
On the Balancedness of m-Sequencing Games

Herbert Hamers Flip Klijn Jeroen Suijs
Department of Econometrics and CentER, Tilburg University,

P.O.Box 90153, 5000 LE Tilburg, The Netherlands

March 4, 1998

Abstract: This paper studies m-sequencing games that arise from sequencing situations with
m parallel and identical machines. These m-sequencing games, which involve n players,
give rise to m-machine games, which involve m players. Here, n corresponds to the number
of jobs in an m-sequencing situation, and m corresponds to the number of machines in the
same m-sequencing situation. We prove that an m-sequening game is balanced if and only if
the corresponding m-machine game is balanced. Furthermore, it is shown that m-sequencing
games are balanced ifm ∈ {1, 2}. Finally, ifm ≥ 3, balancedness is established for two special
classes of m-sequencing games.

Journal of Economic Literature Classification Number: C71

Keywords: cooperative games, sequencing situations

1 Introduction

Sequencing or scheduling situations consist of a number of jobs (tasks, operations) that have
to be processed on a number of machines. The processing time of a job on a specific machine
is the time this machine takes to handle this job. Sequencing situations can be classified by
the number of machines, the specific properties of the machines (e.g. parallel, identical), the
chosen restrictions on the jobs (e.g. ready times, due dates, flow constraints), and the chosen
cost criterion (e.g. weighted completion time, make-span).

By assuming that there exists an initial schedule before the machines start processing, we
can establish a relation between cooperative games and sequencing situations in the following
way. Letting each agent own exactly one of the scheduled jobs a group of agents (a coalition)
can save costs by rearranging their jobs in a way that is admissible with respect to this initial
schedule. By defining the value of a coalition as the maximal cost savings a coalition can make
in this way, we obtain a cooperative sequencing game related to a sequencing situation.

The above game-theoretic approach was initiated by Curiel, Pederzoli, and Tijs (1989).
They considered the class of one-machine sequencing situations in which no restrictions on the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6794618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

jobs are imposed and the weighted completion time criterion was chosen as the cost criterion.
Convexity was shown for the corresponding sequencing games. Hamers, Borm, and Tijs (1995)
extended the class of one-machine sequencing situations considered by Curiel et al. (1989)
by imposing ready times on the jobs. In this case the corresponding sequencing games are
balanced, but not necessarily convex. However, for a special subclass of sequencing games
convexity could be established. Similar results are also obtained in Borm and Hamers (1998)
in which due dates are imposed on the jobs. Instead of imposing restrictions on the jobs,
van den Nouweland, Krabbenborg, and Potters (1992) extended the number of machines. They
consideredm-machine sequencing situations with respect to flow shops and a dominant machine.
Convexity was established for the special class in which the first machine is dominant. In general
the corresponding sequencing games need not be balanced.

This paper considers sequencing situations withm parallel and identical machines in which
no restrictions on the jobs are imposed. Again, the weighted completion time criterion is used.
Furthermore, each agent has one job that has to be processed on precisely one machine. These
sequencing situations, which will be refered to as m-machine sequencing situations, give rise
to the class of m-sequencing games. A formal description of the model and the corresponding
games can be found in Section 2.

For 1-machine sequencing situations the corresponding class of sequencing games coincides
with the class of sequencing games introduced by Curiel et al. (1989). This paper shows
that sequencing games arising from 2-machine sequencing situations are balanced, but not
necessarily convex. In fact, we show that these sequencing games are σ-component additive
games. Generally,m-sequencing games, whose cardinality depends on the number of jobs, give
rise to m-machine games, whose cardinality depends on the number of machines. We prove
that an m-sequening game is balanced if and only if the corresponding m-machine game is
balanced. Finally, for two special subclasses of m-machine sequencing situations, with m ≥ 3,
we show that the related games are balanced. For the proof of this result we turn to the class of
permutation games, which are totally balanced (cf. Tijs et al. (1984)).

2 The model

This section describes the sequencing situations with m parallel and identical machines, which
will be referred to as m-machine sequencing situations, and the corresponding class of m-
sequencing games.

In an m-machine sequencing situation each agent has one job that has to be processed on
precisely one machine. Each job can be processed on any machine. The finite set of machines
is denoted by M = {1, ...,m} and the finite set of agents is denoted by N = {1, ..., n}. We
assume that each machine starts processing at time 0 and that the processing time of each job
is independent of the machine the job is processed on. The processing time of the job of
agent i is denoted by pi ≥ 0. We assume that every agent has a linear monetary cost function
ci : [0,∞)→ IR defined by ci(t) = αit where αi > 0 is a (positive) cost coefficient.

By a one to one map b : N → {1, ...,m} × {1, ..., n} we can describe on which machine
and in which position on that machine the job of an agent will be processed. Specifically,

2

b(i) = (r, j) means that agent i is assigned to machine r and that (the job of) agent i is in
position j on machine r. Such a map b will be called a (processing) schedule.

In the following an m-machine sequencing situation will be described by (M,N, b0, p, α),
where M = {1, ...,m} is the set of machines, N = {1, ..., n} the set of agents, b0 the initial
schedule, p ∈ IRN

+ the processing times, and α = (αi)i∈N ∈ IRN
++ the cost coefficients.

The starting time t(b, i) of the job of agent i if processed in a semi-active way according to
a schedule b equals

t(b, i) =
∑

j∈N :b(j)≺b(i)

pj ,

where b(j) ≺ b(i) if and only if the job of the agents j and i are on the same machine (i.e.
b(j)1 = b(i)1) and j precedes i (i.e. b(j)2 < b(i)2). Consequently, the completion time C(b, i)
of the job of agent i with respect to b is equal to t(b, i) + pi. The total costs cb(S) of a coalitions
S ⊆ N with respect to the schedule b is given by

cb(S) =
∑
i∈S

αi(C(b, i)). (1)

We will restrict attention to m-machine sequencing situations (M,N, b0, p, α) that satisfy
the following condition: the starting time of a job that is in the last position on a machine with
respect to b0 is smaller than or equal to the completion time of each job that is in the last position
with respect to b0 on the other machines. Formally, let ik be the last agent on machine k with
respect to b0, then for any k ∈M we demand that

t(b0, ik) ≤ C(b0, is) for all s ∈M. (2)

This condition states that each job that is in the last position of a machine cannot make any profit
by joining the end of a queue of any other machine. These schedules can arise in the following
way. Let the agents enter one by one the machines before the processing starts. If an agent
enters he will choose the queue of a machine that gives him the shortest waiting time.

The (maximal) cost savings of a coalition S depend on the set of admissible rearrangements
of this coalition. We call a schedule b : N → {1, ...,m} × {1, ..., n} admissible for S with
respect to b0 if it satisfies the following two conditions:
(i) Two agents i, j ∈ S which are on the same machine can only switch if all agents in between
i and j on that machine are also members of S;
(ii) Two agents i, j ∈ S which are on different machines can only switch places if the tail of i
and the tail of j are contained in S. The tail of an agent i is the set of agents that follow agent i
on his machine, i.e. the set of agents k ∈ N with b(i) ≺ b(k).
The set of admissible schedules for a coalition S is denoted by BS . An admissible schedule for
coalition N will be called a schedule.

Before formally introducing sequencing games, we recall some facts concerning cooperative
games.

A cooperative game is a pair (N, v) whereN is a finite set of players (agents) and v is a map
v : 2N → IR with v(∅) = 0, and 2N the collection of all subsets of N .

3

Cooperative game theory focuses on ‘fair’ and/or ‘stable’ division rules for the value of
v(N) of the grand coalition. A core element x = (xi)i∈N ∈ IRN divides the value v(N) among
the players in such a way that no coalition has an incentive to split off, i.e.,

x(N) = v(N) and x(S) ≥ v(S) for all S ∈ 2N ,

where x(S) =
∑
i∈S xi for all S ∈ 2N . The core C(N, v) consists of all core elements. A game

is called balanced if its core is non-empty. A game (N, v) is called totally balanced if each
subgame (S, v|S) is balanced, were v|S is defined by v|S(T) = v(T) for all T ⊆ S.
Convex games, for instance, are (totally) balanced games. A game (N, v) is called convex if for
all coalitions S, T ∈ 2N and all i ∈ N with S ⊆ T ⊆ N\{i} it holds that

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T).

A nice property of convex games is that all marginal vectors belong to the core (cf. Shapley
(1971)). A marginal vector mσ(v) is defined by

mσ
i (v) := v({j : σ(j) ≤ σ(i)})− v({j : σ(j) < σ(i)}),

for all i ∈ N , and all permutations σ of N .
Permutation games, introduced in Tijs et al. (1984), are also totally balanced games. Let

A = [aij]ni=1
n
j=1 be a square matrix. Then a permutation game (N, r) is defined by

r(S) = max
π∈ΠS

∑
i∈S

[aii − aiπ(i)] for all S ⊆ N,

where ΠS is the set of permutations of coalition S.
Another class of balanced games is the class of σ-component additive games, introduced in

Curiel et al. (1994 A,B). For the definition of this class of games we need some preliminaries.
A game (N, v) is called superadditive if v(S) + v(T) ≤ v(S ∪ T) for all S, T ∈ 2N with
S ∩ T = ∅. Let σ : N → {1, . . . , n} be an order of the player set N . A coalition T is called
connected with respect to σ if for all i, j ∈ T and k ∈ N such that σ(i) < σ(k) < σ(j) it holds
that k ∈ T . A connected coalition T ⊆ S is a component of S if T ∪ {i} is not connected for
every i ∈ S\T . The components of S form a partition of S, denoted by S/σ. A game (N, v) is
called a σ-component additive game if it satisfies the following two conditions:

(i) v(S) =
∑
T∈S/σ v(T) for all S ⊆ N ;

(ii) (N, v) is superadditive.

By defining the worth of a coalition as the maximum cost savings a coalition can achieve by
means of admissible schedules we obtain a cooperative game called anm-sequencing game. For-
mally, for an m-machine sequencing situation (M,N, b0, p, α) the correspondingm-sequencing
game (N, v) is defined by

v(S) = max
b∈BS
{
∑
i∈S

αi[C(b0, i)− C(b, i)]} (3)

for all S ∈ 2N\{∅} and v(∅) = 0.

4

3 On the balancedness of m-sequencing games

In this section we present our results with respect to the balancedness of m-sequencing games.
The definition of m-sequencing games implies that 1-sequencing games coincide with the

class of sequencing games introduced in Curiel et al. (1989). Since Curiel et al. showed that
the sequencing games they considered are convex, we also have that 1-sequencing games are
convex, and consequently, are balanced.

The next example shows that 2-sequencing games need not be convex.

Example 3.1 Let M = {1, 2}, N = {1, . . . , 5}, p = (2, 1, 1, 2, 1), and α = (1, 1, 1, 1, 1). The
initial schedule b0 is given in Figure 1.

M2

M1 1 2 3

54

2 3 4

2 3

Figure 1: The schedule b0

Take T = {1, 3, 4, 5}, S = {1, 3}, and i = 2. Let (N, v) be the corresponding 2-sequencing
game. Then v(T ∪ {i}) = 3, v(T) = 2, v(S ∪ {i}) = 2, and v(S) = 0. From this we conclude
that (N, v) is not a convex game:

v(T ∪ {i})− v(T) = 1 < 2 = v(S ∪ {i})− v(S).

�

The following Theorem shows that 2-sequencing games are balanced.

Theorem 3.1 Let (M,N, b0, p, α) be such that |M | = 2. Then the corresponding 2-sequencing
game (N, v) is balanced.

Proof. Let i1, i2, ..., im1 be the jobs on machine 1 such that b0(ix) ≺ b0(iy) if x < y and let
in, ..., im1+1 be the jobs on machine 2 such that b0(ix) ≺ b0(iy) if x > y. Take σ ∈ Π(N) such
that σ(j) = ij for all j ∈ N . From superadditivity of (N, v) together with the conditions of
admissible schedules it follows that (N, v) is a σ-component additive game. Since σ-component
additive games are balanced, we have that 2-sequencing games are balanced. 2

Next, let us turn tom-sequencing games. Based on anm-machine sequencing situation we define

5

a new cooperative game with m players. Let (M,N, b0, p, α) be an m-machine sequencing
situation and let (N, v) be the corresponding m-sequencing game. The set of players whose
jobs are on machine k ∈M according to the initial schedule b0 will be denoted byNk(b0). Then
an m-machine game (M,w) is defined by

w(K) := v(
⋃
k∈K

Nk(b
0))−

∑
k∈K

v(Nk(b
0)),

for every coalition K ⊆ M of machines. The worth w(K) of a coalition of machines K ⊆M
is the extra cost savings the machines in K can make when they decide to cooperate with each
other.

The next theorem says that the core of an m-sequencing game is non-empty whenever the
core of the m-machine game is non-empty, and vice versa.

Theorem 3.2 Let (M,N, b0, p, α) be anm-sequencing situation. Let (N, v) be the correspond-
ing m-sequencing game and let (M,w) be the corresponding m-machine game. Then (N, v) is
balanced if and only if (M,w) is balanced.

Proof. First, we prove the ‘only if’ part. Let x ∈ C(N, v). For k ∈M we define

yk := x(Nk(b
0))− v(Nk(b

0)).

We show that y ∈ C(N,w). Let K ⊆M . Then,

y(K) =
∑
k∈K

x(Nk(b
0))−

∑
k∈K

v(Nk(b
0))

≥ v(
⋃
k∈K

Nk(b
0)) −

∑
k∈K

v(Nk(b
0))

= w(K).

For K = M we have an equality, since x(
⋃
k∈M Nk(b0)) = x(N) = v(N) = v(

⋃
k∈M Nk(b0)).

Second, we prove the ‘if’ part. Let y ∈ C(M,w). For convenience we introduce some
notation. Let nk(b0) be the number of jobs on machine k with respect to b0, i.e. nk(b0) =
| Nk(b0) |, and for any machine k ∈ M let σk : Nk(b0) → {1, . . . , nk(b0)} be the initial order
on machine k, i.e. σk(i) < σk(j) if and only if b0(i) ≺ b0(j) for all i, j ∈ Nk(b0). For a job
i ∈ Nk(b0) and any k ∈M we define

xi := v({j : σk(j) ≤ σk(i)})− v({j : σk(j) < σk(i)}),

and

x̂i :=

{
xi if σk(i) 6= nk(b0);
xi + yk if σk(i) = nk(b0).

Note that (xi)i∈Nk(b0) is a marginal vector of the subgame (Nk(b0), v|Nk(b0)). We prove in four
steps that x̂ ∈ C(N, v).

6

The first step shows that x̂ is efficient. This follows from∑
i∈N

x̂i =
∑
k∈M

∑
i∈Nk(b0)

x̂i

=
∑
k∈M

[v(Nk(b
0)) + yk]

=
∑
k∈M

yk +
∑
k∈M

v(Nk(b
0))

= w(M) +
∑
k∈M

v(Nk(b
0))

= v(N)−
∑
k∈M

v(Nk(b
0)) +

∑
k∈M

v(Nk(b
0))

= v(N).

For the second step of the proof, take T ⊆ N . Define Tk = T ∩ Nk(b0) for k ∈ M , and
let T̃k be the component with respect to σk of Tk that contains the last player on machine k.
Formally,

T̃k := {S ∈ Tk/σk : σ−1
k (nk(b

0)) ∈ S}.

Note that T̃k is the empty set if σ−1
k (nk(b0)) 6∈ Tk. Next, let T̃k be non-empty and let

i1, i2, . . . , it̃k ∈ T̃k be the elements of T̃k such that σk(i1) < σk(i2) < · · · < σk(it̃k). Then∑
i∈T̃k

xi =
∑
i∈T̃k

v({j : σk(j) ≤ σk(i)})− v({j : σk(j) < σk(i)})

=
t̃k∑
l=1

v({j : σk(j) ≤ σk(il)})− v({j : σk(j) < σk(il)})

= v({j : σk(j) ≤ σk(it̃k)})− v({j : σk(j) < σk(i1)})

= v(Nk(b
0))− v(Nk(b

0)\T̃k), (4)

where the third equality follows from

v({j : σk(j) ≤ σk(il)}) = v({j : σk(j) < σk(il+1)}) for 1 ≤ l < t̃k.

In the third step, let S ∈ Tk/σk be such that S 6= T̃k. Since the subgame (Nk(b0), v|Nk(b0))
is a 1-machine sequencing game it follows that this game is convex. Hence, the marginal vector
(xi)i∈Nk(b0) ∈ C(Nk(b0), v|Nk(b0)) (cf. Shapley (1971)). This implies that

∑
i∈S

x̂i =
∑
i∈S

xi ≥ v|Nk(b0)(S) = v(S). (5)

Finally, in the fourth part we show that
∑
i∈T x̂i ≥ v(T).

∑
i∈T

x̂i =
∑
k∈M

∑
S ∈ Tk/σk
S 6= T̃k

∑
i∈S

xi +
∑

k∈M : T̃k 6=∅

(
∑
i∈T̃k

xi) + yk



7

≥
∑
k∈M

∑
S ∈ Tk/σk
S 6= T̃k

v(S) +
∑

k∈M : T̃k 6=∅

yk

+
∑

k∈M : T̃k 6=∅

∑
i∈T̃k

xi

=
∑
k∈M

∑
S ∈ Tk/σk
S 6= T̃k

v(S) +
∑

k∈M : T̃k 6=∅

yk

+
∑

k∈M : T̃k 6=∅

[v(Nk(b
0))− v(Nk(b

0)\T̃k)]

≥
∑
k∈M

∑
S ∈ Tk/σk
S 6= T̃k

v(S) + v(
⋃

k∈M : T̃k 6=∅

Nk(b
0)) −

∑
k∈M :T̃k 6=∅

v(Nk(b
0))

+
∑

k∈M : T̃k 6=∅

[v(Nk(b
0))− v(Nk(b

0)\T̃k)]

=
∑
k∈M

∑
S ∈ Tk/σk
S 6= T̃k

v(S) + v(
⋃

k∈M :T̃k6=∅

Nk(b
0))−

∑
k∈M : T̃k 6=∅

v(Nk(b
0)\T̃k)

≥
∑
k∈M

∑
S ∈ Tk/σk
S 6= T̃k

v(S) + v(
⋃

k∈M :T̃k6=∅

T̃k)

= v(T),

where the first inequality follows from (5), the second inequality follows from y ∈ C(M,w),
and the third inequality follows from the superadditivity of v. The second equality follows from
(4). 2

Theorem 3.2 implies that in order to check whether an 3-sequencing game with n players
is balanced or not, it is sufficient to compute w({1, 2}), w({1, 3}), w({2, 3}), and w({1, 2, 3})
(w({k}) = 0 for all k ∈ M), and then check whether this 3-machine game is balanced or not.
The following example illustrates this.

Example 3.2 Let M = {1, 2, 3}, N = {1, ..., 20}, α = (1, . . . , 1), and processing times
and the initial schedule b0 as in Figure 2. Let (N, v) be the corresponding 3-sequencing
game and (M,w) be the corresponding 3-machine game. Some calculations give w({1, 2}) =
3, w({1, 3}) = 7, w({2, 3}) = 0, and w({1, 2, 3}) = 7. Clearly, (7, 0, 0) ∈ C(M,w). Hence,

8

the game (M,w) is balanced. By Theorem 3.2 (N, v) is balanced. �

M2

M1

M3

2 3

1 3 6

1 5 6

7 9

4 8 9

13 1512 18

7

11 12

2 5 9

10 14

11

13

1814

15

17

3 7

16 18 19

12

20

15 21

Figure 2: The schedule b0

Moreover, Theorem 3.2 provides an alternative proof for Theorem 3.1. It readily follows
that 2-machine games are convex games. Hence, 2-sequencing games are balanced.

Consider m-sequencing situations in which all cost coefficients are equal to one. The next
theorem says that the corresponding m-sequencing games are balanced.

Theorem 3.3 Let (N, v) be them-sequencing game that arises from anm-machine sequencing
situation (M,N, b0, p, α) in which αi = 1 for all i ∈ N . Then (N, v) is balanced.

In the remaining part of this section we will provide the proof of Theorem 3.3. First it
is shown that we can restrict attention to m-sequencing games that arise from m-machine
sequencing situations in which each machine initially has to proces an equal number of jobs.
Second, we prove that the corresponding m-machine games corrrespond to permutation games.
Third, we show that m-machine games are balanced. From Theorem 3.2 we can then conclude
that m-sequencing games are balanced.

Let (M,N, b0, p, α) be an m-machine sequencing situation in which αi = 1. An optimal
schedule b̂(N) of coalition N is established (see e.g. Conway, Maxwell, and Miller (1967)) by
first ordering the jobs of the players in N in a non-decreasing order, i.e., pi1 ≤ pi2 ≤ ... ≤ pin
where {i1, i2, ..., in} = N . Second, assign the jobs, after numbering the machines, in rotation
to the machines:

Job of player i1 i2 ... im | im+1 im+2 ... i2m | ... | in−r ... in
Machine 1 2 ... m | 1 2 ... m | ... | 1 ... r ... m

Hence, for an optimal schedule that is obtained by the above described procedure, we can
conclude that each machine in {1, ..., r} has an equal number of jobs and each machine in
{r+1, ...,m} has an equal number of jobs. Moreover, the number of jobs on the first rmachines
is one higher than the jobs on the last n− rmachines. We can, however, construct am-machine
sequencing situation such that there exists an optimal schedule of its grand coalition, induced

9

by b̂(N), in which each machine serves the same number of jobs. This m-machine sequencing
situation is obtained by adding dummy jobs with processing time zero and cost coefficient one to
the original m-machine sequencing situation. To see this, let l = maxk∈M nk(b0) be the length
of the longest queue waiting for a machine w.r.t. b0 in (M,N, b0, p, α). Then for each machine
k we put l − nk(b0) jobs in front of the existing queue, so that a total of l jobs is waiting for
service by machine k. Now we have a new m-machine sequencing situation (M,N, b0, p, α)
with N the set of jobs, that is, N together with ml − n dummy jobs, b0 the new initial serving
order, p the new vector of cost coefficients. Note that for i ∈ N it holds that

b0(i) = b0(i) + l− nk(b
0)

pi = pi

αi = αi (= 1)

and for i ∈ N\N it holds that

pi = 0

αi = 1

and
{b0(i) | i ∈ N\N} = {(k, 1), (k, 2), ..., (k, l− nk(b

0)) | k ∈M}.

The next lemma gives a relation between the m-sequencing games of the above described m-
machine sequencing situations. The proof is omitted since it follows straightforwardly from
the described procedure to find an optimal order and the fact that all new (dummy) jobs in the
constructed m-machine sequencing situation have processing time zero.

Lemma 3.1 Let (N, v) be the m-sequencing game corresponding to (M,N, b0, p, α) in which
αi = 1 for all i ∈ N . Let (N, v) be the m-sequencing game corresponding to (M,N, b0, p, α).
Then

v(S) = v(S) = v(S ∪ T) for all S ⊆ N, T ⊆ N\N.

From Lemma 3.1 immediately follows

Corollary 3.1 Let (N, v) be them-sequencing game corresponding to (M,N, b0, p, α) in which
αi = 1 for all i ∈ N . Let (N, v) be the m-sequencing game corresponding to (M,N, b0, p, α).
Then C(N, v) 6= ∅ if and only if C(N, v) 6= ∅.

So, for the proof of the balancedness of m-sequencing games we may restrict attention to
m-machine sequencing situation (M,N, b0, p, α) where exactly l jobs are scheduled on each
machine in the initial order b0. In the sequal of this section we therefore only consider m-
machine sequencing situations where initially each machine has to process an equal number of
jobs and in which all cost coefficient are equal to one.

To introduce a square matrix that defines the permutation game that arises from anm-machine
sequencing situation (M,N, b0, p, α), we need to take into account the following observations.

10

Since exactly l jobs are scheduled on each machine in the initial order b0 as well as in an optimal
order bS(K) for the jobs S(K) =

⋃
k∈K Nk(b

0), we can reduce the set BS(K) of admissible orders
to

BS(K) = {b ∈ BS(K) : nk(b) = l for all k ∈M}.

Thus BS(K) is the set of all admissible orders that schedule exactly l jobs on each machine.
Then given an order b ∈ BS(K) the total (waiting) costs for jobs S(K) equals

cb(S(K)) =
∑
k∈K

l∑
i=1

i∑
j=1

pb−1(k,j) =
∑
k∈K

l∑
j=1

(l + 1− j)pb−1(k,j). (6)

This implies that player i = b−1(k, j), which is in position j on machine k, contributes (l+ 1−
j)pb−1(k,j) to the total costs of coalition S(K). Note that this amount is independent of the other
jobs that are scheduled on this machine.

Now, we will define a permutation game (N, r) that arises from a m-machine sequencing
situation (M,N, b0, p, α). Let us start with introducing this permutation game for a specific
case: 2 machines and 3 players on each machine. So, M = {1, 2} and N = {1, 2, 3, 4, 5, 6}
and p = (p1, ..., p6). If player i ∈ N is scheduled in the first (second, third) position of machine
k ∈ M , this player contributes 3pi (2pi, pi) to the total costs of the players on machine k. We
can describe these costs by the following 6× 6 matrix A.

A =



3p1 2p1 p1 3p1 2p1 p1

3p2 2p2 p2 3p2 2p2 p2

3p3 2p3 p3 3p3 2p3 p3

3p4 2p4 p4 3p4 2p4 p4

3p5 2p5 p5 3p5 2p5 p5

3p6 2p6 p6 3p6 2p6 p6


Here, the rows correspond to the players i ∈ N and the columns correspond to the positions
in the processing order. For example, the entry a24 denotes the costs 3p2 of player 2 if it is
processed on the first position of machine 2. A permutation π : N → {1, . . . , 6} with π(i) = j
and (k − 1)l + 1 ≤ j ≤ kl we give the interpretation that player i is scheduled in position
j − l(k − 1) on machine k.
Next, let us define the permutation game for the general case with m machines and l jobs on
each machine. For all i ∈ N and for all j with (k− 1)l + 1 ≤ j ≤ kl, k ∈ {1, ...,m}we define
the square ml×ml matrix A by

aij = [lk− j + 1]pi. (7)

The permutation game (N, r) that arises from an m-sequencing situation (M,N, b0, p, α) is
defined by

r(S) = max
π∈ΠS

∑
i∈S

[aii − aiπ(i)]

for all S ⊆ N , where aij is given by (10).
Now we will show the relation between them-sequencing game (M,w) and the permutation

game (N, r).

11

Lemma 3.2 Let (M,N, b0, p, α) be am-sequencing situation in which αi = 1 for all i ∈ N . Let
(M,w) be the corresponding m-machine game and let (N, r) be the corresponding permutation
game. Then

w(K) = r(
⋃
k∈K

Nk(b
0))forallK ⊆M.

Proof. Consider K ⊆ M , then for each schedule b ∈ BS(K) there exists a permutation
πb ∈ ΠS(K) that puts each job on the same machine and in the same position as b does. This
permutation is defined as

πb(i) = (b1(i)− 1)l + b2(i) (8)

for all i ∈ N . Furthermore, each permutation π ∈ ΠS(K) can be written as an admissible order
bπ ∈ BS(K). For all i ∈ N we define

bπ1(i) = π(i)− (k − 1)l

bπ2(i) = k

where k is such that (k − 1)l + 1 ≤ π(i) ≤ kl.
Hence, for each K ⊆M we have that

w(K) = max
b∈BS(K)

∑
k∈K

l∑
j=1

(l + 1− j)pb0−1(k,j) −
∑
k∈K

l∑
j=1

(l + 1− j)pb−1(k,j)


= max

b∈BS(K)

∑
k∈K

l∑
j=1

ab0−1(k,j),(k−1)l+j −
∑
k∈K

l∑
j=1

ab−1(k,j),(k−1)l+j


= max

b∈BS(K)

 ∑
i∈S(K)

ai,πb0(i) −
∑

i∈S(K)

ai,πb(i)


= max

π∈ΠS(K)

∑
i∈S(K)

[
aii − aiπ(i)

]
= r(S(K))

= r(
⋃
k∈K

Nk(b
0)),

where the first equality holds by (6), the second equality by (7) and the third equality by (8).
The fourth equality holds since we may assume, without loss of generality, that πb

0
(i) is the

identical permutation. The fifth equality holds by the definition of a permutation game, and the
last equality by the definition of S(K). 2

In the next lemma we show that m-machine games are balanced.

Lemma 3.3 Let (M,N, b0, p, α) be a m-sequencing situation in which αi = 1 for all i ∈ N

and let (M,w) be the corresponding m-machine game. Then C(M,w) 6= ∅.

Proof. Let (N, r) be the permutation game that arises from them-machine sequencing situation
(M,N, p, α). Since (N, r) is balanced, there exists an x ∈ C(N, r). Define y ∈ IRM by

yk = x(Nk(b
0))

12

for all k ∈M . Then for K ⊂M we have∑
k∈K

yk =
∑
k∈S

x(Nk(b0)) (9)

≥ r(
⋃
k∈S

Nk(b
0))

= w(K),

where the first equality follows from the definiton of y, the inequality follows from x ∈ C(N, r)
and the second equality follows from Lemma 3.3. IfK = M the inequality becomes an equality,
which implies that y ∈ C(M,w). 2

The proof of Theorem 3.3 is now a consequence of Lemma 3.3 and Theorem 3.2.

4 Remarks

In Theorem 3.3 we assumed that all cost coefficients are equal to one. This implies that the class
of m-sequencing games generated by the unweighted completion time criterion is a subclass of
the class of balanced games. Clearly, the balancedness result also holds true in the case that all
cost coefficients are equal to some positive constant c > 0. Furthermore, a slight adaptation
of the proof of Theorem 3.3 gives a similar result for m-sequencing situations with identical
processing times instead of identical cost coefficients.

Theorem 4.1 Let (N, v) be them-sequencing game that arises from anm-machine sequencing
situation (M,N, b0, p, α) in which pi = 1 for all i ∈ N . Then (N, v) is balanced.

Proof. Note that an optimal schedule b̂(N) of coalition N is established by first ordering
the jobs of the players in N in a non-increasing order, i.e., αi1 ≥ αi2 ≥ ... ≥ αin where
{i1, i2, ..., in} = N . Second, assign the jobs, after numbering the machines, in rotation to the
machines:

Job of player i1 i2 ... im | im+1 im+2 ... i2m | ... | in−r ... in
Machine 1 2 ... m | 1 2 ... m | ... | 1 ... r ... m

Then the proof is similar to the proof of Theorem 3.3. The only difference is the matrix that
defines the matrix of the permutation game. Here, we define for all i ∈ N and for all j with
(k − 1)l + 1 ≤ j ≤ kl, k ∈ {1, ...,m} the square ml×ml matrix A by

aij = [j − (k − 1)l]αi. (10)

2

The following example shows that if condition (2) is not satisfied, then the corresponding
m-sequencing game need not be balanced.

13

Example 4.1 Let M = {1, 2, 3}, N = {1, . . . , 5}, p = (2, 2, 1, 2, 2), and α = (1, 1, 1, 1, 1).
The initial schedule b0 is given in Figure 3. Let (N, v) be the corresponding 3-sequencing
game. Suppose x ∈ C(N, v) is a core element. Then 1 = v(N) = x(N) ≥

∑
i∈N v(i) =

0 + 1 + 0 + 0 + 1 = 2. This contradiction shows that the core is empty. Hence the game (N, v)
is not balanced. �

1

M2

M1 2

2 4

M3 5

2 4

4

1

3

Figure 3: The schedule b0

Finally, for m-machine sequencing situations (m ≥ 3) with the weighted completion time
criterion, the balancedness of the correspondingm-sequencing games is an open problem. If we
follow the approach in this paper we need an optimal order for a coalition S(K). The problem
of finding such an optimal order, however, is difficult in the sense that it is NP-hard.

14

References

[1] BORM P. AND HAMERS H. (1998): “On the Convexity of Sequencing Games with Due
Dates," Working Paper, Tilburg University, The Netherlands.

[2] CONWAY R., MAXWELL W., AND MILLER L. (1967): “Theory of Scheduling," Addison-
Wesley Publishing Company, London.

[3] CURIEL I., PEDERZOLI G., AND TIJS S. (1989): “Sequencing Games," European Journal of
Operational Research, 40, 344-351.

[4] CURIEL I., POTTERS J., RAJENDRA PRASAD V., TIJS S., AND VELTMAN B. (1994, A):
“Cooperation in One Machine Scheduling," Zeitschrift für Operations Research, 38, 113-
129.

[5] CURIEL I., POTTERS J., RAJENDRA PRASAD V., TIJS S., AND VELTMAN B. (1994, B):
“Sequencing and Cooperation," Operations research, 42, 566-568.

[6] HAMERS H., BORM P., AND TIJS S. (1995): “On Games corresponding to Sequencing
Situations with Ready Times," Mathematical Programmming, 70, 1-13.

[7] NOUWELAND A. VAN DEN, KRABBENBORG M., AND POTTERS J. (1992): “Flowshops with
a Dominant Machine," European Journal of Operational Research, 62, 38-46.

[8] SHAPLEY L. (1971) , "Cores of Convex Games," International Journal of Game Theory,
1, 11-26.

[9] TIJS S., PARTHASARATHY T., POTTERS J., AND RAJENDRA PRASSAD V. (1984): “Permuta-
tion Games: another Class of Totally Balanced Games," OR Spektrum, 6, 119-123.

15

