = �

B
t;k
~PBt;k with

0 � �At;k � 1 and 0 � �Bt;k � 1.

Let us interpret this semicooperative model in terms of the household game de-

scribed above. Assume that (in equilibrium) individual A wants to increase her/his

contribution to public good k by one unit, and individual B�s MWTP for this increase

is ~PBt;k. However, individual B is not fully cooperative and, thus, she/he is unwilling

to pay this entire amount to A when purchasing the additional public good. On the

other hand, she/he is not fully noncooperative either. Therefore, individual B will

contribute �Bt;k situated between zero and ~P
B
t;k and, thus, there exists a constant �

B
t;k

such that B is willing to contributes �Bt;k ~P
B
t;k to the purchase of the good. This cor-

responds to the interpretation of the intrahousehold donations (�Ak and �
B
k ) in terms

of voluntary intrahousehold cooperation; in this case, �Bt;k represents a subsidy from

B to A. When interpreting the same donations in terms of obligatory cooperation,

we can think of �Bt;k as a tax rate which individual B faces on his MWTP for the fact

that A purchases the public good. Finally, we obviously have that �At;k = �
B
t;k = 1 for

all t and k corresponds to fully cooperative behavior, and �At;k = �
B
t;k = 0 for all t and

k complies with fully noncooperative behavior.

For given �At;k and �
B
t;k, the equilibrium condition (1) for the household game is

given as

maxf ~PAt;k + �Bt;k ~PBt;k; ~PBt;k + �At;k ~PAt;kg = Pt;k: (6)
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The intuition of this condition is directly similar to the one of (1), which was ex-

plained before. We remark that we can have ~PBt;k + ~PAt;k > Pt;k for some k if �
A
t;k 6= 0

or �Bt;k 6= 0. Like for the fully noncooperative case, such an inequality indicates an
e¢ ciency loss due to limited cooperation.

Let us then formulate the corresponding revealed preference conditions. We �rst

de�ne the concept of semicooperative-rationalizability.

De�nition 5 (semicooperative-rationalizability) Consider a data set S = fpt;
Pt; qt; Qtgt2T . The set S is semicooperative-rationalizable if there exist �At;k and
�Bt;k 2 [0; 1], utility functions UA and UB, individual private consumption bundles
qAt ; q

B
t 2 R

jJ j
+ that sum to qt and public consumption bundles QAt ; Q

B
t 2 R

jKj
+ that sum

to Qt such that fqAt ; qB; QAt ; QBt g simultaneously solve OP-H.A and OP-H.B under

the condition �At;k = �
A
t;k
~PAt;k and �

B
t;k = �

B
t;k
~PBt;k.

The following theorem characterizes the collection of data sets that are semicooperative-

rationalizable.

Theorem 4 Consider a data set S = fpt; Pt; qt; Qtgt2T . The following conditions
are equivalent:

1. There exists a pair of utility functions UA, UB that semicooperative-rationalizes

S.

2. For all t 2 T and k 2 K; there exist numbers �At;k; �Bt;k 2 [0; 1], price vectors
~PAt ;

~PBt 2 R
jKj
+ and vectors qAt ; q

B
t 2 R

jJ j
+ such that

qAt + q
B
t = qt; (SC.1)

max
n
~PAt;k + �

B
t;k
~PBt;k; ~P

B
t;k + �

A
t;k
~PAt;k

o
= Pt;k , and (SC.2)

fpt; ~PAt ; qAt ; Qtgt2T and fpt; ~PBt ; qBt ; Qtgt2T satisfy garp. (SC.3)

Moreover, it follows that

~PAk;t + �
B
t;k
~PBk;t < Pk;t if and only if Q

A
k;t = 0 and Q

B
k;t = Qk;t, and (SC.4)

�At;k
~PAk;t +

~PBk;t < Pk;t if and only if Q
B
k;t = 0 and Q

A
k;t = Qk;t. (SC.5)

The interpretation is readily similar to the one of Theorem 3. Like in the nonco-

operative case, we have that the individual income shares (Y At and Y Bt ) underlying

observed semicooperative behavior are not identi�able in general. Mutatis mutandis,

our discussion of (5) caries over to this semicooperative case.

In what follows, we will assume constant �At;k and �
B
t;k, i.e. �

A
t;k = �

A and �Bt;k = �
B

for all t and k. This will substantially simplify our exposition. The fact that the
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parameters �A and �B are independent of t means that the subsidy (i.e. voluntary

donations) or tax rate (i.e. obligatory donations) does not change over observations.

It is possible to relax this assumption, but this comes at the cost of a considerable

increase of the computational complexity of the testable MIP conditions. Next,

constant �A and �B also imposes that the donations �At and �
B
t are proportional to

the MWTP vectors ~PAt and ~P
B
t . In other words, if individual B�s MWTP for some

good k1 is twice her/his MWTP for some other good k2, then her/his contribution

per unit of k1 will also be twice as large as her/his contribution per unit of k2.

Although it is also possible to relax this assumption (again at the cost of additional

computational burden), we will stick to it as we believe it is quite intuitive and

plausible in the current context.

As a �nal note, it is useful to compare our model with the one of d�Aspremont

and Dos Santos Ferreira (2009). Consider a data set S and let fq0At ; q0Bt ; Q0At ; Q0Bt g be
a cooperative (Pareto e¢ cient) equilibrium for the household game, with �At and �

B
t

the associated Lindahl prices (i.e. �At and �
B
t give the MWTP vectors for A and B

at this cooperative equilibrium; see our above discussion of the cooperative model).

Then, the model of d�Aspremont and Dos Santos Ferreira is characterized by the

following �rst order condition:9

maxf ~PAt;k + �B�Bt;k; ~PBt;k + �A�At;kg = Pt;k: (7)

This equilibrium condition is closely similar to the condition (6) that applies to

our model. However, there is one crucial di¤erence. Speci�cally, in the model of

d�Aspremont and Dos Santos Ferreira the intrahousehold donations per unit of any

public good k (captured by �A and �B in (7)) is proportional to the MWTP for this

public good in the Pareto e¢ cient equilibrium (�At;k and �
B
t;k in (7)). By contrast, in

our model these donations are proportional to the MWTP for the same goods in the

semicooperative equilibrium ( ~PAt;k and ~P
B
t;k in (6)). Thus, depending on the value of

�A and �B, the two models may lead to di¤erent outcomes. In addition, our above

discussion makes clear that the two semicooperative models have a rather di¤erent

interpretation, even though they have a similar structure.

A main motivation to focus on our version of the semicooperative model, and

not on the one of d�Aspremont and Dos Santos Ferreira, is that our model only uses

information on the MWTP for quantities that are e¤ectively observed (i.e. in the

data set S), while the alternative model of d�Aspremont and Dos Santos Ferreira

requires information on the MWTP for quantities in some unobserved cooperative

equilibrium (associated with the same data set S). The fact that we only use observ-

9d�Aspremont and Dos Santos Ferreira (2009) originally expressed their equilibrium condition
in a di¤erent form. However, the formulation in (7) is easily obtained by slightly rearranging this
original formulation.
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able quantity information is interesting from a practical point of view. Speci�cally,

as we will explain in Section 5, it allows us to reformulate the revealed preference

condition in Theorem 4 in MIP terms. As far as we can see, it is not possible to

obtain a similar MIP formulation for the revealed preference characterization of the

model of d�Aspremont and Dos Santos Ferreira, precisely because this model requires

unobservable quantity information.

4.4 Independence

We can show that the revealed preference conditions for noncooperative behavior are

independent of the revealed preference conditions for cooperative behavior: a data

set that satis�es the cooperative conditions does not necessarily satisfy the noncoop-

erative conditions, and vice versa. Speci�cally, the two examples in Appendix 2 show

that there is neither any inclusion nor any exclusion relation between the collection

of data sets that satisfy the conditions in Theorem 2 and the collection of data sets

that satisfy the conditions in Theorem 3. For simplicity, these examples focus on

the (limiting) fully cooperative and fully noncooperative cases. However, in principle

we can construct similar (but substantially more complex) examples that pertain to

the (intermediate) semicooperative model characterized in Theorem 4. Thus, we can

conclude that models characterized by di¤erent degrees of cooperation are generally

independent of each other.

This independence/non-nestedness conclusion is important for at least two rea-

sons. Firstly, this result stands in sharp contrast with the �ndings in the (local)

di¤erential approach to modeling non-unitary consumption behavior. As discussed

in the Introduction, the rationalizability conditions for the noncooperative and semi-

cooperative models derived in that approach are generally nested with the rational-

izability conditions for the cooperative model: if a given data set passes the (local)

condition for cooperative rationalizability, then it should also pass the test for nonco-

operative rationalizability, but not vice versa. Secondly, our empirical application in

Section 5 will show that this independence is not a theoretical curiosity but also has

empirical relevance. Speci�cally, this application does e¤ectively include data that

are cooperative-rationalizable but not noncooperative-rationalizable, and (di¤erent)

data that are noncooperative-rationalizable but not cooperative-rationalizable.

Apart from independence, the examples in Appendix 2 demonstrate two further

features of our revealed preference conditions that are important in view of empir-

ical applications. First, they show that we can meaningfully test data consistency

with speci�c household consumption models (and compare the empirical validity of

di¤erent models) even if only a few observations are available. Second, because all

consumption is public in both examples, such empirical analysis in principle does

not require privately consumed goods. In fact, this last feature implies an additional
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di¤erence with the existing di¤erential characterizations of noncooperative and semi-

cooperative models: these di¤erential characterizations typically require (much) more

privately consumed goods than publicly consumed goods in order to obtain empir-

ically testable restrictions; see Lechene and Preston (2005, 2008) and d�Aspremont

and Dos Santos Ferreira (2009).

5 Empirical application

We apply our method to data drawn from the Russia Longitudinal Monitoring Survey

(RLMS). Cherchye, De Rock and Vermeulen (2009b,c) studied the same data set.

These authors focused on consistency of these data with the cooperative model of

household consumption. We extend these earlier studies by providing complementary

results pertaining to noncooperative and semicooperative consumption models. In

doing so, we also generalize the MIP methodology introduced by these authors (for

the cooperative case) to apply to models of noncooperative and semicooperative

household behavior.

Our following analysis will concentrate on consistency testing, and will par-

ticularly illustrate the empirical relevance of the independence result articulated

above (see Section 4.4). If household behavior is found consistent with a particular

(cooperative-noncooperative) model, then subsequent analysis can focus on recov-

ering/identifying the speci�cities of the decision model that underlies the (rational-

izable) observed consumption behavior. For brevity, we do not consider recovery

issues in this application. However, we will return to recovery (based on our MIP

methodology) in the concluding section.

5.1 Veri�cation

To be able to verify the garp conditions in Theorems 2-4, we reformulate these

conditions in mixed integer programming (MIP) terms. We focus on formulating the

MIP program for the semicooperative model, with endogenous variables �A; �B 2
[0; 1]. It follows from our above discussion that the program for the fully cooperative

and fully noncooperative models correspond to �A = �B = 1 and �A = �B = 0,

respectively.

To obtain the MIP formulation, we de�ne the binary variables xMt;v 2 f0; 1g,
with xMt;v = 1 interpreted as

�
qMt ; Qt

�
RM

�
qMv ; Qv

�
(where

�
qMt ; Qt

�
RM

�
qMv ; Qv

�
,

M = A;B, has a straightforwardly similar meaning as qtRqv in Section 2). Then,

a data set S satis�es the necessary and su¢ cient condition for semicooperative-

rationalizability in Theorem 4 if and only if the following MIP problem is feasible:

For all t; v 2 T and all k 2 K, there exist strictly positive vectors ~PAt ; ~PBt , binary
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variables zt;k; xMt;v 2 f0; 1g, and parameters �A, �B 2 [0; 1] such that (for s; t; v 2 T ,
k 2 K, M = A;B):10

~PAt + �
B ~PBt � Pt; (8)

�A ~PAt +
~PBt � Pt; (9)

Pt;k � ~PAt;k � �B ~PBt;k � zt;kCt; (10)

Pt;k � �A ~PAt;k � ~PBt;k � (1� zt;k)Ct; (11)

qAt + q
B
t = qt; (12)


pt; q
M
t � qMv

�
+
D
~PMt ; Qt �Qv

E
< xMt;vCt; (13)

xMt;s + x
M
s;v � 1 + xMt;v; (14)

(1� xMt;v)Cv �


pv; q

M
v � qMt

�
+
D
~PMv ; Qv �Qt

E
; (15)

with Ct > Pt;k and Ct > Yt for all t and k:

The interpretation is as follows. Constraint (12) imposes that the private con-

sumption bundles qAt and q
B
t sum to the observed aggregate quantities qt, as re-

quired by condition SC.1. Further, constraints (8)-(11) comply with condition SC.2

in Theorem 4. Speci�cally, (8) and (9) impose the given upper bound constric-

tion for ~PAt and ~PBt . Next, (10) imposes Pt;k � ~PAt;k + �
B ~PBt;k if zt;k = 0, while

(11) imposes Pt;k � �A ~PAt;k +
~PBt;k if zt;k = 1. Because zt;k 2 f0; 1g, this implies

maxf ~PAt;k + �B ~PBt;k; ~PBt;k + �A ~PAt;kg = Pt;k and thus condition SC.2 is satis�ed. Fi-

nally, constraints (13)-(15) correspond to the garp conditions for each individ-

ual M (= A or B) (condition SC.3 in Theorem 4). Speci�cally, (13) states that

pt; q

M
t � qMv

�
+
D
~PMt ; Qt �Qv

E
� 0 implies xMt;v = 1 (or

�
qMt ; Qt

�
RM

�
qMv ; Qv

�
).

Next, constraint (14) imposes transitivity of the individual revealed preference re-

lations RM : if xMt;s = 1 (i.e.
�
qMt ; Qt

�
RM

�
qMs ; Qs

�
) and xMs;v = 1 (i.e.

�
qMs ; Qs

�
RM

�
qMv ; Qv

�
) then xMt;v = 1 (i.e.

�
qMt ; Qt

�
RM

�
qMv ; Qv

�
)). And (15) requires


pv; q
M
v � qMt

�
+
D
~PMv ; Qv �Qt

E
� 0 if xMt;v = 1 (i.e.

�
qMt ; Qt

�
RM

�
qMv ; Qv

�
).

Clearly, all constraints are linear for the cooperative case (with �A = �B = 1)

and the noncooperative case (with �A = �B = 0). Linearity implies that the above

program can be solved by standard MIP methods for a given data set S. As for the

semi-cooperative case, the constraints are obviously linear if we know the values of �A

and �B. If we do not know these values (which is usually the case), then we suggest

to conduct a grid search that checks the above problem (through MIP methods) for

10The strict inequality


pt; q

M
t � qMv

�
+
D
~PMt ; Qt �Qv

E
< xMt;vCt is di¢ cult to use in IP analysis.

Therefore, in practice we can replace it with


pt; q

M
t � qMv

�
+
D
~PMt ; Qt �Qv

E
+ � � xMt;vCt for �

(> 0) arbitrarily small.
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a whole range of possible values for �A and �B. In fact, this can provide a de�nite

answer on whether the data satisfy the rationalizability condition in Theorem 4 with

arbitrarily large probability. To see this, we �rst note that the parameter space

�A � �B is [0; 1] � [0; 1], which is of size 1. Let us assume that the subspace with
�A and �B obtaining a semicooperative-rationalizability of the given data set has at

least size ". Then, we get that any random draw out of [0; 1] � [0; 1] has at least
probability " to lead to a rationalization. In other words, with probability less then

(1� ") no rationalization is found. So, if we take n random draws from [0; 1]� [0; 1],
then with probability at least 1� (1� ")n, we must �nd a rationalization. By taking
n large enough, we can make this probability as close to 1 as desirable for any given

". In our following application, we will use an equally sparsed grid search with step

0:1 for �A; �B 2 [0; 1], which implies n = 121:

5.2 Data

We refer to Cherchye, De Rock and Vermeulen (2009b,c) for a detailed discussion of

the RLMS data that we use. These authors also provide more speci�c information

on the assignability procedure that we present below. For compactness, we restrict

ourselves to a brief summary here.

Our sample consists of 148 adult couples, with both (female and male) household

members employed. We consider each of the 148 households separately, which avoids

(often debatable) preference homogeneity assumptions across male or female mem-

bers of di¤erent households. This illustrates the use of our method for a panel data

set. However, it is worth emphasizing that revealed preference methods such as ours

are equally applicable to (repeated) cross-section data sets. In this respect, we refer

to Blundell, Browning and Crawford (2003, 2008) for some recent methodological

advances.

Our data set covers the period from 1994 to 2003. We have consumption data

for each year except for the years 1997 and 1999, so that we end up with 8 (= jT j)
observations (prices and quantities) per household. We consider bundles consisting

of 21 (= jJ j + jKj) nondurable goods: (1) food outside the home, (2) clothing, (3)
car fuel, (4) wood fuel, (5) gas fuel, (6) luxury goods, (7) services, (8) housing rent,

(9) bread, (10) potatoes, (11) vegetables, (12) fruit, (13) meat, (14) dairy products,

(15) fat, (16) sugar, (17) eggs, (18) �sh, (19) other food items, (20) alcohol and (21)

tobacco. We assume that wood fuel, gas fuel and housing rent are public (jKj = 3),
while the other goods are private (jJ j = 18).
Our application will show the possibility of including speci�c information on qAt

and qBt , i.e. we can assign private consumption to individuals A and B. Formally,

this means that assignable quantities qaMt (M = A;B) act as lower bounds for the
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quantities qMt , i.e.

qMt � qaMt .

Essentially, the procedure starts from a base scenario for the distribution of the

privately consumed quantities across the two household members. Because assignable

quantity information is not directly available from the RLMS data set, this base

scenario uses the observed consumption of male and female singles (or one-person

households).11 In subsequent steps, we consider less and less assignability, i.e. we

account for (ever larger) deviations from the base scenario distribution. Formally,

using qbMt for the private quantities of memberM that correspond to the hypothesized

base scenario, we de�ne

qaMt = �qbMt ,

with 0 � � � 1. The parameter � captures the extent to which we allow for deviations
from the base scenario distribution. For example, � = 1 implies qaMt = qbMt , while

� < 1 implies qaMt < qbMt . Generally, lower � values imply less stringent restrictions

for the private quantities. Varying the value of � will allow us to compare di¤erent

cooperative-noncooperative models under varying degrees of assignability.

5.3 Results

To structure our discussion, we �rst provide empirical results for the (limiting) co-

operative (with �A = �B = 1) and noncooperative (with �A = �B = 0) models

for the full sample of households. Subsequently, we report on the (intermediate)

semicooperative model (with �A; �B 2 [0; 1]) for speci�c households.
Table 1 presents pass rates for the cooperative model and the noncooperative

model under di¤erent degrees of assignability (captured by �). The table reveals that

pass rates increase if � decreases. This is not surprising given that lower � values

comply with less assignable information for the privately consumed quantities. For

one household, we need � = 0:60 for a rationalization in terms of the cooperative

model as well as the noncooperative model. If we look at the aggregate pass rates

in Table 1, we do not �nd much di¤erence between the cooperative model and the

noncooperative model. To some extent, this provides empirical support for both

types of non-unitary models (conditional on the base scenario that is assumed).

Still, even though the two models provide a rather good overall �t of observed

household behavior, there are some notable di¤erences for speci�c households. For

example, for � = 0:90 the noncooperative model rationalizes the behavior of two

more households than the cooperative model, while for � = 0:80 we observe a bet-

11For example, it is observed that the average budget share of alcohol for male singles is (about)
5 times the corresponding budget share for female singles. Given this, in the base scenario the male
consumes 5/6 of all alcohol bought by the household and the female consumes 1/6.
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ter �t of the cooperative model. Table 2 provides more detailed results pertaining

to individual households. Speci�cally, it reports on (i) the number of households

that are noncooperative-rationalizable but not cooperative-rationalizable and (ii) the

number of households that are cooperative-rationalizable but not noncooperative-

rationalizable. The table suggest that the adequate behavioral model varies with the

household under consideration: for some households the cooperative model provides

a better �t of observed behavior than the noncooperative model, while the oppo-

site holds for other households. Generally, this motivates the empirical relevance of

considering noncooperative models of household behavior in addition to the (more

common) cooperative model.

As a further base of comparison, we have also calculated power results for the dif-

ferent model speci�cations. Speci�cally, for each household and each � we compute

a power measure that quanti�es the probability of detecting random behavior. Ran-

dom behavior is then modeled using a bootstrap method: for each observation, with

given prices and income, we de�ne quantities by randomly drawing budget shares

(for the 21 goods) from the set of 1184 (= 148 x 8) observed household choices.12

Thus, our power assessment gives information on the expected distribution of vi-

olations under random choice, while incorporating information on the households�

actual choices.

Table 1 reports on the distribution of the power measure de�ned over the 148

households under study. These results are based on Monte Carlo-type simulations

that include 1000 iterations. We �nd that the power varies a lot across households

and models: while it is reasonably high for some households (see in particular the

maximum and 3rd quartile values for higher �), it is also very low for other households

(see the minimum and 1st quartile values). Generally, these results suggest that

assignable quantity information can be particularly helpful to enhance the power of

tests for non-unitary models (with or without cooperation). Next, we recall that our

analysis uses only 8 observations per household. Obviously, power can only improve

when more observations become available.

In the context of the present study, it seems particularly interesting to compare

the power of the cooperative and noncooperative models.13 For the data under

consideration, we observe that the power distribution for the noncooperative model

is situated somewhat below the one for the cooperative model for each value of

�. However, the di¤erence is very small; we can safely conclude that the power

distributions are generally close to each other. In our opinion, this provides additional

12See Bronars (1987) and Andreoni and Harbaugh (2006) for general discussions on alternative
procedures to evaluate power in the context of revealed preference tests such as ours.
13To compute the power results in Tables 1, we have used the same distribution of randomly

drawn budget shares to evaluate the cooperative and noncooperative models. Obviously, this is
needed to meaningfully compare the power of the two types of models. A similar quali�cation
applies to the power results in Table 3.
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motivation for considering non-unitary models with limited cooperation in addition

to the fully cooperative model.

[Table 1 about here]

[Table 2 about here]

As a �nal exercise, we consider the semicooperative model. Speci�cally, Table

3 reports on two households selected on the basis of the results in Table 2: for

� = 1:00, household 1 can be rationalized in terms of the noncooperative model but

not in terms of the cooperative model, and households 2 can be rationalized in terms

of the cooperative model but not in terms of the noncooperative model. Table 3

gives test results (1 = pass; 0 = fail) and power estimates for the semicooperative-

rationalizability conditions corresponding to 121 combinations of �A; �B 2 [0; 1], when
using � = 1:00.14

The results suggest that our methodology can be useful to de�ne bounds on the

values of �A and �B that are consistent with semicooperative-rationalizable behavior

for speci�c households. Given that �A and �B indicate the degree of cooperation of

each individual household member, these bounds tell us about the extent to which

observed household consumption behavior is characterized by (limited) intrahouse-

hold cooperation. Interestingly, the results in Table 3 show that di¤erent household

members may well be characterized by other degrees of cooperation in the semico-

operative equilibrium (i.e. �A and �B have di¤erent bounds). In our opinion, an

interesting following step can relate these �ndings on (varying) intrahousehold coop-

eration to speci�c characteristics of the household and/or household members. Such

an exercise falls beyond the scope of the current study (also because of limited data

availability). In this respect, our discussion in the concluding section will point out

that combining experimental data with our methodology constitutes an interesting

avenue for addressing this type of questions.

[Table 3 about here]

6 Concluding discussion

We have presented a revealed preference toolkit for analyzing non-unitary house-

hold consumption behavior identi�ed by varying degrees of cooperation. We started

14Results for other � values and other households are available upon request.
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from global characterizations of non-unitary rationalizable behavior, which comple-

ment the existing local di¤erential characterizations. Our toolkit allows for empirical

analysis of such behavior while avoiding (typically nonveri�able) parametric structure

for the household decision process. Such analysis can make use of MIP techniques,

and is thus easy-to-implement. Our application to RLMS data suggests the empiri-

cal relevance of considering household consumption models that account for limited

cooperation in addition to the (more common) model that assumes fully cooperative

behavior.

To focus our discussion, we have concentrated on the characterization of con-

sumption models with di¤erent degrees of cooperation, and testing consistency of

observed behavior with alternative model speci�cations. If observed behavior is

consistent with a particular model (i.e. can be rationalized), then a natural next

question pertains to recovering/identifying the decision model that underlies the (ra-

tionalizable) observed consumption behavior. Such recovery can start from the MIP

methodology presented in this paper. In this respect, see Cherchye, De Rock and

Vermeulen (2009b), who consider these questions for the cooperative model; their

analysis is directly extended to the noncooperative and semicooperative models dis-

cussed here. Their basic argument is that nonparametric revealed preference recovery

on the basis of an MIP characterization of rational behavior boils down to de�ning

feasible sets characterized by the MIP constraints.

We see at least two interesting applications of recovery. First, recovery can focus

on the individuals�MWTP for the publicly consumed goods. As indicated above,

lack of intrahousehold cooperation implies that the sum of these individual MWTP

deviates from the observed prices for the publicly consumed goods. The MIP method

can be used for quantifying this discrepancy between MWTP and observed prices

(as a measure for the e¢ ciency loss caused by limited cooperation) in empirical ap-

plications. Next, one can try to recover the income distribution that is associated

with rationalizable behavior while accounting for limited cooperation. As a matter

of fact, the literature on cooperative household consumption behavior has paid con-

siderable attention to analyzing the intrahousehold distribution underlying observed

cooperative-rationalizable behavior. See, for example, Browning, Bourguignon, Chi-

appori and Lechene (1994), Blundell, Chiappori and Meghir (2005), Browning, Chi-

appori and Lewbel (2006) and Lewbel and Pendakur (2008), who focus on various

welfare-related questions associated with sharing rule recovery. The methodology

presented in this paper allows for analyzing similar questions for noncooperative and

semicooperative models.15

15However, we recall our discussion (at the end of Section 4.2) on identi�ability problems for
noncooperative and semicooperative household consumption behavior when both individuals con-
tribute the same public goods. In this case, it is only possible to recover upper and lower bounds
on the individual income shares that account for the total (non-assignable) expenditures on these
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Finally, the current study has concentrated on analyzing household consumption

behavior. However, the same methodology can also be used to analyze multi-person

group behavior. Indeed, a lot of situations involve groups of individuals spending

a joint budget; e.g. decisions of committees, clubs, villages and other local orga-

nizations, or �rms with multiple decision makers. Chiappori and Ekeland (2006,

2009) suggest the cooperative (Pareto e¢ cient) model as a natural benchmark for

assessing the collective rationality of such group decisions. Our methodology allows

for assessing group decisions that do not meet this benchmark. In this respect, an

interesting avenue for follow-up research consists of analyzing group consumption

behavior on the basis of data gathered by means of a laboratory experiment. In

fact, it has been argued that the nonparametric revealed preference methodology is

particularly useful in combination with such experimental data. See, for example,

Sippel (1997), Harbaugh, Krause and Berry (2001) and Andreoni and Miller (2002)

for earlier applications that experimentally analyze individually rational behavior.

For example, experiments can use our methodology to focus on speci�c conditions

(e.g. individual and group characteristics or other exogenous circumstances that

can be manipulated) that �trigger�(di¤erent degrees of) cooperative/noncooperative

behavior in multi-person consumption decisions.

Appendix 1: proof of Theorem 4

We will only prove Theorem 4. The proofs of Theorems 2 and 3 are directly similar

to this one and, therefore, we leave them to the reader.

1)2. Pick any t 2 T and consider the OP-H.A and OP-H.B. Let UM
qMt
and UMQt

(M = A;B) be the subgradients for the function UM at bundle (qMt ; Qt); and �
A
t

and �Bt the Lagrange multipliers for the budget constraints in OP-H.A and OP-H.B.

The �rst order conditions for OP-H.A and OP-H.B are:

UAqAt
� �At pt;

UBqBt
� �Bt pt;

UAQt � �
A
t (Pt � �Bt );

UBQt � �
B
t (Pt � �At ):

The inequalities are replaced by equalities in case the quantities of the goods under

consideration are strictly positive. Next, concavity of the utility functions UA and

jointly contributed public goods.
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UB implies for all t; v 2 T :

UA(qAt ; Qt)� UA(qAv ; Qv) �
D
UAqAv ; q

A
t � qAv

E
+


UAQv ; Qt �Qv

�
;

UB(qBt ; Qt)� UB(qBv ; Qv) �
D
UBqBv ; q

B
t � qBv

E
+


UBQv ; Qt �Qv

�
:

For all t 2 T , de�ne UAQt=�
A
t = ~PAt and UBQt=�

B
t = ~PBt , U

A(qAt ; QT ) = UAt and

UB(qBt ; Qt) = U
B
t . This gives:

UAt � UAv � �Av
�

pv; q

A
t � qAv

�
+
D
~PAv ; Qt �Qv

E�
;

UBt � UBv � �Bv
�

pv; q

B
t � qBv

�
+
D
~PBv ; Qt �Qv

E�
:

Using Theorem 1, we know that these two conditions are equivalent to the conditions

that fpt; ~PAt ; qAt ; Qtgt2T and fpt; ~PBt ; qBt ; Qtgt2T satisfy garp. This obtains SC.3.
Also, observe that, for the semi-cooperative equilibrium, �Bt;k = �

B
t;k
~PBt;k and �

A
t;k =

�At;k
~PAt;k for all k 2 K and t 2 T . If ~PAt;k + �B ~PBt;k < Pt;k, we know that QAt;k = 0 and,

thus, QBt;k = Qt;k > 0. Then, the �rst order condition for k 2 K in OP-H.B must be

binding, so that �At;k ~P
A
t;k +

~PBt;k = Pt;k. This obtains the �rst part of SC.1. Reversing

the roles of A and B shows the other part of SC.1. Similarly, one can verify SC.4

and SC.5.

2)1. From the garp conditions and Theorem 1 we know that there exist positive

numbers UAt , U
B
t and strict positive numbers �

A
t and �

B
t such that:

UAt � UAv � �Av
�

pv; q

A
t � qAv

�
+
D
~PAv ; Qt �Qv

E�
;

UBt � UBv � �Bv
�

pv; q

B
t � qBv

�
+
D
~PBv ; Qt �Qv

E�
:

De�ne the functions UA and UB such that:

UA(qA; Q) = min
v2T

n
UAv + �

A
v

�

pv; q

A � qAv
�
+
D
~PAv ; Q�Qv

E�o
;

UB(qB; Q) = min
v2T

n
UBv + �

B
v

�

pv; q

B � qBv
�
+
D
~PBv ; Q�Qv

E�o
:

Notice that UA and UB are continuous, concave, strictly monotone and that for all

t 2 T , UA(qAt ; Qt) = UAt and UB(qBt ; Qt) = UBt . See, for example, Varian (1982).
We need to show that the functions UA and UB provide a semicooperative ratio-

nalization of the data set. For brevity, we only provide the argument for UA, but a

straightforwardly analogous reasoning applies to UB. For all t 2 T; de�neQAt andQBt
so that if ~PAt;k+�

B
t;k
~PBt;k < Pt then Q

A
t;k = 0 and Q

B
t;k = Qt;k, and if �

A
t;k
~PAt;k+

~PBt;k < Pt;k

then QBt;k = 0 and QAt;k = Qt;k (see SC.4 and SC.5). (If ~PAt;k + �
B
t;k
~PBt;k = Pt and

�At;k
~PAt;k +

~PBt;k = Pt;k then we can randomly allocate Qt;k between QAt;k and Q
B
t;k.)

28



Next, consider t 2 T and a bundle (qA; QA) with Q = QA +QBt such that

pt; q

A
�
+
X
k

h
(Pt;k � �Bt;k ~PBt;k)QAk + �At;k ~PAt;kQBt;k

i
�



pt; q

A
t

�
+
X
k

h
(Pt;k � �Bt;k ~PBt;k)QAt;k + �At;k ~PAt;kQBt;k

i
, or


pt; q
A
�
+
X
k

(Pt;k � �Bt;k ~PBt;k)QAk

�


pt; q

A
t

�
+
X
k

(Pt;k � �Bt;k ~PBt;k)QAt;k (16)

Then, we have to prove UA(qA; Q) � UA(qAt ; Qt). To obtain this result, we �rst

note that, by construction,
D
~PAt ; Q

A
t

E
=
P

k(Pt;k � �
B
t;k
~PBt;k)Q

A
t;k. Thus, because

~PAt;k+ �Bt;k
~PBt;k � Pt;k (which implies

D
~PAt ;Q

A
E
�
P

k(Pt;k � �
B
t;k
~PBt;k)Q

A
k ), we getD

~PAt ;Q
A �QAt

E
�
P

k(Pt;k � �
B
t;k
~PBt;k)

�
QAk �QAt;k

�
. Using this, we then obtain

UA(qA; Q)

= min
v2T

n
UAv + �

A
v

�

pv; q

A � qAv
�
+
D
~PAv ; Q�Qv

E�o
� UAt + �

A
t

�

pt; q

A � qAt
�
+
D
~PAt ; Q�Qt

E�
= UAt + �

A
t

�

pt; q

A � qAt
�
+
D
~PAt ; Q

A�QAt
E�

� UAt + �
A
t

 

pt; q

A � qAt
�
+
X
k

(Pt;k � �Bt;k ~PBt;k)
�
QAk �QAt;k

�!
� UAt

This provides the wanted result, i.e. fqAt ; QAt g solves OP-H.A.

Appendix 2: independence - examples

Throughout, we will use " to represent a strictly positive but su¢ ciently small num-

ber.

Example 1: cooperative-rationalizable but not noncooperative-

rationalizable

We�rst construct a data set that is cooperative-rationalizable but not noncooperative-

rationalizable. The data set contains 3 observations (T = ft; v; wg) and 3 public
goods (K = f1; 2; 3g). More speci�cally, the set S contains the following informa-
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tion:

Qt =

0B@1"
"

1CA ; Qv =

0B@"1
"

1CA ; Qw =

0B@""
1

1CA and

Pt =

0B@74
4

1CA ; Pv =

0B@47
4

1CA ; Pw =

0B@44
7

1CA :
To show cooperative-rationalizability, we consider the following speci�cation:

~PAt =

0B@7� "
2

4� "
4� "

1CA ; ~PAv =

0B@4� "3:5

"

1CA ; ~PAw =

0B@ ""
"2

1CA and

~PBt =

0B@"
2

"

"

1CA ; ~PBv =

0B@ "

3:5

4� "

1CA ; ~PBw =

0B@ 4� "4� "
7� "2

1CA :
This speci�cation clearly meets the condition ~PAs + ~PBs = Pt (s 2 T ). By com-

puting for both members all inner vector-products, ~PMs Qu(s; u 2 T;M = A;B); it

is straightforward to verify that f ~PAt ; Qtgt2T and f ~PBt ; Qtgt2T both satisfy garp.
As such the data set meets the necessary and su¢ cient conditions for cooperative-

rationalizability in Theorem 2.

We still need to prove that the data set S is not noncooperative-rationalizable.

Recall that we must have max
n
~PAs;k;

~PBs;k

o
= Ps;k for all s 2 T and k 2 K. Thus,

we have to specify ~PAt;1 = 7 or ~PBt;1 = 7. Without loss of generality, we assume
~PAt;1 = 7. Then, given that " is small enough, it directly follows that QtRAQv and

QtR
AQw. Similarly, for observation v, there must be an individual M (= A or B)

so that ~PMv;2 = 7. Because the set f ~PAt ; Qtgt2T has to satisfy garp (and QtRAQv),
we have to chooseM = B and thus QvRBQt and QvRBQw. Finally, we must specify

M (= A or B) so that ~PMw;3 = 7. Any choice of M makes that garp is violated

either by the set f ~PAt ; Qtgt2T (because QtRAQw) or by the set f ~PBt ; Qtgt2T (because
QvR

BQw). We conclude that the given data set does not meet the necessary and

su¢ cient conditions for noncooperative-rationalizability in Theorem 3.

Example 2: noncooperative-rationalizable but not cooperative-

rationalizable

We next construct a data set that is noncooperative-rationalizable but not cooperative-

rationalizable. Speci�cally, we consider the following data set S with 4 observations
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(T = ft; v; w; zg) and 4 public goods (K = f1; 2; 3; 4g):

Qt =

0BBBB@
100

11

"

20

1CCCCA ; Qv =
0BBBB@
20

"

11

100

1CCCCA ; Qw =
0BBBB@
5

10

10

5

1CCCCA ; Qz =
0BBBB@
10

4

4

10

1CCCCA and

Pt =

0BBBB@
1

"

"

"

1CCCCA ; Pv =
0BBBB@
"

"

"

1

1CCCCA ; Pw =
0BBBB@
"

1

1

"

1CCCCA ; Pz =
0BBBB@
1

"

1

1

1CCCCA :

We �rst demonstrate that this data set is noncooperative-rationalizable. To see this,

we consider the following speci�cation:

~PAt =

0BBBB@
1

"

"

"

1CCCCA ; ~PAv =
0BBBB@
"3

"

"3

"3

1CCCCA ; ~PAw =
0BBBB@
"

1

"

"

1CCCCA , ~PAz =
0BBBB@
1

"

1

"

1CCCCA and

~PBt =

0BBBB@
"3

"3

"

"3

1CCCCA ; ~PBv =
0BBBB@
"

"

"

1

1CCCCA ; ~PBw =
0BBBB@
"

"

1

"

1CCCCA , ~PBz =
0BBBB@
"

"

1

1

1CCCCA :

This speci�cation clearly meets the condition max
n
~PAs;k;

~PBs;k

o
= Ps;k (s 2 T and k 2

K): Again, it is straightforward to verify that the sets f ~PAt ; Qtgt2T and f ~PBt ; Qtgt2T
both satisfy garp. Therefore, we conclude that the given data set meets the neces-

sary and su¢ cient conditions for noncooperative-rationalizability in Theorem 3.

Next, it can be veri�ed that the given data set does not pass the condition for

consistency with the cooperative model that is given in Proposition 2 of Cherchye,

De Rock and Vermeulen (2007); the reasoning is similar to the one in their Example

1. For brevity, we do not include the argument here, but it can be obtained upon

request. We thus conclude that the given data set violates the necessary and su¢ cient

condition in Theorem 2.
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Table 1: Pass rates and power; cooperative and noncooperative models

Cooperative model (�A = �B = 1)
Value of � Pass (on total of Power (probability of detecting random behavior)

on 148 households) minimum 1st quartile median 3rd quartile maximum
1:00 137 0.000 0.063 0.087 0.123 0.230
0:90 143 0.000 0.029 0.040 0.056 0.110
0:80 147 0.000 0.011 0.018 0.025 0.056
0:70 147 0.000 0.003 0.007 0.011 0.039
0:60 148 0.000 0.000 0.002 0.005 0.018

Noncooperative model (�A = �B = 0)
Value of � Pass (on total of Power (probability of detecting random behavior)

on 148 households) minimum 1st quartile median 3rd quartile maximum
1:00 137 0.000 0.062 0.087 0.115 0.215
0:90 145 0.000 0.022 0.034 0.045 0.093
0:80 146 0.000 0.009 0.015 0.022 0.048
0:70 147 0.000 0.003 0.006 0.010 0.036
0:60 148 0.000 0.000 0.002 0.004 0.011
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Table 2: Independence; cooperative and noncooperative models

Rationalizability: not cooperative but noncooperative
Value of � Number: not cooperative (�A = �B = 1) ... but noncoop (�A = �B = 0)
1:00 11 1
0:90 5 3
0:80 1 0
0:70 1 0
0:60 0 0

Rationalizability: not noncooperative but cooperative
Value of � Number: not noncoop (�A = �B = 0)... ... but coop (�A = �B = 1)
1:00 11 2
0:90 3 1
0:80 2 1
0:70 1 0
0:60 0 0
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Table 3: Pass rates and power; semicooperative models

Household 1 �A 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�B 0 Pass (0/1) 1 1 1 1 1 1 1 0 0 0 0

Power 0.160 0.157 0.154 0.159 0.161 0.168 0.168 0.169 0.169 0.170 0.173

0.1 Pass (0/1) 1 1 1 1 1 1 1 0 0 0 0

Power 0.158 0.157 0.154 0.159 0.161 0.168 0.168 0.169 0.169 0.170 0.173

0.2 Pass (0/1) 1 1 1 1 1 1 1 0 0 0 0

Power 0.157 0.157 0.154 0.159 0.161 0.168 0.168 0.169 0.169 0.170 0.173

0.3 Pass (0/1) 1 1 1 1 1 1 1 0 0 0 0

Power 0.157 0.157 0.154 0.159 0.161 0.168 0.168 0.169 0.169 0.170 0.173

0.4 Pass (0/1) 1 1 1 1 1 1 1 0 0 0 0

Power 0.157 0.157 0.155 0.159 0.161 0.168 0.168 0.169 0.169 0.170 0.173

0.5 Pass (0/1) 1 1 1 1 1 1 1 0 0 0 0

Power 0.154 0.154 0.154 0.158 0.161 0.168 0.168 0.169 0.169 0.170 0.173

0.6 Pass (0/1) 1 1 1 1 1 1 0 0 0 0 0

Power 0.160 0.160 0.160 0.159 0.162 0.169 0.169 0.169 0.169 0.170 0.173

0.7 Pass (0/1) 0 0 0 0 0 0 0 0 0 0 0

Power 0.170 0.170 0.170 0.170 0.171 0.170 0.169 0.169 0.169 0.170 0.173

0.8 Pass (0/1) 0 0 0 0 0 0 0 0 0 0 0

Power 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.169 0.170 0.173

0.9 Pass (0/1) 0 0 0 0 0 0 0 0 0 0 0

Power 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.169 0.170 0.173

1 Pass (0/1) 0 0 0 0 0 0 0 0 0 0 0

Power 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173

Household 2 �A 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�B 0 Pass (0/1) 0 0 0 0 0 0 1 1 1 1 1

Power 0.108 0.102 0.102 0.102 0.100 0.104 0.106 0.103 0.105 0.107 0.108

0.1 Pass (0/1) 0 0 0 0 0 0 1 1 1 1 1

Power 0.108 0.103 0.102 0.102 0.099 0.103 0.105 0.103 0.105 0.107 0.108

0.2 Pass (0/1) 0 0 0 0 0 0 1 1 1 1 1

Power 0.109 0.103 0.101 0.101 0.099 0.103 0.105 0.103 0.105 0.107 0.108

0.3 Pass (0/1) 0 0 0 0 0 0 1 1 1 1 1

Power 0.107 0.104 0.101 0.101 0.099 0.102 0.104 0.103 0.105 0.107 0.108

0.4 Pass (0/1) 1 1 1 1 1 1 1 1 1 1 1

Power 0.108 0.107 0.105 0.103 0.101 0.102 0.104 0.103 0.105 0.107 0.108

0.5 Pass (0/1) 1 1 1 1 1 1 1 1 1 1 1

Power 0.107 0.107 0.105 0.103 0.101 0.103 0.105 0.104 0.105 0.107 0.108

0.6 Pass (0/1) 1 1 1 1 1 1 1 1 1 1 1

Power 0.103 0.103 0.104 0.103 0.101 0.103 0.104 0.104 0.105 0.107 0.108

0.7 Pass (0/1) 1 1 1 1 1 1 1 1 1 1 1

Power 0.102 0.102 0.102 0.102 0.102 0.102 0.104 0.104 0.105 0.107 0.108

0.8 Pass (0/1) 1 1 1 1 1 1 1 1 1 1 1

Power 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.105 0.106 0.108 0.108

0.9 Pass (0/1) 1 1 1 1 1 1 1 1 1 1 1

Power 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.105 0.106 0.108 0.108

1 Pass (0/1) 1 1 1 1 1 1 1 1 1 1 1

Power 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108
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