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Abstract

The compromise value is introduced for cooperative games with random payoffs, that is,
for cooperative games where the payoff to a codition of players is a random variable. It isa
compromise between utopia payoffs and minimal rights. This solution concept is based on the
compromise value for NTU games and the 7-value for TU games. It is shown that the nonempty
core of agame isbounded by the utopiapayoffs and the minimal rights. Further, we show that the
compromise value of a cooperative game with random payoffsis determined by the r-value of a
related TU game if the players have specid types of preferences. Finally, the compromise value
and the marginal value, which is defined as the average of the marginal vectors, coincide on the
class of one- and two-person games.

Journal of Economic Literature Classification Number: C71.
1991 Mathematics Subject Classification Number: 90D12.

Key Words: cooperative games, random variables, compromise value, core

1 Introduction

Inthispaper weintroduceand study the compromisevaluefor cooperative games with random payoffs
which are introduced in Timmer, Borm and Tijs (2000a). In these games, the payoffs that the players
can obtain by cooperation are not known with certainty and are modeled as random variables. The
playerscannot await therealizations of the payoffsbefore deciding upon an allocation of these payoffs.
Hence, the preferences of the players over the uncertain payoffs play an important rolein the analysis
of such games. Further, the possible allocations of the payoffs are of a specific type.

Another model to analyzethiskind of situationsisthat of stochastic cooperative gamesintroduced
by Suijs, Borm, De Waegenaere and Tijs (1999) and further developed by Suijs (2000). The main
differences with cooperative games with random payoffs lie in the assumptions on the preferences
and the structure of the set of alocations of the payoffs (see Timmer et a. (2000a) for more details).
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The compromise vaue for cooperative games with random payoffsis based on the compromise
value for NTU games. In its turn, this latter value is an extension of the 7-value for TU games.
The 7-value is a solution concept for quasi-balanced TU games introduced by Tijs (1981). Itisa
compromise between the utopia payoffs and the minimal rights of the players. The compromise value
value for compromise admissible NTU games, introduced by Borm, Keiding, McLean, Oortwijn and
Tijs (1992), is defined in a similar way. These utopia payoffs and minimal rights have severa nice
properties. First, if the core of the game is nonempty then the utopia payoffs and the minimal rights
provide upper and lower bounds of the core. Thisimpliesthat a TU or NTU game with a nonempty
core is quasi-balanced or compromise admissible, respectively. Finaly, if all margina vectors of a
TU game belong to the core then the minimal right of any player equals his individua payoff. For
a survey on compromise values in cooperative game theory the reader is referred to Tijs and Otten
(1993).

The compromise value for cooperative games with random payoffs is a compromise between the
utopia payoffs and the minimal rights, whose definitions are based on their counterparts for NTU
games. The properties of the utopia payoffs and minimal rights are similar to those for TU and NTU
games. For al cooperative games with random payoffs with a nonempty core and with a nonzero
payoff for the coalition of all players, thecoreisbounded by the utopiapayoffsand the minimal rights.
Conseguently, such games are compromiseadmissible. If all marginal vectors bel ong to the core of the
game then any player isindifferent between receiving his minimal right and receiving his individual
payoff. Furthermore, if all players have a specia type of preference relation then the compromise
valueis determined by the 7-value of arelated TU game. Finally, we relate the compromise value to
themarginal value, which is defined as the average of the marginal vectors. These values coincide on
the class of one- and two-person games. Timmer, Borm and Tijs (2000b) characterized the marginal
value on this class of games. Consequently, there exists a characterization of the compromise value
on this class of games.

The organization of thispaper isasfollows. In section 2 abrief introduction to cooperative games
with random payoffs is given. The compromise value for these games is introduced in section 3.
We show that the core is bounded by the utopia payoffs and the minimal rights. In section 4 several
properties of the compromise value are presented. After this, it is shown that the compromise value
isdetermined by the 7-value of arelated TU gameif all the players have a specific type of preference
relation. Section 4 isconcluded by showing the coincidence of the compromiseval ue and the margina
value on the class of one- and two-person games.

2 Cooperative gameswith random payoffs

In this section we recall some basic concepts of cooperative games with random payoffs as intro-
duced in Timmer, Borm and Tijs (2000a). A cooperative game with random payoffs G is a tuple
(N, (R(S))ses; A, ()ien). N isthefinite player set. A nonempty subset of NV iscalled acoalition.
Thenonnegative random payoff to coalition S is denoted by R(.S). S isthe set of dl coalitionswith a



nonzero payoff. The set A containsall the possibleindividual payoffsthat a player may receive. The
function «; describes how player ¢ € N compares any two individual payoffs.

In more detail, let N = {1,...,n}. Theset £, istheset of al nonnegative random variables
with finite expectation. 0 standsfor the payoff zero for sure. Notethat 0 € £,. The random payoff
to codition S, R(S), isassumedtobeanelementof £,. S = {S C N|S # 0, R(S) # 0} isthe set
of al coalitionswith a payoff unequal to zero. Hence, for coalition S it holdsthat S ¢ S if and only
if R(S)=0.

An alocation of the random payoff R(S) isavector pR(S), p € R, of multiplesof R(S). Such
an adlocation is efficient if p € A*(S) = {p € R¥| X ,cspi = 1}. Aistheset of al the possible
individual payoffswith regard to therandom payoffs R(S) tothecoalitions, A = {tR(S)|t € R, S €
S}. A_g = {tR(S) € At # 0} istherestriction of .A to al the nonzero individual payoffs.

The preference relation -, of player i € N has the following interpretation. Let X,Y € A be
two individual payoffs. Player ¢ weakly prefers X toY if X —; Y. Sheisindifferent between them,
X~ Y, ifX -, YandY -; X. Findly, shestrictly prefers X toY, X >; Y, if X ~; Y and not
Y ~; X. We assume the following about this preference relation.

Assumption 2.1 For all playersi € N there exist surjective, strictly increasing and continuous
functions f& : R — R, S € S, such that

fL@®R(S) =i fu(t)R(T) ifand onlyift > ¢
and f4(0) =0forall S,T € Sandt,t € R.

So, if player i compares the payoffspR(S) and ¢R(T'), S,T € S, then pR(S) =; ¢R(T) if and
onlyift = (f4)~t(p) > t' = (f&)~1(g). Hence, thefunction (fi)~, S € S, may beinterpreted asa
kind of utility function with respect to multiplesof R(S) only. Two examples of preference relations
~; that satisfy this assumption are thefollowing. Let X, Y € A. Thefirst exampleis X -; Y if and
only if E(X) > E(Y") with E(X) the expectation of the random variable X . We refer to this type of
preferences as ‘expectation preferences’. Define f5(t) = t/E(R(S)) for dl S € S. Thisfunction
satisfies assumption 2.1.

For the second example let ué( = sup{t € R|Pr{X <t} < g;} bethe g;-quantile of the random
variable X where 0 < 3; < 1 issuch that ugi(s) > 0 foral S € S. Define the (utility) function
Ui : A— Rby Uy(X) = uj if X >0andU;(X) = uj_5 otherwise. The preference relation
X =; Yifandonly if U;(X) > U;(Y) is caled a ‘quantile preference relation’. The functions
fi@t) = t/ugi(s ) describe these preferences. Notice that both expectation preferences and quantile
preferences have linear functions f*. That is, f¢(t) = tfg(1) foral ¢t € R.

In this paper we often like to know for which real number «; it holds that X ~; o;Y where
X e AandY € A_. For thisreason we define o;(X,Y) to denote this number «;. It follows
from assumption 2.1 that the number o;(X,Y) isuniqueand if X = pR(S)andY = ¢R(T') then
ai(X,Y) = fa((fi)~t(p))/q. If weinterpret (fi)~%, S € S, as some kind of utility function
then o;(X,Y) is that multiple of Y that gives player i the same utility as X, namely (f%)~(p).



Further, define «;(0,0) = 1. Again from assumption 2.1 it can be deduced that if S € S then
piR(S) =; 0if p; > 0and 0 =; p;R(S) if p; < 0. Hence, there exists no real number «; such that
piR(S) ~; a; -0 =0, p; # 0. Thisiswhy «; (X, 0) isnot defined for any X € A_.

Thelemmabelow, lemma 2.3 in Timmer, Borm and Tijs (2000b), presents some properties of the
preference relations -; and the functions «; that we use in this paper.

Lemma22 Foranyi € N,hc€ Rand X € A_g itholdsthat o;(hX, X) = h.
If the functions f% arelinear for all S € S then

o a;(pR(S), qR(T)) = pf(1)/(af5(1)) for any pR(S) € Aand ¢R(T) € Ay,
o pR(S) Zi qR(T) if andonlyif p/ f§(1) > ¢/ f(1) for any pR(S), qR(T) € A.

Let GV be the set of all cooperative games with random payoffs and player set N that satisfy
assumption 2.1. Let G € G. Theimputation set I(G) containsall the allocations of R(IV) that are
efficient and individual rational:

I(G) = {pR(N) |p € A*(N), piR(N) z; R({i})foralie N} .
The set of alocationsof R(N) that are dominated by codition S is
dom(S) = {pR(N) [p € R®, 3g € A*(S) : GiR(S) = p:R(N)forali e S} .

The core C(G) of the game contains those efficient allocations of R(V) that are not dominated by
any coalition:

C(G) ={pR(N) |p € A*(N), psR(N) ¢ dom(S) for all coalitions S}

with ps = (p;)ies therestriction of p to codlition S. Noticethat C(G) C I(G).

Let II(V) be the set of dl bijectionso : {1,...,n} — N. Leto € II(N). Codlition Sy =
{o(k)|k < i} consistsof thefirst i players accordingto o € H( ). The marginal contribution Y7, (1)
of thefirst player o(1) isequal to hisindividual payoff, Y’ (1) R({c(1)}) = R(SY). The margina
contribution of player o(i),i = 2,...,n, tocodition S7_; equals

a(z - Z aa(k a(k (Sza)) R(Sza)

Eachplayer j € S, receivesfrom player o(i) therandom payoff a; (Y, R(S7))R(S7). Player jis
indifferent between receiving this payoff and receiving her marginal contribution Y. The marginal
contribution of player o(i) is al that remains of the payoff R(S{). The margina vector M?(G)
corresponding to permutation o € II(N) is defined by M7 (G) = m?(G)R(N) for dl i € N, with

m{(G) = «;(Y,”, R(N)). To ensure that the marginal vectors are well defined, that is, to avoid

a;(X,0) for some X € A_,, we assume the following about the payoff structure of the game G only
if wetalk about margina vectors.



Assumption 2.3 If R(T") = 0 for some coalition T" then R(S) = 0 for all coalitions S such that
ScT.

Let %N c G beaset of cooperative games with random payoffsand player set N. A solution ¥
for cooperative gameswith random payoffsisafunctionon % suchthat ¥ (G) isanalocationpR(N)
for the game G € HY. The margina value ®™ for agame G € GV that satisfies assumption 2.3 is
the average of itsmarginal vectors:

e7(G) = |() ™" D] m{(G)

o€lI(N)

R(N).

This solution concept for cooperative games with random payoffs is introduced in Timmer et al.
(2000a) and studied in Timmer et al. (2000b).

3 Thecompromisevalue

The compromise value for cooperative games with random payoffsis an extension of the compromise
value for NTU games, which in its turn is an extension of the 7-value for TU games. The latter
two values are introduced and studied in Borm, Keiding, McLean, Oortwijn and Tijs (1992) and Tijs
(1981), respectively. These values are a compromise between utopia payoffs and minimal rights.

Let G = (N, (R(9))ses, A, (a;)ie n) beacooperative game with random payoffsand leti € N.
Suppose player i proposes the efficient alocation pR(N). It seems reasonable to assume that the
players; # i will agreewiththisproposal if py ;i3 R(N) ¢ dom(N\{i}) andif p; R(N) z; R({j})-
Therefore, thelargest individual payoff that player i can expect when cooperatingwith coalition N\ {i}
is K;(G)R(N) where

aR(N) ¢ dom(N \ {i}); a;R(N) z; R({j}), j # i
The payoff K;(G)R(N) is called the utopia payoff to player i. Attention will be paid only to games
G with K;(G) € R.

If player i is a member of coalition S then any player j € S\ {i} will not object against an
efficient alocation of R(S) in which she is better off than receiving her utopia payoff. Hence, the
playersj € S\ {i} will not disagreeif player i claimshispart r(S, ) R(S) of such an allocation with

da € RS\{Z} : ZjES\{i} a; +t= 1; }

K;(G) = sup {t eR

r(S,i) =sup{t € R . .
{ GR(S) =, K(C)R(N), j € 5\ {i}

Theremainder of i in S, p(S, 7), is defined as the remainder (S, 1) R(.S) expressed as a multiple of
R(N):

p(8S,i) = a;(r(S,i)R(S), R(N)).
Thelargest of these remainders of player i determines hisminimal right k;(G) R(N') where

ki(G) = max p(S, 7).



We restrict ourselvesto games G with k;(G) € R for al playersi. Thelemma below showsthat this
condition s satisfied for al games with R(N) # 0.

Lemma 3.1 For any G € GV with R(N) # 0, K;(G) < oo and k;(G) € Rfor alli € N.

Proof. Let G € GV be a cooperative game with random payoffs and R(N) # 0. First,

Ja e RMMI Y vy a +t =15
aR(N) ¢ dom(N \ {i}); a;R(N) z; R({j}), j #1i }
Ja e RV Y v pay+1= 1 }

a;R(N) 2; R({j}), j #

K;(G) = sup{tEIR

< sup{tEIR
< oo,

where thelast inequdity followsfrom R(N) # 0.

Second, let S be a codition of players. If R(S) # 0 then r(S,7) € R and consequently
p(S,i) € R. If R(S) = 0 then r(S,7) = —oo and p(S,i) = a;(—o0 - 0, R(N)) = 0 since
R(N) # 0. We concludethat k;(G) = maxg.;cs p(S,1) € R. |

A game G is called compromiseadmissibleif K;(G), ki(G) € Rfordl i € N,
ki(G) < Ky(G)foralie N, and Y ki(G) <1< > Ki(G).
iEN iEN

Hence, in a compromise admissible game the utopia payoff of a player is larger than his minimal
right and there exists an efficient allocation of R(N) between the allocation of utopia payoffs and
the allocation of minimal rights. Denote by C? the set of all compromise admissible games G with
player set N.

The compromisevalue ®¢ on C isthe unique efficient all ocation between the minimal rights and
the utopia payoffs,

(G) = (K(G) +7(K(G) = k(G))) R(N),
where0 < v < 1 istheuniquerea number suchthat k(G) + v(K(G) — k(G)) € A*(N).

Example3.2 Consider the game G = (N, (R(S5))ses, A, (vi)ien) Where N = {1,2,3}. The
payoffs to the various coditions are R({1}) = 0, R({2}) = 1, R({3}) = 0, R({1,2}) = 4,
R({1,3}) =1, R({2,3}) =3,and R(N) ~ U(4, 8), that is, R(N) is uniformly distributed over the
interval [4,8]. Hence S = {{2}, {1,2},{1,3},{2,3}, N}and A = {pR(S)[p € R, S € S}.

Let8; = 1/2and B, = B3 = 1/4. Recall fromsection2that uj, = sup{t € R|P{X <t} < g;}
is the B;-quantile of the random variable X. All the playersi € N have quantile preferences, thus
fi) = t/ugi(s) foral S € S, t € R. From thiswe obtain the maps «;. Now

Ki(G) = sup {t eR

aR(N) ¢ dom({2,3}); a; R(N) z; R({j}), 1 =2,3
= sup{t € R|3a € R3¢t =1—qy— as; as +as > 3/5; ag > 1/5; az > 0}
= 2/5

HaEIR{Q’?’}:ag—i—ag—l—t:l; }



and similarly, K»(G) = 5/6 and K3(G) = 3/10. For player 2 we haver({2},2) = 1,
r({1,2},2) = sup{teR|FacR: a+t=1; aR({1,2}) =1 2R(N)/5}
= sup{t€R[FacR: t=1—a; a>3/5}
= 2/5,
r({2,3},2) =1/2,and (N, 2) = 3/10. Theremainders for player 2 are
p({2},2) = az(r({2}, 2) R({2}), R(N)) = 1/5,

p({1,2},2) = 8/25, p({2,3},2) = 3/10 and p(N, 2) = 3/10. Thus, the minimal right for player 2
iska(G)R(N) where

ko (@) = max{1/5,8/25,3/10,3/10} = 8/25.

Inasimilar way weobtain k1(G) = 0 and k3(G) = 0. The game G is compromise admissible and
®°(@) = (102/455,79/130,153/910)R(N)

isthe compromise value. <&

Itisknownfor TU and NTU gamesthat the minimal rightsand utopiapayoffsare lower and upper
bounds, respectively, for the nonempty core of the game (cf. Tijsand Lipperts (1982) and Borm et al.
(1992)). Thisresult extendsto cooperative games with random payoffs.

Theorem 3.3 For all G € GV with R(N) # 0 and C(G) # 0 and for any pR(N) € C(G),
ki(G) < p; < K;(G) for al playersi.

Proof. Let G € GV beagamewith R(N) # 0 and C(G) # 0. Let pR(N) € C(G) and leti € N.
By definition of the utopia payoff and by a; R(N) —; R({j})if and only if a; R(N) ¢ dom({j}), it
followsthat

Ja € RV : (a,t) € A*(N);
K;(G) > supqteR @< (a,8) € A(N);
(a,t)sR(N) ¢ dom(S) foral SC N, S # 0
= sup{t € R|3a e R"M3 : (a,t)R(N) € C(Q)}
> Di,
where (a, t) is shorthand for the vector (ay, ..., a;_1,t,ai 1, ..., a,) INRY.

Next, let coditionT', i € T, besuchthat k;,(G) = p(T,3). If T = {i} then k;(G) = p({i}, i) =
a;(R({i}), R(N)) where the second equality follows from the definition of p({i},7). Because
pR(N) € C(G) C I(G) wehavep;R(N) =; R({i}) ~; ki(G)R(N). According to assumption 2.1
thisimpliesp; > k;(G).

Otherwise, T'\ {i} # 0. Suppose that k;(G) > p;. Then there exists an ¢; > 0 such that
ki(G) > p; + ;. According to assumption 2.1 (p; + &;) R(N) <; ki(G)R(N) ~; r(T,i)R(T) and
thereexistsan &, > 0 such that

(pi +€)R(N) ~; (r(T, 1) — &) R(T).



By definition of (T, i) there exists avector & € R\ satisfying 3~ e\ iy 5 + 7(T,i) — ) = 1
anda;R(T) »-; K;(G)R(N)foral j € T\ {i}. Now we have

(r(T,4) — &) R(T) ~; (pi + &) R(N) =i piR(N)
and from K;(G) > p;
a;R(T) »; Kj(G)R(N) z; p; R(N)

forall j € T\ {i}. Thisimpliesthat pr R(N') € dom(T'), whichisincontradictiontopR(N) € C(G).
We conclude that k;(G) < p;. m|

Example 3.4 Consider the game in example 3.2. Recall that K (G) = (2/5,5/6,3/10) and k(G) =
(0,8/25,0). The nonempty core of thisgameis

p € A*(N), p1 >0, po >1/5, p3 >0, 6p1 + 5p2 > 4,
6p1 + 5p3 > 1, 5ps + bps > 3 '

C(G) = {pR(N)

Itiseasy to check that k(G) < p < K(G) foral pR(N) € C(G). <&

An immediate consequence of theorem 3.3 is that any game G with a nonempty core and with
R(N) # 0 is compromise admissible.

Lemma 3.5 Any gameG € GV with R(N) # 0 and C(G) # () is compromise admissible.

Proof. Let G € GV beagamewith R(N) # 0 and C(G) # (). Let pR(N) € C(G). According to
theorem 3.3, k;(G) < p; < K;(G) fordl i € N. Hence, k;(G) < K;(G) for all playersi. Because
pR(N) isan element of the core C(G) we know that p € A*(N) and so,

k(G <D pi=1<) Ki(G).

iEN iEN iEN
Further, by lemma 3.1, K;(G) < oo and k;(G) € R for all i € N. Together with p; < K;(G) this
resultsin K;(G) € R forall i € N. Thegame G is compromise admissible. o

Another result for TU gamesisthat if all the marginal vectors belong to the core of the game then
the minimal right of any player isequal to her individual payoff. Thisresult isbased on the fact that
for TU games where for some player ¢ specific margina vectors belong to the core, the minimal right
of this player is equa to her individual payoff. A similar result holds for cooperative games with
random payoffs.

Theorem 3.6 If G € CV and if for some player i it holdsthat M°(G) € C(G) for all o € TI(N)
witho (1) =i then k;(G) = o (R({i}), R(N)).



Proof. Let G € CY andi € N be such that M°(G) € C(G) for dl o € TI(N) with o(1) = 1.
Let o € II(IV) be a permutation with o(1) = . By definition of a marginal vector M7 ;) ~,(1)
R({o(1)}). Sinceo (1) = i thisreducesto M/ (G) ~; R({i}) and so,

MY (G) = ay(R({i}), RIN))R(N) (3.1)

(2

From G € ¢V and from assumption 2.3 we obtain R(NN) # 0 since the game with R(S) = 0 for all
coalitions S is not an element of CV. Then by theorem 3.3, k;(G) < p; for al pR(N) in the core
C(G). Inparticular, M°(G) € C(G) and thisimplieswith (3.1) k;(G) < a;(R({i}), R(N)).

On the other hand,

Ki(G) = max p(S.1) = pl{i},9) = ai( R({i}), R(N)).

We conclude that k;(G) = o (R({i}), R(N)). O

Consequently, if for a game G € CV al margina vectors belong to the core then k;(G) =
a;(R({i}), R(N))fordli e N. Player i isindifferent between hisindividual payoff R({:}) and the
minimal right k;(G)R(N).

4 Properties

In this section we present several properties of the compromisevalue. We show that for a special class

of games the compromise valueis determined by the 7-value of a corresponding TU game. Further,

the compromise value coincides with the marginal value on the class of one- and two-person games.
A solution concept ¥ on C is called

(i) efficient if foral G € CV, ¥(G) = pR(N) for somep € A*(N).
(44) individual rational if for all G € N andfor al i € N, ¥;(G) =; R({i}).

(ii7) anonymous if for al G € ¢V and for dl o € TI(N) we have ¥(G°) = o*(¥(G)) where
G7 = (N, (R7(5))sese, A%, (af)ien), R7(0(U)) = R(U), 87 = {a(5)|S € S}, A7 =
{pR°(S)lp € R, S € &7}, aZy = o; and (0*(pR(N)))o@y = piR(N) fori € N and

pe RV,

(iv) weakly proportional if for al G' € ¢V with k(G) = 0, ¥(G) is proportional to K (G)R(N).

(v) symmetricifforal G € ¢V, andforali, j € N suchthata; = ajand R(SU{i}) = R(SU{j})
foral S ¢ N\ {i,j}, ¥;i(G) = ¥;(G).

(vi) strongly symmetricif for al G € CV and for al i,j € N with k;(G) = k;(G) and K;(G) =
K;(G), ¥i(G) = ¥5(G).

The compromise val ue sati sfies these properties.



Lemma 4.1 The compromise value ®¢ on CV is efficient, individual rational, anonymous, weakly
proportional, symmetric and strongly symmetric.

Proof. We only show that ® isindividual rational and symmetric on C¥. The remainder of the proof
isleft to the reader.

Let G € CV be acompromise admissible game and let i € N. By definition of the compromise
value

a;(®7(G), R(N)) = ki(G)+7(Ki(G) — ki(G))

and so,
®5(G) Zi ai(R({i}), R(N))R(N) ~; R({i}).

The compromise vaueisindividua rational.

Next, let i, j € N besuchthat o = oj and R(SU {i}) = R(SU{j})foral S Cc N\ {i,5}.
From R(N \ {i}) = R(N \ {j}) and oy = ¢ it followsthat K;(G) = K;(G). Thisimplies that
r(SU{i},i) =r(SU{j},j)andp(SU{i},i) = p(SU{j},j)foradl S C N\ {i,7}. Consequently,
ki(G) = k;(G). It followsfrom the definition of ¢ that ®{(G) = ©5(G). The compromisevalueis
Ssymmetric. O

For gamesin GLI™N N¢™, where GLI isthe class of gamesin which al the players have linear
functions f? and identical preferences, the compromise value ®¢ and the 7-value are closely related.
Before we can present this result we need to know what isatransferable utility (TU) gameand what is
the 7-value of such agame. A TU gameisapair (N, v) where N isthe player set and v isafunction
that assignsto each coalition S areal number v(S) with the convention () = 0. The utopia payoff
for playeri € N is

Mi(v) = v(N) — o(N \ {i}) .1)

and the minimal right for this player is defined by

i(v) = max | v(5) — Mj(v) | - (4.2)
i) = ies (v jeg\:{i} iy )
The game (IV, v) iscalled quasi-balanced if
m(v) < M(v)and 3 mi(v) < o(N) < 3 Mi(v). (43)
ieN ieN

For quasi-balanced TU games (N, v) the 7-value is defined by
T(v) = m(v) + 6(M(v) — m(v)) (4.9

with0 < ¢ < 1suchthat ;. 7i(v) = v(N).
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Let G € GLINV N CY and define fs = fi foradl S € S,i € N. Define the TU game (N, v)
correspondingto G by

0 S¢S
v(S) = ’ ¢S,
1/fs(1), Se€S,
and v(0) = 0. The r-value of this game determines the compromise value of G.
Theorem 4.2 For all gamesG € GLIY NCYN with R(N) # 0 and with the corresponding TU game
(N, v) satisfyingv(N \ {i}) > ZjeN\{i}v({j}) foralli € N, ®¢(G) = 7(v)/v(N)- R(N).

Proof. Let G € GLIY NCVN beagamewith R(N) # 0. Let (N, v) be the TU game corresponding
to G with

o(N\{i}) > > o({j})fordlieN. (4.5)
JEN\{i}
The utopia payoff for playeri € N is K;(G)R(N) with
Ki(G) = swlrer| SR Mgt =t
aR(N) ¢ dom(N \ {i}); a; R(N) z; R({j}),j € N\ {i}
_ swpltemr| € R =1 = S gy 055
2jen\{iy a0 (V) Z o(N\{i}); ajo(N) = v({j}), j # i

= 1—o(N\{i})/v(N)

= M;(v)/v(N),
wherethethird and fourth equality follow from (4.5) and (4.1), respectively. Because GG iscompromise
admissible, R({i}) > 0 and R(N) # 0 we have

Ki(G) = ki(G) = p({i}, ) = ci(R({7}), R(N)) = 0. (4.6)

Further, if R(S) # 0 then

Ja € RS\ . N+t =1
r(S,i) = supSteR @< 2jes\{i} a3_+ )
a;R(S) =; K;(G)R(N), j € S\ {i}

~ swpltemr| € R =1 jcq\ 13y 055
a;u(S) > M;(v), j € S\ {i}
= 1= > M;@)/v(s)
jeS\{i}
- (”(5) - Mj(v)) Jv(S).
jeS\{i}

Now the remainder of ¢ in .S equals

p(S,1) = i(r(S, ) R(S), R(N)) = (U(S)— > Mj(v)) Jv(N)

jes\{i}
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and the minimal right k;(G) R(IN) is determined by

ki(G) = max p(S i) = max (v Z M;( ) (N) =m;(v)/v(N),

oes JESNs)
wherethelast equdity followsfrom (4.2). If R(S) = 0 then

da € RS\{Z} : ZjES\{i} a; +t= 1; }

r(S,i) = sup {t eR . .
a; - 0=0 >3 KJ(G)R(N), J € S\{Z}

= Sup@:—

The set over which the supremum is taken, is empty because, by (4.6), K;(G) > 0 which implies
K;(G)R(N) z; 0fordl j € N. Thus,
R(S)=0impliesv(S) = 0 and so,
= Y M) == ¥ Mi(v) 0 <v({i}) < mi(v).
jes\{i} jes\{i}
Hence, the remainder p(S, i) will not determine the minimal right if R(S) = 0.

The game G is compromise admissible and therefore k(G) < K(G), which is equivalent to
m(v) < M(v). Second, > ;cn ki(G) <1 < 3,y Ki(G) isequa to Y ;e ymi(v) < v(NV) <
> ien M;(v). According to (4.3), the game (IV, v) is quasi-balanced. Finally, the compromise value
is defined by

(G) = (k(G) +7(K(G) — k(G))) R(N)
where0 < v < 1 suchthat k&(G) + v(K(G) — k(G)) € A*(N). But then
> (mi(v) + v (Mi(v) — mi(v))) = v(N),
ieN
by (4.4) 7(v) = m(v) +~v(M(v) —m(v)) and ®(G) = 7(v)/v(N) - R(N). o
After this specific attention for games in GLIM N ¢V we will turn our attention to games in
CN. Definethe subgame G of G = (N, (R(S))ses, A, (as)ien) restricted to codition 7' by G =
(T, (R(S))sesys Ar, (ai)ier) Where St = {S € S|S € T} and Ar = {pR(S) € A|S € Sr}.
Denote by GV = Upsc v ar20G™ the class of gamesin GV and al of their subgames. Similarly we
defineC™.
The remainder of thissection dealswiththemarginal value. Therefore, assumption 2.3isvalid. If
G isaone-person or atwo-person game then the compromise value and the marginal value coincide.

Theorem 4.3 &¢(G) = ®™(G) for all G € CV, |N| = 2.
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Proof. It isobviousthat ®°(G) = ®™(G) for one-person games G € CVV. Next, let G € CV bea
two-person game. Assumethat N = {1,2}. Then

Ki(G) = sup{t€eR|Faz e R:ay+t=1; aaR(N) =2 R({2})}
= sup{l —asfay > ax(R({2}), R(N))}
= 1-a(R({2}), R(N)).
Smilarly, K5(G) = 1 — an(R({1}), R(N)). Calculating the remainders results for player 1 in
codition {1} in
r({1} 1) =1 p({1}, 1) = ar(R({1}), R(N))
and for player 1in codition N
p(N,1) = r(N,1)=sup{t € R|Faz e R:az +t=1; aaR(N) =2 Ko(G)R(N)}
= sup{l — ag|as > K2(G)}
= 1= K3(G) = ai(R({1}), R(N)).
The minimal right for player 1is k;(G) = max{p({1},1),p(N,1)} = aq(R({1}),R(N)). Ina
similar way, k2(G) = aa(R({2}), R(NN)). Easy caculations show that
°(G) = 3(1+ a1 (R({1}), R(N)) - aa(R({2}), R(N)),
1= (R({1}), R(N)) + az(R({2}), R(N))) R(N),
The marginal vectors are
MUID(G) = (ar(R({1}), R(N)), 1~ a1 (R({1}), R(N)))R(N)
and
MED(G) = (1 - az(R({2}), R(N)), az(R({2}), R(N)))R(N),
where (3, j) is shorthand for the permutation o with o(1) = ¢ and o(2) = j. Their average, the
marginal value, is

®™(G) = 3(1+ a1(R({1}), R(N)) — e2(R({2}), R(N)),
1= (R({1}), R(N)) + az(R({2}), R(N))) R(N),

whichis equal to the compromise value. O

Timmer et al. (2000b) characterized the marginal value on GV with [N| = 2. They use the
following property, which is based on the balanced contributions property for cooperative TU games
by Myerson (1980). A solution concept ¥ on G is said to have

(vii) balanced contributionsif for all games G € G¥, for al coalitionsT c N andfor ali,j € T,
i
a;(¥i(Gr), R(T)) — ai(¥i(Gr\(51), R(T))
= j(¥;(Gr), R(T)) — o (V(Gry\giy), R(T))-
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Theorem 4.4 The compromise value ¢ is the unique solution concept on CV with |N| = 2 that is
efficient and has balanced contributions.

Proof. This result follows from theorem 4.3 and from noting that theorem 4.8 in Timmer et al.
(2000b), which characterizes the marginal value on GV with |N| = 2, dlso holdsfor ®™ onCV. O

If we consider games with more than two players, then the compromise value and the marginal
value may be different, as is shown in the exampl e bel ow.

Example4.5 Consider thegamein example 3.2. Let (4, j, k) denote the permutation o € II( V) with
o(l)=14,0(2) =j,ando(3) = k. Then

M123)(G) = MU3D(G) = (0,4/5,1/5)R(N),
M@13(G) = (1/2,1/5,3/10)R(N),
and so on. The average of the six marginal vectorsis
d™(G) = (11/45,103/180,11/60)R(N),

which is unequal to the compromise value. <&

This example shows that we cannot use the characterization of the marginal value on GLIY (see
Timmer et al. (2000b)) to obtain a characterization of the compromise value on GLIN n¢cN. A
second possibility would be to search for a characterization of the compromise value with the help of
the 7-value of the related TU games (N, v). One of the assumptions on the payoffsisthat R(.S) > 0
for al coditions S. Thisimplies v(S) > 0, the game (IV, v) is nonnegative. As far as we know
there does not exist a characterization of the 7-value on the class of nonnegative TU games or on any
subclass thereof. Hence, it remains an open question whether there exists a characterization of the
compromise valueon GLI™ N ¢ or on some other subclass of C*V.
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