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The Compromise Value for

Cooperative Games with Random Payoffs
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Abstract

The compromise value is introduced for cooperative games with random payoffs, that is,

for cooperative games where the payoff to a coalition of players is a random variable. It is a

compromise between utopia payoffs and minimal rights. This solution concept is based on the

compromise value for NTU games and the τ -value for TU games. It is shown that the nonempty

core of a game is bounded by the utopia payoffs and the minimal rights. Further, we show that the

compromise value of a cooperative game with random payoffs is determined by the τ -value of a

related TU game if the players have special types of preferences. Finally, the compromise value

and the marginal value, which is defined as the average of the marginal vectors, coincide on the

class of one- and two-person games.
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1 Introduction

In this paper we introduce and study the compromise value for cooperative games with random payoffs

which are introduced in Timmer, Borm and Tijs (2000a). In these games, the payoffs that the players

can obtain by cooperation are not known with certainty and are modeled as random variables. The

players cannot await the realizations of the payoffs before deciding upon an allocation of these payoffs.

Hence, the preferences of the players over the uncertain payoffs play an important role in the analysis

of such games. Further, the possible allocations of the payoffs are of a specific type.

Another model to analyze this kind of situations is that of stochastic cooperative games introduced

by Suijs, Borm, De Waegenaere and Tijs (1999) and further developed by Suijs (2000). The main

differences with cooperative games with random payoffs lie in the assumptions on the preferences

and the structure of the set of allocations of the payoffs (see Timmer et al. (2000a) for more details).

1I thank Peter Borm and Ruud Hendrickx for their valuable comments.
2Center for Economic Research and Department of Econometrics and Operations Research, Tilburg University, P.O.

Box 90153, 5000 LE Tilburg, The Netherlands. E-mail address: j.b.timmer@kub.nl. This author acknowledges financial
support from the Netherlands Organization for Scientific Research (NWO) through project 613-304-059.
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The compromise value for cooperative games with random payoffs is based on the compromise

value for NTU games. In its turn, this latter value is an extension of the τ -value for TU games.

The τ -value is a solution concept for quasi-balanced TU games introduced by Tijs (1981). It is a

compromise between the utopia payoffs and the minimal rights of the players. The compromise value

value for compromise admissible NTU games, introduced by Borm, Keiding, McLean, Oortwijn and

Tijs (1992), is defined in a similar way. These utopia payoffs and minimal rights have several nice

properties. First, if the core of the game is nonempty then the utopia payoffs and the minimal rights

provide upper and lower bounds of the core. This implies that a TU or NTU game with a nonempty

core is quasi-balanced or compromise admissible, respectively. Finally, if all marginal vectors of a

TU game belong to the core then the minimal right of any player equals his individual payoff. For

a survey on compromise values in cooperative game theory the reader is referred to Tijs and Otten

(1993).

The compromise value for cooperative games with random payoffs is a compromise between the

utopia payoffs and the minimal rights, whose definitions are based on their counterparts for NTU

games. The properties of the utopia payoffs and minimal rights are similar to those for TU and NTU

games. For all cooperative games with random payoffs with a nonempty core and with a nonzero

payoff for the coalition of all players, the core is bounded by the utopia payoffs and the minimal rights.

Consequently, such games are compromise admissible. If all marginal vectors belong to the core of the

game then any player is indifferent between receiving his minimal right and receiving his individual

payoff. Furthermore, if all players have a special type of preference relation then the compromise

value is determined by the τ -value of a related TU game. Finally, we relate the compromise value to

the marginal value, which is defined as the average of the marginal vectors. These values coincide on

the class of one- and two-person games. Timmer, Borm and Tijs (2000b) characterized the marginal

value on this class of games. Consequently, there exists a characterization of the compromise value

on this class of games.

The organization of this paper is as follows. In section 2 a brief introduction to cooperative games

with random payoffs is given. The compromise value for these games is introduced in section 3.

We show that the core is bounded by the utopia payoffs and the minimal rights. In section 4 several

properties of the compromise value are presented. After this, it is shown that the compromise value

is determined by the τ -value of a related TU game if all the players have a specific type of preference

relation. Section 4 is concluded by showing the coincidence of the compromise value and the marginal

value on the class of one- and two-person games.

2 Cooperative games with random payoffs

In this section we recall some basic concepts of cooperative games with random payoffs as intro-

duced in Timmer, Borm and Tijs (2000a). A cooperative game with random payoffs G is a tuple

(N, (R(S))S∈S,A, (αi)i∈N). N is the finite player set. A nonempty subset ofN is called a coalition.

The nonnegative random payoff to coalitionS is denoted byR(S). S is the set of all coalitions with a
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nonzero payoff. The setA contains all the possible individual payoffs that a player may receive. The

function αi describes how player i ∈ N compares any two individual payoffs.

In more detail, let N = {1, . . . , n}. The set L+ is the set of all nonnegative random variables

with finite expectation. 0 stands for the payoff zero for sure. Note that 0 ∈ L+. The random payoff

to coalition S, R(S), is assumed to be an element of L+. S = {S ⊂ N |S 6= ∅, R(S) 6= 0} is the set

of all coalitions with a payoff unequal to zero. Hence, for coalitionS it holds that S /∈ S if and only

if R(S) = 0.

An allocation of the random payoff R(S) is a vector pR(S), p ∈ IRS , of multiples ofR(S). Such

an allocation is efficient if p ∈ ∆∗(S) = {p ∈ IRS|
∑
i∈S pi = 1}. A is the set of all the possible

individual payoffs with regard to the random payoffsR(S) to the coalitions,A = {tR(S)|t ∈ IR, S ∈

S}. A−0 = {tR(S) ∈ A|t 6= 0} is the restriction ofA to all the nonzero individual payoffs.

The preference relation %i of player i ∈ N has the following interpretation. Let X, Y ∈ A be

two individual payoffs. Player i weakly prefers X to Y if X %i Y . She is indifferent between them,

X ∼i Y , if X %i Y and Y %i X . Finally, she strictly prefers X to Y , X �i Y , if X %i Y and not

Y %i X . We assume the following about this preference relation.

Assumption 2.1 For all players i ∈ N there exist surjective, strictly increasing and continuous

functions f iS : IR→ IR, S ∈ S, such that

f iS(t)R(S) %i f
i
T (t′)R(T ) if and only if t ≥ t′

and f iS(0) = 0 for all S, T ∈ S and t, t′ ∈ IR.

So, if player i compares the payoffs pR(S) and qR(T ), S, T ∈ S, then pR(S) %i qR(T ) if and

only if t = (f iS)−1(p) ≥ t′ = (f iT )−1(q). Hence, the function (f iS)−1, S ∈ S, may be interpreted as a

kind of utility function with respect to multiples of R(S) only. Two examples of preference relations

%i that satisfy this assumption are the following. Let X, Y ∈ A. The first example is X %i Y if and

only if E(X) ≥ E(Y ) with E(X) the expectation of the random variable X . We refer to this type of

preferences as ‘expectation preferences’. Define f iS(t) = t/E(R(S)) for all S ∈ S. This function

satisfies assumption 2.1.

For the second example let uXβi = sup{t ∈ IR|Pr{X ≤ t} ≤ βi} be the βi-quantile of the random

variable X where 0 < βi < 1 is such that uR(S)
βi

> 0 for all S ∈ S. Define the (utility) function

Ui : A → IR by Ui(X) = uXβi if X ≥ 0 and Ui(X) = uX1−βi otherwise. The preference relation

X %i Y if and only if Ui(X) ≥ Ui(Y ) is called a ‘quantile preference relation’. The functions

f iS(t) = t/u
R(S)
βi

describe these preferences. Notice that both expectation preferences and quantile

preferences have linear functions f i. That is, f iS(t) = tf iS(1) for all t ∈ IR.

In this paper we often like to know for which real number αi it holds that X ∼i αiY where

X ∈ A and Y ∈ A−0. For this reason we define αi(X, Y ) to denote this number αi. It follows

from assumption 2.1 that the number αi(X, Y ) is unique and if X = pR(S) and Y = qR(T ) then

αi(X, Y ) = f iT ((f iS)−1(p))/q. If we interpret (f iS)−1, S ∈ S, as some kind of utility function

then αi(X, Y ) is that multiple of Y that gives player i the same utility as X , namely (f iS)−1(p).
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Further, define αi(0, 0) = 1. Again from assumption 2.1 it can be deduced that if S ∈ S then

piR(S) �i 0 if pi > 0 and 0 �i piR(S) if pi < 0. Hence, there exists no real number αi such that

piR(S) ∼i αi · 0 = 0, pi 6= 0. This is why αi(X, 0) is not defined for any X ∈ A−0.

The lemma below, lemma 2.3 in Timmer, Borm and Tijs (2000b), presents some properties of the

preference relations%i and the functions αi that we use in this paper.

Lemma 2.2 For any i ∈ N , h ∈ IR andX ∈ A−0 it holds that αi(hX,X) = h.

If the functions f iS are linear for all S ∈ S then

• αi(pR(S), qR(T )) = pf iT (1)/(qf iS(1)) for any pR(S) ∈ A and qR(T ) ∈ A−0,

• pR(S) %i qR(T ) if and only if p/f iS(1) ≥ q/f iT (1) for any pR(S), qR(T ) ∈ A.

Let GN be the set of all cooperative games with random payoffs and player set N that satisfy

assumption 2.1. Let G ∈ GN . The imputation set I(G) contains all the allocations of R(N ) that are

efficient and individual rational:

I(G) = {pR(N ) |p ∈ ∆∗(N ), piR(N ) %i R({i}) for all i ∈ N} .

The set of allocations of R(N ) that are dominated by coalition S is

dom(S) =
{
pR(N )

∣∣∣p ∈ IRS, ∃q ∈ ∆∗(S) : qiR(S) �i piR(N ) for all i ∈ S
}
.

The core C(G) of the game contains those efficient allocations of R(N ) that are not dominated by

any coalition:

C(G) = {pR(N ) |p ∈ ∆∗(N ), pSR(N ) /∈ dom(S) for all coalitions S}

with pS = (pi)i∈S the restriction of p to coalition S. Notice that C(G) ⊂ I(G).

Let Π(N ) be the set of all bijections σ : {1, . . . , n} → N . Let σ ∈ Π(N ). Coalition Sσi =

{σ(k)|k ≤ i} consists of the first i players according to σ ∈ Π(N ). The marginal contribution Y σ
σ(1)

of the first player σ(1) is equal to his individual payoff, Y σσ(1) = R({σ(1)}) = R(Sσ1 ). The marginal

contribution of player σ(i), i = 2, . . . , n, to coalition Sσi−1 equals

Y σ
σ(i) =

[
1−

i−1∑
k=1

ασ(k)(Y
σ
σ(k), R(Sσi ))

]
R(Sσi ).

Each player j ∈ Sσi−1 receives from player σ(i) the random payoff αj(Y σj , R(Sσi ))R(Sσi ). Player j is

indifferent between receiving this payoff and receiving her marginal contribution Y σ
j . The marginal

contribution of player σ(i) is all that remains of the payoff R(Sσi ). The marginal vector Mσ(G)

corresponding to permutation σ ∈ Π(N ) is defined by Mσ
i (G) = mσ

i (G)R(N ) for all i ∈ N , with

mσ
i (G) = αi(Y

σ
i , R(N )). To ensure that the marginal vectors are well defined, that is, to avoid

αi(X, 0) for some X ∈ A−0, we assume the following about the payoff structure of the game G only

if we talk about marginal vectors.
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Assumption 2.3 If R(T ) = 0 for some coalition T then R(S) = 0 for all coalitions S such that

S ⊂ T .

LetHN ⊂ GN be a set of cooperative games with random payoffs and player setN . A solution Ψ

for cooperative games with random payoffs is a function onHN such that Ψ(G) is an allocationpR(N )

for the game G ∈ HN . The marginal value Φm for a game G ∈ GN that satisfies assumption 2.3 is

the average of its marginal vectors:

Φm
i (G) =

(n!)−1
∑

σ∈Π(N)

mσ
i (G)

R(N ).

This solution concept for cooperative games with random payoffs is introduced in Timmer et al.

(2000a) and studied in Timmer et al. (2000b).

3 The compromise value

The compromise value for cooperative games with random payoffs is an extension of the compromise

value for NTU games, which in its turn is an extension of the τ -value for TU games. The latter

two values are introduced and studied in Borm, Keiding, McLean, Oortwijn and Tijs (1992) and Tijs

(1981), respectively. These values are a compromise between utopia payoffs and minimal rights.

Let G = (N, (R(S))S∈S,A, (αi)i∈N) be a cooperative game with random payoffs and let i ∈ N .

Suppose player i proposes the efficient allocation pR(N ). It seems reasonable to assume that the

players j 6= iwill agree with this proposal if pN\{i}R(N ) /∈ dom(N \{i}) and if pjR(N ) %j R({j}).

Therefore, the largest individual payoff that player i can expect when cooperating with coalitionN\{i}

isKi(G)R(N ) where

Ki(G) = sup

t ∈ IR

∣∣∣∣∣∣ ∃a ∈ IRN\{i} :
∑
j∈N\{i} aj + t = 1;

aR(N ) /∈ dom(N \ {i}); ajR(N ) %j R({j}), j 6= i

 .

The payoff Ki(G)R(N ) is called the utopia payoff to player i. Attention will be paid only to games

G withKi(G) ∈ IR.

If player i is a member of coalition S then any player j ∈ S \ {i} will not object against an

efficient allocation of R(S) in which she is better off than receiving her utopia payoff. Hence, the

players j ∈ S \ {i} will not disagree if player i claims his part r(S, i)R(S) of such an allocation with

r(S, i) = sup

t ∈ IR

∣∣∣∣∣∣ ∃a ∈ IRS\{i} :
∑
j∈S\{i} aj + t = 1;

ajR(S) �j Kj(G)R(N ), j ∈ S \ {i}

 .

The remainder of i in S, ρ(S, i), is defined as the remainder r(S, i)R(S) expressed as a multiple of

R(N ):

ρ(S, i) = αi(r(S, i)R(S), R(N)).

The largest of these remainders of player i determines his minimal right ki(G)R(N ) where

ki(G) = max
S:i∈S

ρ(S, i).

5



We restrict ourselves to games G with ki(G) ∈ IR for all players i. The lemma below shows that this

condition is satisfied for all games withR(N ) 6= 0.

Lemma 3.1 For any G ∈ GN with R(N ) 6= 0, Ki(G) <∞ and ki(G) ∈ IR for all i ∈ N .

Proof. Let G ∈ GN be a cooperative game with random payoffs and R(N ) 6= 0. First,

Ki(G) = sup

t ∈ IR

∣∣∣∣∣∣ ∃a ∈ IRN\{i} :
∑
j∈N\{i} aj + t = 1;

aR(N ) /∈ dom(N \ {i}); ajR(N ) %j R({j}), j 6= i


≤ sup

t ∈ IR

∣∣∣∣∣∣ ∃a ∈ IRN\{i} :
∑
j∈N\{i} aj + t = 1;

ajR(N ) %j R({j}), j 6= i


< ∞,

where the last inequality follows from R(N ) 6= 0.

Second, let S be a coalition of players. If R(S) 6= 0 then r(S, i) ∈ IR and consequently

ρ(S, i) ∈ IR. If R(S) = 0 then r(S, i) = −∞ and ρ(S, i) = αi(−∞ · 0, R(N )) = 0 since

R(N ) 6= 0. We conclude that ki(G) = maxS:i∈S ρ(S, i) ∈ IR. 2

A game G is called compromise admissible if Ki(G), ki(G) ∈ IR for all i ∈ N ,

ki(G) ≤ Ki(G) for all i ∈ N, and
∑
i∈N

ki(G) ≤ 1 ≤
∑
i∈N

Ki(G).

Hence, in a compromise admissible game the utopia payoff of a player is larger than his minimal

right and there exists an efficient allocation of R(N ) between the allocation of utopia payoffs and

the allocation of minimal rights. Denote by CN the set of all compromise admissible games G with

player set N .

The compromise value Φc on CN is the unique efficient allocation between the minimal rights and

the utopia payoffs,

Φc(G) = (k(G) + γ(K(G)− k(G)))R(N ),

where 0 ≤ γ ≤ 1 is the unique real number such that k(G) + γ(K(G)− k(G)) ∈ ∆∗(N ).

Example 3.2 Consider the game G = (N, (R(S))S∈S,A, (αi)i∈N) where N = {1, 2, 3}. The

payoffs to the various coalitions are R({1}) = 0, R({2}) = 1, R({3}) = 0, R({1, 2}) = 4,

R({1, 3}) = 1, R({2, 3}) = 3, and R(N ) ∼ U(4, 8), that is, R(N ) is uniformly distributed over the

interval [4,8]. Hence S = {{2}, {1, 2}, {1, 3}, {2, 3}, N} and A = {pR(S)|p ∈ IR, S ∈ S}.

Let β1 = 1/2 and β2 = β3 = 1/4. Recall from section 2 thatuXβi = sup{t ∈ IR|Pr{X ≤ t} ≤ βi}

is the βi-quantile of the random variable X . All the players i ∈ N have quantile preferences, thus

f iS(t) = t/u
R(S)
βi

for all S ∈ S, t ∈ IR. From this we obtain the maps αi. Now

K1(G) = sup

t ∈ IR

∣∣∣∣∣∣ ∃a ∈ IR{2,3} : a2 + a3 + t = 1;

aR(N ) /∈ dom({2, 3}); ajR(N ) %j R({j}), j = 2, 3


= sup{t ∈ IR|∃a ∈ IR{2,3} : t = 1− a2 − a3; a2 + a3 ≥ 3/5; a2 ≥ 1/5; a3 ≥ 0}

= 2/5
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and similarly,K2(G) = 5/6 and K3(G) = 3/10. For player 2 we have r({2}, 2) = 1,

r({1, 2}, 2) = sup{t ∈ IR|∃a ∈ IR : a + t = 1; aR({1, 2})�1 2R(N )/5}

= sup{t ∈ IR|∃a ∈ IR : t = 1− a; a > 3/5}

= 2/5,

r({2, 3}, 2) = 1/2, and r(N, 2) = 3/10. The remainders for player 2 are

ρ({2}, 2) = α2(r({2}, 2)R({2}), R(N)) = 1/5,

ρ({1, 2}, 2) = 8/25, ρ({2, 3}, 2) = 3/10 and ρ(N, 2) = 3/10. Thus, the minimal right for player 2

is k2(G)R(N ) where

k2(G) = max{1/5, 8/25, 3/10, 3/10}= 8/25.

In a similar way we obtain k1(G) = 0 and k3(G) = 0. The game G is compromise admissible and

Φc(G) = (102/455, 79/130, 153/910)R(N)

is the compromise value. 3

It is known for TU and NTU games that the minimal rights and utopia payoffs are lower and upper

bounds, respectively, for the nonempty core of the game (cf. Tijs and Lipperts (1982) and Borm et al.

(1992)). This result extends to cooperative games with random payoffs.

Theorem 3.3 For all G ∈ GN with R(N ) 6= 0 and C(G) 6= ∅ and for any pR(N ) ∈ C(G),

ki(G) ≤ pi ≤ Ki(G) for all players i.

Proof. Let G ∈ GN be a game with R(N ) 6= 0 and C(G) 6= ∅. Let pR(N ) ∈ C(G) and let i ∈ N .

By definition of the utopia payoff and by ajR(N ) %j R({j}) if and only if ajR(N ) /∈ dom({j}), it

follows that

Ki(G) ≥ sup

t ∈ IR

∣∣∣∣∣∣ ∃a ∈ IRN\{i} : (a, t) ∈ ∆∗(N );

(a, t)SR(N ) /∈ dom(S) for all S ⊂ N, S 6= ∅


= sup{t ∈ IR|∃a ∈ IRN\{i} : (a, t)R(N ) ∈ C(G)}

≥ pi,

where (a, t) is shorthand for the vector (a1, . . . , ai−1, t, ai+1, . . . , an) in IRN .

Next, let coalition T , i ∈ T , be such that ki(G) = ρ(T, i). If T = {i} then ki(G) = ρ({i}, i) =

αi(R({i}), R(N)) where the second equality follows from the definition of ρ({i}, i). Because

pR(N ) ∈ C(G) ⊂ I(G) we have piR(N ) %i R({i}) ∼i ki(G)R(N ). According to assumption 2.1

this implies pi ≥ ki(G).

Otherwise, T \ {i} 6= ∅. Suppose that ki(G) > pi. Then there exists an εi > 0 such that

ki(G) > pi + εi. According to assumption 2.1 (pi + εi)R(N ) ≺i ki(G)R(N ) ∼i r(T, i)R(T ) and

there exists an ε′i > 0 such that

(pi + εi)R(N ) ∼i (r(T, i)− ε′i)R(T ).
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By definition of r(T, i) there exists a vector â ∈ IRT \{i} satisfying
∑
j∈T \{i} âj + r(T, i)− ε′i = 1

and âjR(T ) �j Kj(G)R(N ) for all j ∈ T \ {i}. Now we have

(r(T, i)− ε′i)R(T ) ∼i (pi + εi)R(N ) �i piR(N )

and from Kj(G) ≥ pj

âjR(T ) �j Kj(G)R(N ) %j pjR(N )

for all j ∈ T \{i}. This implies that pTR(N ) ∈ dom(T ), which is in contradiction to pR(N ) ∈ C(G).

We conclude that ki(G) ≤ pi. 2

Example 3.4 Consider the game in example 3.2. Recall that K(G) = (2/5, 5/6, 3/10) and k(G) =

(0, 8/25, 0). The nonempty core of this game is

C(G) =

pR(N )

∣∣∣∣∣∣ p ∈ ∆∗(N ), p1 ≥ 0, p2 ≥ 1/5, p3 ≥ 0, 6p1 + 5p2 ≥ 4,

6p1 + 5p3 ≥ 1, 5p2 + 5p3 ≥ 3

 .

It is easy to check that k(G) ≤ p ≤ K(G) for all pR(N ) ∈ C(G). 3

An immediate consequence of theorem 3.3 is that any game G with a nonempty core and with

R(N ) 6= 0 is compromise admissible.

Lemma 3.5 Any gameG ∈ GN with R(N ) 6= 0 and C(G) 6= ∅ is compromise admissible.

Proof. Let G ∈ GN be a game with R(N ) 6= 0 and C(G) 6= ∅. Let pR(N ) ∈ C(G). According to

theorem 3.3, ki(G) ≤ pi ≤ Ki(G) for all i ∈ N . Hence, ki(G) ≤ Ki(G) for all players i. Because

pR(N ) is an element of the core C(G) we know that p ∈ ∆∗(N ) and so,∑
i∈N

ki(G) ≤
∑
i∈N

pi = 1 ≤
∑
i∈N

Ki(G).

Further, by lemma 3.1, Ki(G) < ∞ and ki(G) ∈ IR for all i ∈ N . Together with pi ≤ Ki(G) this

results inKi(G) ∈ IR for all i ∈ N . The game G is compromise admissible. 2

Another result for TU games is that if all the marginal vectors belong to the core of the game then

the minimal right of any player is equal to her individual payoff. This result is based on the fact that

for TU games where for some player i specific marginal vectors belong to the core, the minimal right

of this player is equal to her individual payoff. A similar result holds for cooperative games with

random payoffs.

Theorem 3.6 If G ∈ CN and if for some player i it holds that Mσ(G) ∈ C(G) for all σ ∈ Π(N )

with σ(1) = i then ki(G) = αi(R({i}), R(N)).

8



Proof. Let G ∈ CN and i ∈ N be such that Mσ(G) ∈ C(G) for all σ ∈ Π(N ) with σ(1) = i.

Let σ ∈ Π(N ) be a permutation with σ(1) = i. By definition of a marginal vector Mσ
σ(1) ∼σ(1)

R({σ(1)}). Since σ(1) = i this reduces to Mσ
i (G) ∼i R({i}) and so,

Mσ
i (G) = αi(R({i}), R(N ))R(N) (3.1)

From G ∈ CN and from assumption 2.3 we obtain R(N ) 6= 0 since the game with R(S) = 0 for all

coalitions S is not an element of CN . Then by theorem 3.3, ki(G) ≤ pi for all pR(N ) in the core

C(G). In particular, Mσ(G) ∈ C(G) and this implies with (3.1) ki(G) ≤ αi(R({i}), R(N )).

On the other hand,

ki(G) = max
S:i∈S

ρ(S, i) ≥ ρ({i}, i) = αi(R({i}), R(N)).

We conclude that ki(G) = αi(R({i}), R(N)). 2

Consequently, if for a game G ∈ CN all marginal vectors belong to the core then ki(G) =

αi(R({i}), R(N)) for all i ∈ N . Player i is indifferent between his individual payoffR({i}) and the

minimal right ki(G)R(N ).

4 Properties

In this section we present several properties of the compromise value. We show that for a special class

of games the compromise value is determined by the τ -value of a corresponding TU game. Further,

the compromise value coincides with the marginal value on the class of one- and two-person games.

A solution concept Ψ on CN is called

(i) efficient if for all G ∈ CN , Ψ(G) = pR(N ) for some p ∈ ∆∗(N ).

(ii) individual rational if for all G ∈ CN and for all i ∈ N , Ψi(G) %i R({i}).

(iii) anonymous if for all G ∈ CN and for all σ ∈ Π(N ) we have Ψ(Gσ) = σ∗(Ψ(G)) where

Gσ = (N, (Rσ(S))S∈Sσ ,A
σ, (ασi )i∈N), Rσ(σ(U)) = R(U), Sσ = {σ(S)|S ∈ S}, Aσ =

{pRσ(S)|p ∈ IR, S ∈ Sσ}, ασσ(i) = αi and (σ∗(pR(N )))σ(i) = piR(N ) for i ∈ N and

p ∈ IRN .

(iv) weakly proportional if for all G ∈ CN with k(G) = 0, Ψ(G) is proportional toK(G)R(N ).

(v) symmetric if for allG ∈ CN , and for all i, j ∈ N such thatαi = αj andR(S∪{i}) = R(S∪{j})

for all S ⊂ N \ {i, j}, Ψi(G) = Ψj(G).

(vi) strongly symmetric if for all G ∈ CN and for all i, j ∈ N with ki(G) = kj(G) and Ki(G) =

Kj(G), Ψi(G) = Ψj(G).

The compromise value satisfies these properties.
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Lemma 4.1 The compromise value Φc on CN is efficient, individual rational, anonymous, weakly

proportional, symmetric and strongly symmetric.

Proof. We only show that Φc is individual rational and symmetric on CN . The remainder of the proof

is left to the reader.

Let G ∈ CN be a compromise admissible game and let i ∈ N . By definition of the compromise

value

αi(Φ
c
i(G), R(N )) = ki(G) + γ (Ki(G)− ki(G))

≥ ki(G) ≥ ρ({i}, i) = αi(R({i}), R(N ))

and so,

Φc
i(G) %i αi(R({i}), R(N ))R(N )∼i R({i}).

The compromise value is individual rational.

Next, let i, j ∈ N be such that αi = αj and R(S ∪ {i}) = R(S ∪ {j}) for all S ⊂ N \ {i, j}.

From R(N \ {i}) = R(N \ {j}) and αi = αj it follows that Ki(G) = Kj(G). This implies that

r(S∪{i}, i) = r(S∪{j}, j) and ρ(S∪{i}, i) = ρ(S∪{j}, j) for all S ⊂ N \ {i, j}. Consequently,

ki(G) = kj(G). It follows from the definition of Φc that Φc
i(G) = Φc

j(G). The compromise value is

symmetric. 2

For games in GLIN ∩CN , where GLIN is the class of games in which all the players have linear

functions f i and identical preferences, the compromise value Φc and the τ -value are closely related.

Before we can present this result we need to know what is a transferable utility (TU) game and what is

the τ -value of such a game. A TU game is a pair (N, v) where N is the player set and v is a function

that assigns to each coalition S a real number v(S) with the convention v(∅) = 0. The utopia payoff

for player i ∈ N is

Mi(v) = v(N )− v(N \ {i}) (4.1)

and the minimal right for this player is defined by

mi(v) = max
S:i∈S

v(S)−
∑

j∈S\{i}

Mj(v)

 . (4.2)

The game (N, v) is called quasi-balanced if

m(v) ≤M(v) and
∑
i∈N

mi(v) ≤ v(N ) ≤
∑
i∈N

Mi(v). (4.3)

For quasi-balanced TU games (N, v) the τ -value is defined by

τ(v) = m(v) + δ(M(v)−m(v)) (4.4)

with 0 ≤ δ ≤ 1 such that
∑
i∈N τi(v) = v(N ).
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Let G ∈ GLIN ∩ CN and define fS = f iS for all S ∈ S, i ∈ N . Define the TU game (N, v)

corresponding to G by

v(S) =

 0, S /∈ S,

1/fS(1), S ∈ S,

and v(∅) = 0. The τ -value of this game determines the compromise value of G.

Theorem 4.2 For all gamesG ∈ GLIN ∩ CN withR(N ) 6= 0 and with the corresponding TU game

(N, v) satisfying v(N \ {i}) ≥
∑
j∈N\{i} v({j}) for all i ∈ N , Φc(G) = τ(v)/v(N ) ·R(N ).

Proof. Let G ∈ GLIN ∩ CN be a game withR(N ) 6= 0. Let (N, v) be the TU game corresponding

toG with

v(N \ {i}) ≥
∑

j∈N\{i}

v({j}) for all i ∈ N. (4.5)

The utopia payoff for player i ∈ N is Ki(G)R(N ) with

Ki(G) = sup

t ∈ IR

∣∣∣∣∣∣ ∃a ∈ IRN\{i} :
∑
j∈N\{i} aj + t = 1;

aR(N ) /∈ dom(N \ {i}); ajR(N ) %j R({j}), j ∈ N \ {i}


= sup

t ∈ IR

∣∣∣∣∣∣ ∃a ∈ IRN\{i} : t = 1−
∑
j∈N\{i} aj;∑

j∈N\{i} ajv(N ) ≥ v(N \ {i}); ajv(N ) ≥ v({j}), j 6= i


= 1− v(N \ {i})/v(N )

= Mi(v)/v(N ),

where the third and fourth equality follow from (4.5) and (4.1), respectively. BecauseG is compromise

admissible,R({i}) ≥ 0 and R(N ) 6= 0 we have

Ki(G) ≥ ki(G) ≥ ρ({i}, i) = αi(R({i}), R(N ))≥ 0. (4.6)

Further, if R(S) 6= 0 then

r(S, i) = sup

t ∈ IR

∣∣∣∣∣∣ ∃a ∈ IRS\{i} :
∑
j∈S\{i} aj + t = 1;

ajR(S) �j Kj(G)R(N ), j ∈ S \ {i}


= sup

t ∈ IR

∣∣∣∣∣∣ ∃a ∈ IRS\{i} : t = 1−
∑
j∈S\{i} aj;

ajv(S) > Mj(v), j ∈ S \ {i}


= 1−

∑
j∈S\{i}

Mj(v)/v(S)

=

v(S)−
∑

j∈S\{i}

Mj(v)

/v(S).

Now the remainder of i in S equals

ρ(S, i) = αi(r(S, i)R(S), R(N)) =

v(S)−
∑

j∈S\{i}

Mj(v)

/v(N )
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and the minimal right ki(G)R(N ) is determined by

ki(G) = max
S:i∈S

ρ(S, i) = max
S:i∈S

v(S)−
∑

j∈S\{i}

Mj(v)

/v(N ) = mi(v)/v(N ),

where the last equality follows from (4.2). If R(S) = 0 then

r(S, i) = sup

t ∈ IR

∣∣∣∣∣∣ ∃a ∈ IRS\{i} :
∑
j∈S\{i} aj + t = 1;

aj · 0 = 0 �j Kj(G)R(N ), j ∈ S \ {i}


= sup ∅ = −∞.

The set over which the supremum is taken, is empty because, by (4.6), Kj(G) ≥ 0 which implies

Kj(G)R(N ) %j 0 for all j ∈ N . Thus,

ρ(S, i) = αi(−∞ · 0, R(N )) = 0 ≤ ρ({i}, i)≤ ki(G).

R(S) = 0 implies v(S) = 0 and so,

v(S)−
∑

j∈S\{i}

Mj(v) = −
∑

j∈S\{i}

Mj(v) ≤ 0 ≤ v({i})≤ mi(v).

Hence, the remainder ρ(S, i) will not determine the minimal right if R(S) = 0.

The game G is compromise admissible and therefore k(G) ≤ K(G), which is equivalent to

m(v) ≤ M(v). Second,
∑
i∈N ki(G) ≤ 1 ≤

∑
i∈N Ki(G) is equal to

∑
i∈Nmi(v) ≤ v(N ) ≤∑

i∈NMi(v). According to (4.3), the game (N, v) is quasi-balanced. Finally, the compromise value

is defined by

Φc(G) = (k(G) + γ(K(G)− k(G)))R(N )

where 0 ≤ γ ≤ 1 such that k(G) + γ(K(G)− k(G)) ∈ ∆∗(N ). But then∑
i∈N

(mi(v) + γ(Mi(v)−mi(v))) = v(N ),

by (4.4) τ(v) = m(v) + γ(M(v)−m(v)) and Φc(G) = τ(v)/v(N ) ·R(N ). 2

After this specific attention for games in GLIN ∩ CN we will turn our attention to games in

CN . Define the subgame GT of G = (N, (R(S))S∈S,A, (αi)i∈N) restricted to coalition T by GT =

(T, (R(S))S∈ST ,AT , (αi)i∈T ) where ST = {S ∈ S|S ⊂ T} and AT = {pR(S) ∈ A|S ∈ ST}.

Denote by ḠN = ∪M⊂N,M 6=∅G
M the class of games in GN and all of their subgames. Similarly we

define C̄N .

The remainder of this section deals with the marginal value. Therefore, assumption 2.3 is valid. If

G is a one-person or a two-person game then the compromise value and the marginal value coincide.

Theorem 4.3 Φc(G) = Φm(G) for all G ∈ C̄N , |N | = 2.
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Proof. It is obvious that Φc(G) = Φm(G) for one-person games G ∈ C̄N . Next, let G ∈ C̄N be a

two-person game. Assume that N = {1, 2}. Then

K1(G) = sup{t ∈ IR|∃a2 ∈ IR : a2 + t = 1; a2R(N ) %2 R({2})}

= sup{1− a2|a2 ≥ α2(R({2}), R(N))}

= 1− α2(R({2}), R(N)).

Similarly, K2(G) = 1 − α1(R({1}), R(N)). Calculating the remainders results for player 1 in

coalition {1} in

r({1}, 1) = 1, ρ({1}, 1) = α1(R({1}), R(N ))

and for player 1 in coalitionN

ρ(N, 1) = r(N, 1) = sup{t ∈ IR|∃a2 ∈ IR : a2 + t = 1; a2R(N ) �2 K2(G)R(N )}

= sup{1− a2|a2 > K2(G)}

= 1−K2(G) = α1(R({1}), R(N )).

The minimal right for player 1 is k1(G) = max{ρ({1}, 1), ρ(N, 1)} = α1(R({1}), R(N )). In a

similar way, k2(G) = α2(R({2}), R(N)). Easy calculations show that

Φc(G) = 1
2(1 + α1(R({1}), R(N ))− α2(R({2}), R(N )),

1− α1(R({1}), R(N )) + α2(R({2}), R(N )))R(N ),

The marginal vectors are

M (1,2)(G) = (α1(R({1}), R(N)), 1− α1(R({1}), R(N)))R(N)

and

M (2,1)(G) = (1− α2(R({2}), R(N )), α2(R({2}), R(N)))R(N),

where (i, j) is shorthand for the permutation σ with σ(1) = i and σ(2) = j. Their average, the

marginal value, is

Φm(G) = 1
2(1 + α1(R({1}), R(N))− α2(R({2}), R(N)),

1− α1(R({1}), R(N )) + α2(R({2}), R(N )))R(N ),

which is equal to the compromise value. 2

Timmer et al. (2000b) characterized the marginal value on ḠN with |N | = 2. They use the

following property, which is based on the balanced contributions property for cooperative TU games

by Myerson (1980). A solution concept Ψ on ḠN is said to have

(vii) balanced contributions if for all games G ∈ GN , for all coalitions T ⊂ N and for all i, j ∈ T ,

i 6= j,

αi(Ψi(GT ), R(T ))− αi(Ψi(GT \{j}), R(T ))

= αj(Ψj(GT ), R(T ))− αj(Ψj(GT \{i}), R(T )).
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Theorem 4.4 The compromise value Φc is the unique solution concept on C̄N with |N | = 2 that is

efficient and has balanced contributions.

Proof. This result follows from theorem 4.3 and from noting that theorem 4.8 in Timmer et al.

(2000b), which characterizes the marginal value on ḠN with |N | = 2, also holds for Φm on C̄N . 2

If we consider games with more than two players, then the compromise value and the marginal

value may be different, as is shown in the example below.

Example 4.5 Consider the game in example 3.2. Let (i, j, k) denote the permutation σ ∈ Π(N ) with

σ(1) = i, σ(2) = j, and σ(3) = k. Then

M (1,2,3)(G) = M (1,3,2)(G) = (0, 4/5, 1/5)R(N),

M (2,1,3)(G) = (1/2, 1/5, 3/10)R(N ),

and so on. The average of the six marginal vectors is

Φm(G) = (11/45, 103/180, 11/60)R(N),

which is unequal to the compromise value. 3

This example shows that we cannot use the characterization of the marginal value on GLIN (see

Timmer et al. (2000b)) to obtain a characterization of the compromise value on GLIN ∩ CN . A

second possibility would be to search for a characterization of the compromise value with the help of

the τ -value of the related TU games (N, v). One of the assumptions on the payoffs is that R(S) ≥ 0

for all coalitions S. This implies v(S) ≥ 0, the game (N, v) is nonnegative. As far as we know

there does not exist a characterization of the τ -value on the class of nonnegative TU games or on any

subclass thereof. Hence, it remains an open question whether there exists a characterization of the

compromise value on GLIN ∩ CN or on some other subclass of CN .
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