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Abstract: This paper studies m-sequencing games that arise from sequencing situations with
m paralel and identical machines. These m-sequencing games, which involve n players,
give rise to m-machine games, which involve m players. Here, n corresponds to the number
of jobs in an m-sequencing Situation, and m corresponds to the number of machines in the
same m-sequencing situation. We prove that an m-sequening game is balanced if and only if
the corresponding m-machine game is balanced. Furthermore, it is shown that m-sequencing
gamesare balanced if m € {1,2}. Finaly, if m > 3, balancednessis established for two special
classes of m-sequencing games.
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1 Introduction

Sequencing or scheduling situations consist of a number of jobs (tasks, operations) that have
to be processed on a number of machines. The processing time of ajob on a specific machine
is the time this machine takes to handle this job. Sequencing situations can be classified by
the number of machines, the specific properties of the machines (e.g. parallel, identica), the
chosen restrictions on the jobs (e.g. ready times, due dates, flow constraints), and the chosen
cost criterion (e.g. weighted compl etion time, make-span).

By assuming that there exists an initial schedule before the machines start processing, we
can establish arelation between cooperative games and sequencing situations in the following
way. Letting each agent own exactly one of the scheduled jobs a group of agents (a coalition)
can save costs by rearranging their jobs in a way that is admissible with respect to this initial
schedule. By defining the value of a coalition as the maximal cost savings a coalition can make
in this way, we obtain a cooperative sequencing game related to a sequencing situation.

The above game-theoretic approach was initiated by Curiel, Pederzoli, and Tijs (1989).
They considered the class of one-machine sequencing situations in which no restrictions on the
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jobs are imposed and the weighted completion time criterion was chosen as the cost criterion.
Convexity was shown for the corresponding sequencing games. Hamers, Borm, and Tijs (1995)
extended the class of one-machine sequencing situations considered by Curiel et al. (1989)
by imposing ready times on the jobs. In this case the corresponding sequencing games are
balanced, but not necessarily convex. However, for a special subclass of sequencing games
convexity could be established. Similar results are a'so obtained in Borm and Hamers (1998)
in which due dates are imposed on the jobs. Instead of imposing restrictions on the jobs,
van den Nouweland, Krabbenborg, and Potters (1992) extended the number of machines. They
consi dered m-machi ne sequencing situationswith respect to flow shopsand adominant machine.
Convexity was established for the special classinwhich thefirst machineisdominant. Ingeneral
the corresponding sequencing games need not be balanced.

This paper considers sequencing situations with m parallel and identical machinesin which
no restrictions on the jobs are imposed. Again, the weighted completion time criterion is used.
Furthermore, each agent has one job that has to be processed on precisely one machine. These
sequencing situations, which will be refered to as m-machine sequencing situations, give rise
to the class of m-segquencing games. A formal description of the model and the corresponding
games can be found in Section 2.

For 1-machine sequencing situations the corresponding class of sequencing games coincides
with the class of sequencing games introduced by Curiel et al. (1989). This paper shows
that sequencing games arising from 2-machine sequencing situations are balanced, but not
necessarily convex. In fact, we show that these sequencing games are o-component additive
games. Generally, m-sequencing games, whose cardinality depends on the number of jobs, give
rise to m-machine games, whose cardinality depends on the number of machines. We prove
that an m-sequening game is balanced if and only if the corresponding m-machine game is
balanced. Finaly, for two special subclasses of m-machine sequencing situations, with m > 3,
we show that the related games are balanced. For the proof of this result we turn to the class of
permutation games, which are totally balanced (cf. Tijset al. (1984)).

2 Themodd

This section describes the sequencing situations with m parallel and identical machines, which
will be referred to as m-machine sequencing situations, and the corresponding class of m-
sequencing games.

In an m-machine sequencing situation each agent has one job that has to be processed on
precisely one machine. Each job can be processed on any machine. The finite set of machines
is denoted by M = {1,...,m} and the finite set of agentsis denoted by N = {1,...,n}. We
assume that each machine starts processing at time 0 and that the processing time of each job
is independent of the machine the job is processed on. The processing time of the job of
agent 7 is denoted by p; > 0. We assume that every agent has alinear monetary cost function
¢ 1 10,00) — R defined by ¢;(t) = a;t where a; > 0 isa (positive) cost coefficient.

By aonetoonemap b : N — {1,...,m} x {1,...,n} we can describe on which machine
and in which position on that machine the job of an agent will be processed. Specifically,



b(i) = (r,7) means that agent 7 is assigned to machine » and that (the job of) agent i isin
position j on machine . Such amap b will be called a (processing) schedule.

In the following an m-machine sequencing situation will be described by (M, N, %, p, ),
where M = {1,...,m} isthe set of machines, N = {1, ...,n} the set of agents, 4° the initial
schedule, p € RY the processing times, and a = («;),.y € RY, the cost coefficients.

The starting time (b, i) of the job of agent 7 if processed in a semi-active way according to
aschedule b equals

t(b,i) = Z pj,

JEN:b(5)=<b(7)

where b(j) < b(:) if and only if the job of the agents j and i are on the same machine (i.e.
b(7)1 = b(i)1) and 5 precedesi (i.e. b(j)2 < b(7)2). Consequently, the completion time C' (b, 7)
of the job of agent  with respect to b isequal to ¢(b, i) + p;. Thetotal costs ¢, (.S) of acoalitions
S C N with respect to the schedule b is given by

a(S) =D a;(C(b,1)). 1)

i€S

We will restrict attention to m-machine sequencing situations (M, N, 0°, p, o) that satisfy
the following condition: the starting time of ajob that is in the last position on a machine with
respect to b° issmaller than or equal to the completion time of each job that isin thelast position
with respect to 4° on the other machines. Formally, let i, be the last agent on machine k with
respect to v°, then for any k € M we demand that

t(°,4) < C(¥°,i,) forall s € M. (2)

This condition states that each job that isin the last position of a machine cannot make any profit
by joining the end of a queue of any other machine. These schedules can arise in the following
way. Let the agents enter one by one the machines before the processing starts. If an agent
enters he will choose the queue of a machine that gives him the shortest waiting time.

The (maximal) cost savings of acoalition S depend on the set of admissible rearrangements
of this coalition. We call ascheduleb : N — {1,...,m} x {1,...,n} admissible for S with
respect to v° if it satisfies the following two conditions:

(i) Two agents i, j € S which are on the same machine can only switch if al agentsin between
1 and j on that machine are also members of S;

(ii) Two agents i, j € S which are on different machines can only switch placesif the tail of
and the tail of j are contained in S. Thetail of an agent 7 isthe set of agents that follow agent i
on hismachine, i.e. the set of agents k € N with b(i) < b(k).

The set of admissible schedules for acodlition S is denoted by Bs. An admissible schedule for
coalition N will be called a schedule.

Beforeformally introducing sequencing games, we recall some facts concerning cooperative
games.

A cooperative gameisapair (N, v) where N isafinite set of players (agents) and v isamap
v: 2NV — Rwithv(0) = 0, and 2V the collection of all subsets of V.



Cooperative game theory focuses on ‘fair’ and/or ‘stable’ division rules for the value of
v(NN) of the grand coalition. A coreelement z = (z;),en € RY dividesthe value v(N) among
the playersin such away that no coalition has an incentive to split off, i.e.,

z(N) =v(N) and z(S)>v(S) forall S €2V,

where z(S) = ¥ ,cgz; foral S € 2V, The core C(N, v) conssts of al core elements. A game
is called balanced if its core is non-empty. A game (NN, v) is called totally balanced if each
subgame (.S, v|s) is balanced, were v|s isdefined by v s(T') = v(T') foral T C S.

Convex games, for instance, are (totally) balanced games. A game (IV, v) iscalled convex if for
al codlitions S, T € 2V and al i € N with S C T C N\{i} it holds that

v(SU{i}) — v(S) < v(T U {i}) — v(T).

A nice property of convex gamesis that all margina vectors belong to the core (cf. Shapley
(1971)). A marginal vector m?(v) is defined by

mi(v) :=v({j:0(j) <o(@)}) —v{i:o(l) <a(i)}),

foral : € N, and al permutations o of V.
Permutation games, introduced in Tijs et al. (1984), are also totally balanced games. Let
A = la;]i,j-, beasquare matrix. Then a permutation game (N, r) is defined by

maxz Qi — am(z | forall SC N,

whereIls isthe set of permutations of coalition S.

Another class of balanced games is the class of o-component additive games, introduced in
Curiel et al. (1994 A,B). For the definition of this class of games we need some preliminaries.
A game (N, v) is caled superadditive if v(S) + v(T) < v(SUT) for dl S,T € 2V with
SNT =0.Letoc: N — {1,...,n} bean order of the player set N. A codlition T is called
connected with respect to o if foral i, j € T'and k € N suchthat o(i) < o(k) < o(5) it holds
that £ € T'. A connected codlition 7" C .S isacomponent of S if 7"U {4} is not connected for
every i € S\T. The components of .S form apartition of S, denoted by S/o. A game (N, v) is
called a o-component additive gameif it satisfies the following two conditions:

(1) v(S) = Xrespov(T) foral S CN;
(#3) (N,wv) is superadditive.

By defining the worth of a coalition as the maximum cost savings a coalition can achieve by
means of admissible schedul eswe obtain acooperative game called an m-sequencing game. For-
mally, for an m-machine sequencing situation (M, N, v°, p, ) the corresponding m-sequencing
game (N, v) isdefined by

v(S) =max{} a;[C(t",i) — C(b,4)]} 3

foral S € 2V\{0} and v(0) = 0.



3 On the balancedness of m-sequencing games

In this section we present our results with respect to the balancedness of m-sequencing games.
The definition of m-sequencing games implies that 1-sequencing games coincide with the
class of sequencing gamesintroduced in Curiel et al. (1989). Since Curiel et al. showed that
the sequencing games they considered are convex, we also have that 1-sequencing games are
convex, and consequently, are balanced.
The next example shows that 2-sequencing games need not be convex.

Example3.1 Let M = {1,2}, N ={1,...,5},p=1(2,1,1,2)1),anda = (1,1,1,1,1). The
initial schedule v° isgivenin Figure 1.

M, 1 2 3

M, 4 5

Figure 1. The schedule ©°

TakeT = {1,3,4,5}, S = {1,3},andi = 2. Let (N, v) be the corresponding 2-sequencing
game. Thenv(T'U {i}) = 3, v(T) = 2, v(SU {i}) = 2, and v(S) = 0. From thiswe conclude
that (IV, v) is not a convex game:

V(T U{i}) —o(T) =1 < 2 =v(SU{i}) — v(S).

The following Theorem shows that 2-sequencing games are balanced.

Theorem 3.1 Let (M, N,b°, p, ) be such that | M| = 2. Then the corresponding 2-sequencing
game (N, v) isbalanced.

Proof. Let iy, i, ...,4,, be the jobs on machine 1 such that 5°(i,) < v°(i,) if z < y and let
in, -, imy+1 D€ the jobs on machine 2 such that v°(i,) < v°(i,) if > y. Take o € TI(V) such
that o(j) = ¢; for al j € N. From superadditivity of (N, v) together with the conditions of
admissible schedulesit followsthat (N, v) isac-component additive game. Since o-component
additive games are balanced, we have that 2-sequencing games are balanced. O

Next, let usturntom-sequencing games. Based on an m-machine sequencing situation we define
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a new cooperative game with m players. Let (M, N,b°, p, «) be an m-machine sequencing
Stuation and let (N, v) be the corresponding m-sequencing game. The set of players whose
jobsareonmachinek € M according to theinitial schedule b° will be denoted by N, (°). Then
an m-machine game (M, w) is defined by

w(K) =v( U Ne(0)) = > v(Ni(07)),

for every coalition K C M of machines. The worth w(K) of acoalition of machines K C M
is the extra cost savings the machines in K can make when they decide to cooperate with each
other.

The next theorem says that the core of an m-sequencing game is non-empty whenever the
core of the m-machine game is non-empty, and vice versa.

Theorem 3.2 Let (M, N,b°, p, o) bean m-sequencing situation. Let (N, v) bethe correspond-
ing m-sequencing game and let (M, w) be the corresponding m-machine game. Then (N, v) is
balanced if and only if (M, w) is balanced.
Proof. First, we provethe‘only if’ part. Let z € C(N,v). For k € M wedefine

yi = (N (D)) — v(Ni(8)).
Weshow that y € C(N,w). Let K C M. Then,

y(E) = 3 a(Ne(0") = > v(Nu(b")

> v(kgKNk(bO» —k;(v(Nk(bO))
= w(K).

For K = M we have an equality, Since z(Ugear Ni(0°)) = 2(N) = v(N) = v(Urear Ni(°)).

Second, we prove the ‘if’ part. Let y € C(M,w). For convenience we introduce some
notation. Let n(b°) be the number of jobs on machine & with respect to t°, i.e. n,(0°) =
| N.(8°) |, and for any machinek € M let oy : Ni(b°) — {1,...,nx(0°)} betheinitia order
on machine k, i.e. ox(i) < ox(j) if and only if 1°(z) < °(j) for al i,j € Ni(b°). For ajob
i € N(b°) andany k € M we define

2= v({J:on(d) < ow(D)}) — ({7 on(d) < ow(i)}),

and
oo ifoud) £ m();
o { ity i o(i) = (7).

Note that (;), v, 0y 1S @margina vector of the subgame (N (b°), vjn, (). We prove in four
stepsthat & € C(N,v).



Thefirst step showsthat z is efficient. Thisfollowsfrom

Yi - T Y

ieN k€M ic Ny (b°)

= > Vi) +m]

keM

= T wt X o)

keM keM

= w(M)+ > v(Ng(b

keM

= o(N) = 3 u(Nk(8) + Y v(Ne(H)

keM keM
= o(N).

For the second step of the proof, take T C N. Define T, = T'N N (b°) for k € M, and
let T}, be the component with respect to o}, of T}, that contains the last player on machine k.
Formally,
Tk = {S € Tk/O'k : U;l(nk(bo)) € S}
Note that T}, is the empty set if o H(np(1°)) & Ti. Next, let T be non-empty and let
i1,12,...,07, € Ty be the elements of T}, such that o, (i1) < oy (is) < --- < or(iz,). Then

Yoo = > v({ion(d) < ow(i)}) —v({j: ox(5) < ox(i)})

- z (U on(d) < ox@)}) — v({i : oxG) < ow(i)})
= o({  oxlG) < orli)}) — v({F  ok(5) < ok(in)})
= o(Ni(t)) — o (N (BT, (4

where the third equaity follows from

v({7 s ox(s) < ow(i}) = v({j : ow(j) < onlig1)}) forl <l <t

In the third step, let S € Ty /oy be such that S # T}.. Since the subgame (NK(0°), 3 09))
isa 1-machine sequencing gameit followsthat thisgameis convex. Hence, the marginal vector
(xi)ieNk(bO) € C(Nk(b°), vn, o)) (cf. Shapley (1971)). Thisimpliesthat

k=Y x = v e (S) = v(S). ©)
ies ies

Finally, in the fourth part we show that >, . &; > v(T).

Sh- Y Y Ya+ ¥ (<zxi>+yk)

€T keM SeTy/or €S keM:Tp#0 \ icTy
S # Ty



> > > wS)+ D w
keM sgikT/:k ke M: T, #0

) X

keM: Ty, A0 €Ty,

= > > v+ X w

keM Sg ;‘k;T/:'k ke M: Ty, #0
+ > [p(Ne(6%) — o(Ne(0°)\T)]
kEM:Tk#@
> > X u®+e U N - X uE)
keM S§ ikT/:k keM:Tp7#0 ke M T, 40
+ > [p(Ne(6%) — o(Ne(0)\T)]
kEM:Tk#@
= > > w®)+e( U NE) - D u(Ne(0O\Tk)
keM S§ ikT/:k ke M:T#0 keM: Ty #0
> Z Z U(S)+U( U~ Tk)
keM 55 ikrf/:k ke M:Ty#0
= o(T),

where the first inequality follows from (5), the second inequality follows from y € C (M, w),
and the third inequality followsfrom the superadditivity of v. The second equality followsfrom
(4.0

Theorem 3.2 implies that in order to check whether an 3-sequencing game with n players
is balanced or not, it is sufficient to compute w({1, 2}), w({1, 3}), w({2, 3}), and w({1, 2, 3})
(w({k}) = 0for dl k € M), and then check whether this 3-machine game is balanced or not.
The following example illustrates this.

Example3.2 Let M = {1,2,3}, N = {1,...,,20}, o = (1,...,1), and processing times
and the initial schedule #° as in Figure 2. Let (N,v) be the corresponding 3-sequencing
game and (M, w) be the corresponding 3-machine game. Some calculations give w({1,2}) =
3,w({1,3}) = 7,w({2,3}) =0, and w({1,2,3}) = 7. Clearly, (7,0,0) € C(M,w). Hence,



the game (M, w) isbalanced. By Theorem 3.2 (N, v) isbalanced. ¢

3 7 12 15 21

Figure 2: The schedule v°

Moreover, Theorem 3.2 provides an alternative proof for Theorem 3.1. It readily follows
that 2-machine games are convex games. Hence, 2-sequencing games are balanced.

Consider m-sequencing situations in which al cost coefficients are equal to one. The next
theorem says that the corresponding m-sequencing games are bal anced.

Theorem 3.3 Let (V, v) be them-sequencing game that arises from an m-machine sequencing
situation (M, N, b°, p, ) inwhich o; = 1 for all i € N. Then (N, v) isbalanced.

In the remaining part of this section we will provide the proof of Theorem 3.3. First it
is shown that we can restrict attention to m-sequencing games that arise from m-machine
sequencing situations in which each machine initialy has to proces an equal number of jobs.
Second, we prove that the corresponding m-machine games corrrespond to permutation games.
Third, we show that m-machine games are balanced. From Theorem 3.2 we can then conclude
that m-sequencing games are balanced.

Let (M, N, b°, p, a) be an m-machine sequencing situation in which o; = 1. An optimal
schedule b(V) of coalition IV is established (see e.g. Conway, Maxwell, and Miller (1967)) by
first ordering the jobs of the playersin IV in anon-decreasing order, i.e., pi;, < pi, < ... < p;,
where {i1, is, ..., i,} = N. Second, assign the jobs, after numbering the machines, in rotation
to the machines:

Jobof player i1 is ... Um | Gmi1 Gmi2 e Gom | e | Gner e g
Machine 1 2 ..m |1 2 om0 1 o room

Hence, for an optimal schedule that is obtained by the above described procedure, we can
conclude that each machine in {1,...,7} has an equal number of jobs and each machine in
{r+1,...,m} hasan equal number of jobs. Moreover, the number of jobson thefirst » machines
isone higher than the jobs on thelast n — » machines. We can, however, construct am-machine
sequencing situation such that there exists an optimal schedule of its grand coalition, induced
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by b(IV), in which each machine serves the same number of jobs. This m-machine sequencing
situation isobtained by adding dummy jobswith processing time zero and cost coefficient oneto
the original m-machine sequencing situation. To see this, let [ = maxgcys ny (b°) be the length
of the longest queue waiting for amachinew.r.t. 8° in (M, N, °, p, o). Then for each machine
k we put I — ny,(b°) jobsin front of the existing queue, so that atotal of I jobs is waiting for
service by machine k. Now we have a new m-machine sequencing situation (M, N, 19, p, @)
with N the set of jobs, that is, N together with mi — n dummy jobs, 59 the new initial serving
order, p the new vector of cost coefficients. Notethat for i € N it holds that

BO() = (i) + 1 — ng(b°)
P, = Dpi
o; = 04 (: 1)

andfori € N\N it holds that

and o B
{b9(i) | i € N\N} = {(k,1),(k,2), ..., (k, ] — ng(b°)) | k € M}.

The next lemma gives a relation between the m-sequencing games of the above described m-
machine sequencing situations. The proof is omitted since it follows straightforwardly from
the described procedure to find an optimal order and the fact that all new (dummy) jobsin the
constructed m-machine sequencing Situation have processing time zero.

Lemma 3.1 Let (V,v) be the m-sequencing game corresponding to (M, N, b°, p, a) in which
a; = 1foralli € N. Let (N,v) be the m-sequencing game corresponding to (M, N, 1%, p, @).
Then

v(S)=v(S)=v(SUT) forall S C N, T C N\N.

From Lemma 3.1 immediately follows

Corollary 3.1 Let (N, v) bethem-sequencing game corresponding to (M, N, b°, p, o) inwhich
a; = 1foralli € N. Let (N,v) be the m-sequencing game corresponding to (M, N, 1, p, @).
Then C(N,v) # 0 if and only if C(N,v) # 0.

So, for the proof of the balancedness of m-sequencing games we may restrict attention to
m-machine sequencing situation (M, N, b°, p, o) where exactly [ jobs are scheduled on each
machine in the initia order °. In the sequal of this section we therefore only consider m-
machine sequencing situations where initially each machine has to process an equal number of
jobsand in which all cost coefficient are equa to one.

Tointroduceasquare matrix that definesthe permutation gamethat arisesfrom an m-machine
sequencing situation (M, N, 5%, p, o), we need to take into account the following observations.
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Since exactly [ jobsare scheduled on each machineintheinitial order v° aswell asin an optimal
order 55U for thejobs S(K) = Uyex Ni(b°), wecan reducethe set Bsx of admissible orders
to

ES(K) = {b € BS(K) : nk(b) =[fordl k e M}

Thus By is the set of all admissible orders that schedule exactly ! jobs on each machine.
Then given an order b € Bk thetotal (waiting) costs for jobs S(K) equals

1
=, Zzpb 1hg) = Do 0 (1= 5)Ps1(ky). (6)

keK i=1 j= keK j=1

Thisimpliesthat player i = b*(k, j), whichisin position j on machine k, contributes (1 + 1 —
J)Ps-1(k,5) to thetotal costs of coalition S(K'). Notethat thisamount isindependent of the other
jobsthat are scheduled on this machine.

Now, we will define a permutation game (V, r) that arises from a m-machine sequencing
situation (M, N,8°, p, o). Let us start with introducing this permutation game for a specific
case: 2 machines and 3 players on each machine. So, M = {1,2} and N = {1,2,3,4,5,6}
andp = (p1, ..., ps). If player i € N isscheduled inthefirst (second, third) position of machine
k € M, this player contributes 3p; (2p;, p;) to the total costs of the players on machine k. We
can describe these costs by the following 6 x 6 matrix A.

3p1 2p1 p1 3p1 2p1 pu
3p2 2p2 p2 3p2 2p2 po
A 3ps 2p3 ps 3ps 2p3 p3
3ps 2ps ps 3ps 2ps pa
3ps 2ps ps 3ps 2ps s
3ve 2ps Ps 3P 2p6 De

Here, the rows correspond to the playersi € N and the columns correspond to the positions
in the processing order. For example, the entry a4, denotes the costs 3p, of player 2 if it is
processed on the first position of machine 2. A permutation = : N — {1,...,6} with7(i) = j
and (k — 1)l + 1 < j < kl we give the interpretation that player i is scheduled in position
j — l(k — 1) onmachine k.

Next, let us define the permutation game for the general case with m machines and [ jobs on
each machine. For all i € N andforall j with (k — 1)l +1 < j < kl, k € {1,...,m} wedefine
the square ml x ml matrix A by

The permutation game (IV, r) that arises from an m-sequencing situation (M, N,8° p, a) is
defined by

= max Ai; — a
WEHS Z i z7r(z

foral S C N, wherea;; isgiven by (10).
Now wewill show therelation between the m-sequencing game (M, w) and the permutation
game (N, 7).
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Lemma 3.2 Let (M, N,°, p, o) beam-sequencing situationinwhicha; = 1for all i € N. Let
(M, w) bethe corresponding m-machinegame and let (V, r) be the corresponding permutation
game. Then

w(K) = r(kgK N (V%)) forall K C M.

Proof. Consider K C M, then for each schedule b ¢ FS(K) there exists a permutation
" € Ilgx) that puts each job on the same machine and in the same position as b does. This
permutation is defined as

70 (4) = (by(i) — 1)1 + by(4) (8)
for al 7 € N. Furthermore, each permutation 7 € ILg(x) can be written as an admissible order
b™ € BS(K For all i € N we define

(i) = (i) — (k— 1)l
i) = k

wherek issuch that (k — 1)l + 1 < 7 (i) < k.
Hence, for each K C M we have that

l
’LU(K) = max Z Z l+ 1-— pbo 1(k] Z Z (l +1-— j)pb—l(k’j)]

bEBs(k) |keK j=1 keK j=1

S z
= max | Zabo—l(k’j)’(k_l)l_’_j -y Zab—l(k,j),(k—l)l—i—j]

bEBS(K) | keK j= keK j=1
= max Z a, ™06 Z @i, mb (i)
bEBs(k) |ieS(K) i€S(K)

= max Z [au‘—am(i)]
mells(0) ses(k)

= r(S(K))
= (U Np(0")),

keK

where the first equality holds by (6), the second equality by (7) and the third equality by (8).
The fourth equality holds since we may assume, without loss of generality, that 7% () is the
identical permutation. The fifth equality holds by the definition of a permutation game, and the
last equality by the definition of S(K). O

In the next lemma we show that m-machine games are balanced.

Lemma 3.3 Let (M, N, 1°, p,a) be a m-sequencing situation in which o; = 1 forall i € N
and let (M, w) be the corresponding m-machine game. Then C' (M, w) # ().

Proof. Let (IV, r) be the permutation game that arisesfrom the m-machine sequencing situation
(M, N, p,a). Since (N, r) isbalanced, thereexistsan 2 € C(N, r). Definey € RM by

yr = z(N(0°))
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forall k € M. Thenfor K ¢ M we have

Yoy = Y x(N(b)) 9
> T(kgSNk(bO))
= w(K),

wherethefirst equality followsfrom the definiton of y, theinequality followsfromz € C(V, r)
and the second equality followsfromLemma3.3. If K = M theinequality becomesan equality,
which impliesthat y € C (M, w). O

The proof of Theorem 3.3 is now a consequence of Lemma 3.3 and Theorem 3.2.

4 Remarks

In Theorem 3.3 we assumed that all cost coefficientsare equal to one. Thisimpliesthat the class
of m-sequencing games generated by the unweighted completion time criterion is a subclass of
the class of balanced games. Clearly, the balancedness result also holds true in the case that all
cost coefficients are equal to some positive constant ¢ > 0. Furthermore, a slight adaptation
of the proof of Theorem 3.3 gives a similar result for m-sequencing situations with identical
processing times instead of identical cost coefficients.

Theorem 4.1 Let (V, v) bethem-sequencing game that arises from an m-machine sequencing
situation (M, N, %, p, o) inwhich p; = 1 for all i € N. Then (N, v) is balanced.

Proof. Note that an optimal schedule b(N) of codlition N is established by first ordering
the jobs of the playersin NV in a non-increasing order, i.e, «;, > o, > ... > «;, Where
{i1,12,...,i,} = N. Second, assign the jobs, after numbering the machines, in rotation to the
machines:

Jobof player i1 ia ... m | Gmi1 Gmi2 e Gom | e | Gner e n
Machine 1 2 ..m |1 2 om0 1 o room

Then the proof is similar to the proof of Theorem 3.3. The only difference is the matrix that
defines the matrix of the permutation game. Here, we define for all : € N and for al j with
(k—1l+1<j<kl ke{l,..,m}thesquareml x ml matrix A by

aij = [] — (k — 1)1]0&1 (10)

The following example shows that if condition (2) is not satisfied, then the corresponding
m-sequencing game need not be balanced.
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Example4.1l Let M = {1,2,3}, N = {1,...,5}, p = (2,2,1,2,2), and a = (1,1,1,1,1).
The initial schedule #° is given in Figure 3. Let (N,v) be the corresponding 3-sequencing
game. Suppose z € C(N,v) isacoreelement. Then1 = v(N) = z(N) > Yenv(i) =
0+1+0+ 0+ 1= 2. Thiscontradiction showsthat the coreis empty. Hence the game (V, v)
is not balanced. ¢

M, 1 2
2 4
M, 3
1
M, 4 5
2 4

Figure 3: The schedule v°

Finally, for m-machine sequencing situations (m > 3) with the weighted completion time
criterion, the balancedness of the corresponding m-sequencing gamesisan open problem. If we
follow the approach in this paper we need an optimal order for a coalition S(K'). The problem
of finding such an optimal order, however, isdifficult in the sense that it is NP-hard.
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