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A Method of Moments Estimator of Tail Dependence in Elliptical
Copula Models

Andrea Krajina∗

Department of Econometrics & OR, CentER, Tilburg University, Tilburg, The Netherlands

Abstract

An elliptical copula model is a distribution function whose copula is that of an elliptical distri-
bution. The tail dependence function in such a bivariate model has a parametric representation
with two parameters: a tail parameter and a correlation parameter. The correlation parameter
can be estimated by robust methods based on the whole sample. Using the estimated correla-
tion parameter as plug-in estimator, we then estimate the tail parameter applying a modification
of the method of moments approach proposed in the paper by J.H.J. Einmahl, A. Krajina and
J. Segers [Bernoulli 14(4), 2008, 1003-1026]. We show that such an estimator is consistent and
asymptotically normal. Also, we derive the joint limit distribution of the estimators of the two
parameters. By a simulation study, we illustrate the small sample behavior of the estimator of the
tail parameter and we compare its performance to that of the estimator proposed in the paper by
C. Klüppelberg, G. Kuhn and L. Peng [Scandinavian Journal of Statistics 35(4), 2008, 701-718].

Key words: asymptotic normality, elliptical copula, elliptical distribution, meta-elliptical model,
method of moments, semi-parametric model, tail dependence

JEL codes: C13, C14, C16

1. Introduction

The bivariate elliptical distributions, see for example [11], are frequently used in various ar-
eas of statistical application, mainly in different branches of financial mathematics, such as risk
management, see [8, 20, 15]. They are a natural extension of Gaussian and t-distributions, and
a family wide enough to capture many traits of real-life problems. A number of recent papers
have studied the tail behavior of bivariate elliptical distributions, see [1, 2, 12, 5]. An estimator
of the tail dependence function of elliptical distributions was suggested in [18]. To model the
tail dependence, a wider class of so-called elliptical copula models can be considered instead of
the elliptical distributions, since the (tail) dependence structure does not depend on the marginal
distributions. The distribution function from an elliptical copula model is a distribution function
which has the copula of an elliptical distribution. The tail dependence of the elliptical copula
models was estimated in [19].

Let (X,Y ) be a random vector with continuous distribution function F and marginals F1, F2.
To study the upper tail dependence structure, the tail dependence function of (X, Y ) is defined as

R(x, y) = lim
t↓0

t−1P (1− F1(X) ≤ tx, 1− F2(Y ) ≤ ty) ,

where x ≥ 0 and y ≥ 0, see for example [3, 4, 9, 13]. The function R is concave; 1 ≤ R(x, y) ≤
min{x, y}, for all x ≥ 0 and y ≥ 0; and R is homogeneous of order one: R(tx, ty) = tR(x, y), for
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all x ≥ 0, y ≥ 0 and t ≥ 0. The upper tail dependence coefficient, R(1, 1), is often used as a simple
measure of tail dependence.

For an elliptical copula model the tail dependence function depends only on the distribution
function, through its copula. Since the copula of an elliptical distribution, and hence the tail
dependence function of an elliptical copula model too, belongs to a two-parameter family, the
estimation of the tail dependence function reduces to the estimation of the two copula parameters:
the correlation parameter and the tail parameter.

The correlation can be estimated using the whole sample, from the rank correlations, which
are independent of the precise model. In [19], the tail parameter was estimated by matching
the empirical tail dependence function and the theoretical one, after plugging in the estimated
correlation. Using the estimated correlation coefficient as plug-in estimator, in the present paper
we apply the method of moments procedure from [7] to estimate the tail parameter. The method
provides a computationally straightforward estimator which is obtained as a solution of a single
equation. The estimator is consistent and asymptotically normal. An interesting result that does
not appear in the similar literature, namely the joint limit distribution of the tail parameter and
the correlation parameter, is derived. A simulation study shows that the small sample behavior
of the estimator of the tail parameter is comparable to and competitive with the small sample
behavior of the estimator derived in [19].

Our paper is organized as follows. In Section 2 we state and describe the model. We formulate
the problem and present the estimation method in Section 3. The main results are given in
Section 4. In Section 5 the performance of the estimator is illustrated using simulated data. All
proofs are deferred to Section 6.

2. Tail dependence in elliptical copula models

Let (Z1, Z2) be an elliptically distributed random vector, that is, it satisfies the distributional
equality

(Z1, Z2)
d= GAU ,

where G > 0 is the generating random variable, A is a 2× 2 matrix such that Σ = AA> is of full
rank, and U is a 2-dimensional random vector independent of G and uniformly distributed on the
unit circle {(z1, z2) ∈ R2 : z2

1 + z2
2 = 1}. In this case, the matrix Σ can be written as

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

where σ1 > 0, σ2 > 0, and −1 < ρ < 1. The parameter ρ is called the correlation coefficient and
coincides with the usual correlation, if second moments exist.

A distribution function F follows an elliptical copula model if the copula of F is the same
as the copula of some elliptical distribution with generating random variable G and correlation
coefficient ρ. This model is also known as the meta-elliptical model, as introduced in [10]. If G
is regularly varying with index ν > 0 and if |ρ| < 1, the expression (2.1) for the tail dependence
function R was derived in [18]. (Recall that a random variable G is regularly varying with index
ν > 0 if P(G > x) = x−νL(x), and L is a slowly varying function.) Setting f(x, y; ρ, ν) =
arctan(((x/y)1/ν − ρ)/

√
1− ρ2) ∈ [− arcsin ρ, π/2] for x, y > 0, we have

R(x, y; ρ, ν) =
x

∫ π/2

f(x,y;ρ,ν)
(cos φ)νdφ + y

∫ f(x,y;ρ,ν)

− arcsin ρ
(sin(φ + arcsin ρ))νdφ

∫ π/2

−π/2
(cos φ)νdφ

(2.1)

=
x

∫ π/2

f(x,y;ρ,ν)
(cos φ)νdφ + y

∫ π/2

f(y,x;ρ,ν)
(cos φ)νdφ

∫ π/2

−π/2
(cosφ)νdφ

(2.2)

=

∫ π/2

− arcsin ρ
min {x(cos φ)ν , y(sin(φ + arcsin ρ))ν}dφ

∫ π/2

−π/2
(cos φ)νdφ

. (2.3)
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The expression in (2.2) was derived in [19]. The one in (2.3) is easily obtained from the above
formulas.

An expression for Pickands dependence function A(x) := 1 − R(1 − x, x) of the bivariate
t-distribution was derived in [5],

A(x) = xFt(ν+1)

(
( x
1−x )

1
ν − ρ√

1− ρ2

√
ν + 1

)
+ (1− x)Ft(ν+1)

(
( 1−x

x )
1
ν − ρ√

1− ρ2

√
ν + 1

)
,

where Ft(ν+1) is the distribution function of t-distributed random variable with ν + 1 degrees of
freedom. It was shown in [2] that Pickands dependence function of an elliptical distribution for
which the generating variable G is regularly varying with index ν > 0 is the same. Despite the
different appearance, expressions (2.1)-(2.3) lead to the same Pickands dependence function.

3. Estimation

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a continuous distribution function F with
marginals F1 and F2. Assume that F follows an elliptical copula model with underlying generating
variable G > 0 and correlation coefficient ρ. To estimate the tail dependence function R, we will
estimate the unknown parameters, namely the correlation coefficient ρ and the tail index ν, under
the assumptions that |ρ| < 1 and that G is regularly varying with index ν > 0.

The above assumption corresponds to asymptotic dependence. If ρ = 1 or ρ = −1, we get
complete dependence, R(1 − x, x) = min{1 − x, x}, for any ν. In case of −1 < ρ < 1 and ν ↓ 0
we have a mixture between complete dependence and independence, R(1 − x, x) = π−1(π/2 +
arcsin ρ)min{1 − x, x}. If ν ↑ ∞, then for any ρ we are in the case of asymptotic independence,
since then R(1− x, x) ↓ 0.

The estimation consists of two steps. We first estimate the correlation coefficient ρ using
Kendall’s τ , see [16, 17], and the relation τ = (2/π) arcsin ρ obtained in [22], see also Theorem 4.2
in [14]. Then, using expression (2.1) with the consistent estimator ρ̂ from the previous step plugged
in for the true correlation coefficient ρ, we apply the method of moments estimation procedure
introduced in [7] to estimate ν. A similar approach appears in [19], where the tail parameter
is estimated using the pointwise inverse of R(x, y; ρ, ν) with respect to ν, after the correlation
coefficient ρ in R has been replaced by the same consistent estimator as above.

3.1. Estimation of the correlation parameter
Kendall’s τ of two random variables X and Y is defined by

τ = P ((X −X ′)(Y − Y ′) > 0)− P ((X −X ′)(Y − Y ′) < 0) ,

where (X ′, Y ′) is independent of and identically distributed as (X,Y ). To estimate τ , we will use
the classical estimator

τ̂ =
2

n(n− 1)

∑

1≤i<j≤n

sign ((Xi −Xj)(Yi − Yj)) ,

and define the estimator of ρ by
ρ̂ := sin

(π

2
τ̂
)

.

This is a consistent and asymptotically normal estimator of ρ, with rate of convergence 1/
√

n,
which follows from the corresponding properties of τ̂ , see for instance [21].
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3.2. Estimation of the tail parameter
Denote by RX

i and RY
i the rank of Xi among X1, . . . , Xn and the rank of Yi among Y1, . . . , Yn,

respectively. Then for 1 ≤ k ≤ n,

R̂n(x, y) :=
1
k

n∑

i=1

1
{

RX
i > n +

1
2
− kx, RY

i > n +
1
2
− ky

}

is a nonparametric estimator of R. When studying the asymptotic properties of this estimator,
k = kn is an intermediate sequence, that is, k →∞ and k/n → 0 as n →∞.

Denote the parameter space by Θ̄ := Θ̄ρ × Θ̄ν , with Θ̄ρ = (−1, 1) and Θ̄ν = (0,∞). Its
elements are pairs θ̄ := (ρ, ν). The tail dependence function of an elliptical copula model belongs
to a parametric family {R(·, ·; θ̄) : θ̄ ∈ Θ̄}. Given the correlation parameter ρ, it reduces to a
single-parameter family {R(·, ·; ρ, ν) : ν ∈ Θ̄ν}. We use the approach from [7] to estimate ν: for a
given ρ and an integrable function g : [0, 1]2 → R, the method of moments estimator of ν is defined
as the solution to

∫∫

[0,1]2
g(x, y)R̂n(x, y)dxdy =

∫∫

[0,1]2
g(x, y)R(x, y; ρ, ν̂n)dxdy. (3.1)

We can simplify the above equation by an appropriate choice of the function g. Choosing g(x, y) =
1{x + y ≤ 1}, (x, y) ∈ [0, 1]2, reduces the area of integration from the unit square to the triangle
{(x, y) ∈ [0, 1]2 : x + y ≤ 1}. Due to homogeneity of R, see for instance [3, 4], we get that

∫∫

[0,1]2
1{x + y ≤ 1}R(x,y; ρ, ν)dxdy =

1
3

∫

[0,1]

R(1− x, x; ρ, ν)dx.

Instead of solving the equation (3.1), for a given ρ we define the estimator of ν as the solution to
∫

[0,1]

R̂n(1− x, x)dx =
∫

[0,1]

R(1− x, x; ρ, ν̂)dx.

That is, for a given ρ ∈ Θ̄ρ, we define the estimator of ν as the inverse of the function ϕ̄ρ : Θ̄ν → R,
defined by

ϕ̄ρ(ν) :=
∫

[0,1]

R(1− x, x; ρ, ν)dx,

in the point
∫
[0,1]

R̂n(1− x, x)dx. However, if ρ > 0 this is not possible for all ν, since for positive
ρ the function ϕ̄ρ is not invertible on its whole domain (0,∞). For each ρ > 0 there exists a
point ν∗ = ν∗(ρ), such that the function ν 7→ ϕ̄ρ(ν) is increasing on (0, ν∗(ρ)) and decreasing on
(ν∗(ρ),∞), see Figure 1.

We will restrict the parameter space so to avoid the fact that ν∗ changes with ρ, while retaining
as much flexibility as possible. We choose some ρ∗ < 1, numerically approximate the value of
ν∗(ρ∗), and restrict Θ̄ = (−1, 1) × (0,∞) to (−1, ρ∗) × (ν∗,∞) =: Θρ × Θν =: Θ. For example,
if ρ∗ = 0.9, we can take ν∗ = 0.66, what leads to a parameter space that is appropriate for
applications.

For every ρ ∈ Θρ denote by ϕρ the restriction of ϕ̄ρ to Θν , that is, for every ρ ∈ Θρ,

ϕρ(ν) :=
∫

[0,1]

R(1− x, x; ρ, ν)dx , ν ∈ Θν .

Finally, for ρ̂ ∈ Θρ, we define ν̂n, the moment estimator of the tail parameter ν, as the solution
to ∫

[0,1]

R̂n(1− x, x)dx =
∫

[0,1]

R(1− x, x; ρ̂, ν̂)dx,
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Figure 1: Graph of ν 7→ ϕ̄ρ(ν) for ρ ∈ {0.7, 0.9}. The function is decreasing on the interval
(ν∗(ρ),∞), as indicated by the vertical lines.

that is,

ν̂n := ϕ−1
ρ̂

(∫

[0,1]

R̂n(1− x, x)dx

)
. (3.2)

The estimator is well-defined with probability tending to one, as a consequence of the consistency
of ρ̂ and the uniform consistency of R̂n(1− x, x). If ρ̂ /∈ Θρ or if

∫
[0,1]

R̂n(1− x, x)dx /∈ Θν , let ν̂n

be some fixed value in Θν .

Remark 3.1. (i) In the central part of the interval [0, 1] the functions x 7→ R(1 − x, x; ρ, ν),
ρ > 0, behave in a favorable way, that is, they are decreasing in ν, see Figure 2(a). To keep
the parameter space as large as possible, we could restrict the area of integration from [0, 1]
to [1/2− δ, 1/2+ δ], for some δ ∈ (0, 1/2], see Figure 2(b). However, this may result in a less
efficient estimator.

(ii) Note that the set Θ = Θρ ×Θν is not unique. For any fixed ρ∗ we can take Θ = (−1, ρ∗)×
(ν,∞), with ν ≥ ν∗(ρ∗), see Figure 2(b), the solid line. Also, one could fix ν∗ > 0 in advance,
and appropriately restrict ρ to the interval (−1, ρ∗(ν∗)).

4. Main results

Let ρ̂ and ν̂n be as in Section 3 and let ρ0 ∈ Θρ and ν0 ∈ Θν be the true values of the correlation
coefficient and the tail index, respectively. The basic assumption is that

(C0) g is integrable and g and Θ = Θρ × Θν are such that ϕρ is a homeomorphism between Θν

and its image, for every ρ ∈ Θρ.

For some of the results, we will need the following conditions:

(C1) there exists an α > 0 such that as t → 0,

t−1P (1− F1(X1) ≤ tx, 1− F2(Y1) ≤ ty)−R(x, y) = O(tα),

uniformly on {(x, y) ∈ (0,∞)2 : x + y = 1};
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(C2) k = kn →∞ and k = o(n2α/(1+2α)) as n →∞, with α from (C1).

Proposition 4.1. Assume an elliptical copula model in R2 with (ρ0, ν0) ∈ Θ. If (C0) holds, then
the function H : Θ → Θρ × R defined by

H(ρ, ν) :=

(
ρ,

∫

[0,1]

R(1− x, x; ρ, ν)dx

)
, (4.1)

is continuously differentiable at (ρ0, ν0) and its differential in this point is regular.

An application of the inverse mapping theorem yields the following consequence of Proposition
4.1. Let Df (x) denote the differential of f in x.

Corollary 4.2. Assume the situation as in Proposition 4.1. Then there exist open neighborhoods
U ⊆ Θ of (ρ0, ν0) and V ⊆ H(Θ) of H(ρ0, ν0) such that the restriction H|U : U → V is one-to-one.
Moreover, its inverse

K := (H|U )−1 : V → U (4.2)

is continuously differentiable and for the differential of K in H(ρ0, ν0) we have

DK (H (ρ0, ν0)) = (DH(ρ0, ν0))
−1

.

Next we present the consistency and asymptotic normality results for ν̂n and (ν̂n, ρ̂), respec-
tively.

Theorem 4.3 (Consistency of ν̂n). Assume the situation as in Proposition 4.1. It holds that

ν̂n
P→ ν0, as n →∞, k →∞, k/n → 0.

Denote by W a mean-zero Wiener process on [0,∞)2 with covariance function

EW (x1, y1)W (x2, y2) = R(x1 ∧ x2, y1 ∧ y2; ρ0, ν0), (4.3)
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and for x, y ∈ [0,∞) denote

W1(x) := W (x,∞), W2(y) := W (∞, y). (4.4)

Further, for (x, y) ∈ [0,∞)2 let Ṙ1(x, y) and Ṙ2(x, y) be the partial derivatives of R in the point
(x, y) with respect to the first and second coordinates, respectively.

Finally, define the stochastic process B on [0,∞)2 by

B(x, y) := W (x, y)− Ṙ1(x, y)W1(x)− Ṙ2(x, y)W2(y). (4.5)

Let Nρ ∼ N (0, σ2
ρ) be the normal limiting random variable of

√
n(ρ̂ − ρ0) and denote by Nν ∼

N (0, σ2
ν) the normal random variable Nν := c−1

∫
[0,1]

B(1− x, x)dx, where

c := ∂/∂ν

∫

[0,1]

R(1− x, x; ρ0, ν)dx
∣∣∣
ν=ν0

. (4.6)

Theorem 4.4 (Asymptotic normality of (ν̂n, ρ̂)). Let k/n → 0. Assume the situation as in
Proposition 4.1 and assume that the conditions (C1) and (C2) hold. Then as n →∞ and k →∞,

(√
k(ν̂n − ν0),

√
n(ρ̂− ρ0)

)
d→ (Nν , Nρ),

where Nν and Nρ are independent.

Remark 4.5. The above results are not tied to the Kendell’s tau based estimator of ρ. The
results in Theorem 4.3 and Theorem 4.4 hold whenever the rate of convergence of an estimator of
ρ is faster than 1/

√
k.

5. Simulation Study

We simulated 50 random samples of size n = 1000 from two elliptical copula models with
correlation coefficient ρ0 = 0.3 and tail parameter ν0 ∈ {1, 5}.

The two estimators that we compare are the MoME, the method of moments estimator ν̂n

defined in (3.2), and the KKP estimator of tail parameter from [19] with the weight function
m(ψ) = 1− (4ψ/π − 1)2, 0 ≤ ψ ≤ π/2. The KKP estimator is defined by

ν̂KKP :=
1

M(Q̂ ∩ Q̂∗)

∫

Q̂∩Q̂∗
ν̃

(√
2 cos ψ,

√
2 sin ψ

)
M(dψ),

where M is the measure defined by m, ν̃(x, y) is the inverse of R(x, y; ρ̂, ν) with respect to ν in
the point R̂n(x, y), for x > 0, y > 0, and the sets Q̂ and Q̂∗ are the subsets of [0, π/2] defined in
such a way so that ν̂KKP is well-defined and that it has desired asymptotic properties, see [19].

In Figure 3 we plot for those two estimators the bias and the root mean squared error (RMSE)
against the effective sample size k.

The plots show that the MoME has much smaller bias than the KKP estimator. Further, it
appears to be more robust with respect to the choice of k, and better than the KKP estimator for
k large enough. Also, the value of k after which the MoME performs better gets smaller as the
tail parameter that is estimated gets larger.

6. Proofs

Proof of Proposition 4.1. To show that the function H is continuously differentiable we will show
that its partial derivatives exist and are continuous on Θ. Since H(ρ, ν) = (H1(ρ, ν),H2(ρ, ν)),
where Hi : Θ → R, i = 1, 2, are given by

H1(ρ, ν) = ρ,

H2(ρ, ν) =
∫

[0,1]

R(1− x, x; ρ, ν)dx,

7



50 100 150 200 250 300

0.
6

0.
9

1.
2

k

ν̂(
k)

ν=1, ρ=0.3, n=1000

50 100 150 200 250 300

0.
0

0.
3

0.
6

k

R
M

S
E

(ν̂
(k

))

(a) Elliptical copula model with ρ0 = 0.3 and ν0 = 1.

50 100 150 200 250 300

1.
5

3.
0

4.
5

k

ν̂(
k)

ν=5, ρ=0.3, n=1000

50 100 150 200 250 300

0.
0

1.
5

3.
0

k

R
M

S
E

(ν̂
(k

))

(b) Elliptical copula model with ρ0 = 0.3 and ν0 = 5.

Figure 3: The bias and the RMSE of two different estimators of tail coefficient ν; MoME (−−−−),
KKP (· · · · · · ).

8



we have

∂H1

∂ρ
(ρ, ν) = 1,

∂H1

∂ν
(ρ, ν) = 0,

∂H2

∂ρ
(ρ, ν) = c−1

0 (1− ρ2)ν/2

∫

[0,1]

x(1− x)
(
x2/ν + (1− x)2/ν − 2ρx1/ν(1− x)1/ν

)ν/2
dx,

∂H2

∂ν
(ρ, ν) = c−2

0

∫

[0,1]

(1− x)C

(
ν, arctan

(
1−x

x

)1/ν − ρ√
1− ρ2

)
dx.

The last partial derivative relies on a similar result in [19]; the notation used above also comes
from that paper:

c0 =
∫ π/2

−π/2

(cos φ)νdφ, c1 =
∫ π/2

−π/2

(cos φ)ν ln(cos φ)dφ,

D(ν, z) = c0

∫ π/2

z

(cos φ)ν ln(cos φ)dφ− c1

∫ π/2

z

(cos φ)νdφ,

C(ν, z) = D(ν, z) + (ρ +
√

1− ρ2 tan z)−νD(ν, arccos ρ− z).

All four partial derivatives exist and are continuous functions on Θ.
It can be shown that the partial derivative ∂H2/∂ν is negative for all (ρ, ν) ∈ Θ, which implies

that the differential is regular in every point in Θ. ¤

Proof of Theorem 4.3. Let p2 : R2 → R denote the projection to the second coordinate and let H
and K be the mappings introduced in (4.1) and (4.2), respectively. Note that ν0 can be written
as

ν0 = (p2 ◦K)

(
ρ0,

∫

[0,1]

R(1− x, x; ρ0, ν0)dx

)
.

Moreover, the estimator ν̂n has the representation

ν̂n = (p2 ◦K)

(
ρ̂,

∫

[0,1]

R̂n(1− x, x)dx

)
. (6.1)

The uniform consistency of R̂n, see the proof of Theorem 2.2 in [6], and the equation (3.1) in [7]
imply ∫

[0,1]

R̂n(1− x, x)dx
P→

∫

[0,1]

R(1− x, x)dx. (6.2)

Hence the right-hand side of (6.1) is well defined with probability tending to one. Further, from
the continuous mapping theorem and [21] we know that

ρ̂
P→ ρ0, (6.3)

as n →∞. Using (6.2), (6.3) and continuity of p2 ◦K, we obtain ν̂n
P→ ν0, as n →∞, k →∞ and

k/n → 0. ¤
Some more notation and technical results are needed for the proof of Theorem 4.4. For i =

1, . . . , n denote Ui := 1−F1(Xi) and Vi := 1−F2(Yi). Let U1:n ≤ · · · ≤ Un:n and V1:n ≤ · · · ≤ Vn:n

9



be the corresponding order statistics and by dae denote the smallest integer not smaller than a.
Define

R̂1
n(x, y) :=

1
k

n∑

i=1

1
{
RX

i > n + 1− kx, RY
i > n + 1− ky

}
,

Rn(x, y) :=
n

k
P

(
U1 ≤ kx

n
, V1 ≤ ky

n

)
,

Tn(x, y) :=
1
k

n∑

i=1

1
{

Ui <
kx

n
, Vi <

ky

n

}
,

and note that
R̂1

n(x, y) = Tn

(n

k
Udkxe:n,

n

k
Vdkye:n

)
.

It is easily seen that

sup
(x,y)∈[0,n/k]2

√
k

∣∣∣R̂1
n(x, y)− R̂n(x, y)

∣∣∣ ≤ 1√
k
→ 0,

as n →∞.
Let W , W1 and W2 be as in (4.3) and (4.4). Write vn(x, y) =

√
k (Tn(x, y)−Rn(x, y)) ,

vn,1(x) := vn(x,∞) and vn,2(y) := vn(∞, y). Proposition 3.1 in [6] shows that for any T > 0
(
vn(x, y), (x, y) ∈ [0, T ]2; vn1(x), x ∈ [0, T ]; vn2(y), y ∈ [0, T ]

)

d→ (
W (x, y), (x, y) ∈ [0, T ]2; W1(x), x ∈ [0, T ]; W2(y), y ∈ [0, T ]

)
,

in the topology of uniform convergence, as n →∞.
Let Fn(x, y) = (1/n)

∑n
i=1 1{Xi ≤ x, Yi ≤ y} be the empirical distribution function of F , and

let Fn1 and Fn2 be the empirical distribution functions of the marginals F1 and F2, respectively.
Define the empirical process rn(x, y) :=

√
n(Fn(x, y)−F (x, y)), (x, y) ∈ [−∞,∞]2, and denote by

WB a Brownian bridge on [−∞,∞]2 with covariance structure

EWB(x1, y1)WB(x2, y2) = F (min{x1, x2}, min{y1, y2})− F (x1, y1)F (x2, y2).

We know, see e.g. [23], that rn
d→ WB in the topology of uniform convergence, as n →∞. Hence

we obtain for the marginal processes, rnj
d→ WBj , where rnj(x) :=

√
n(Fnj(x)− Fj(x)), j = 1, 2,

WB1(x) = WB(x,∞) and WB2(x) = WB(∞, x).

Lemma 6.1. For fixed (x, y) ∈ [0,∞]2 and (t, w) ∈ [−∞,∞]2 it holds that as n → ∞, k → ∞,
k/n → 0,

Evn(x, y)rn(t, w) → 0.

Proof. Fix (x, y) ∈ [0,∞]2 and (t, w) ∈ R̄2. Then,

Evn(x, y)rn(t, w) = E
[√

k (Tn(x, y)−Rn(x, y)) · √n (Fn(x, y)− F (x, y))
]

=
1√
kn
E

[
n∑

i=1

(
1

{
Ui <

kx

n
, Vi <

ky

n

}
− P

(
U1 ≤ kx

n
, V1 ≤ ky

n

))

·
n∑

j=1

(1{Xj ≤ t, Yj ≤ w} − F (t, w))
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=
1√
kn
E




n∑∑

i,j=1,i 6=j

(
1

{
Ui <

kx

n
, Vi <

ky

n

}
− P

(
U1 ≤ kx

n
, V1 ≤ ky

n

))

· (1{Xj ≤ t, Yj ≤ w} − F (t, w))

]

+
1√
kn
E

[
n∑

i=1

(
1

{
Ui <

kx

n
, Vi <

ky

n

}
− P

(
U1 ≤ kx

n
, V1 ≤ ky

n

))

· (1{Xi ≤ t, Yi ≤ w} − F (t, w))

]

=: E1 + E2.

Using independence of the sample, we get

E1 =
1√
kn

n∑

i,j=1,i 6=j

E
[
1

{
Ui <

kx

n
, Vi <

ky

n

}
− P

(
U1 ≤ kx

n
, V1 ≤ ky

n

)]

·E [1{Xj ≤ t, Yj ≤ w} − F (t, w)]
= 0.

Denote the indicators and probabilities associated with vn(x, y) and rn(t, w) by 11, p1 and 12,
p2, respectively. Using the fact that all the factors in the sum in E2 have the same distribution,
we get

E2 =
√

n

k
E

[(
1

{
U1 <

kx

n
, V1 <

ky

n

}
− P

(
U1 ≤ kx

n
, V1 ≤ ky

n

))
· (1{X1 ≤ t, Y1 ≤ w} − F (t, w))

]

=
√

n

k

(
E

[
1

{
U1 <

kx

n
, V1 <

ky

n

}
1{X1 ≤ t, Y1 ≤ w}

]
− P

(
U1 ≤ kx

n
, V1 ≤ ky

n

)
F (t, w)

)

≤
√

n

k
E1

{
U1 <

kx

n
, V1 <

ky

n

}

≤
√

n

k
P

(
U1 <

kx

n
, V1 <

ky

n

)
≤

√
k

n
min{x, y} → 0,

as n →∞, k →∞ and k/n → 0. ¤

Lemma 6.2. Let T > 0. In the topology of uniform convergence, as n → ∞, k → ∞, k/n → 0,
the process

(vn(x, y), (x, y) ∈ [0, T ]2; vn1(x), x ∈ [0, T ]; vn2(y), y ∈ [0, T ], rn(x, y), (x, y) ∈ R̄2) (6.4)

converges in distribution to

(W (x, y), (x, y) ∈ [0, T ]2; W1(x), x ∈ [0, T ]; W2(y), y ∈ [0, T ], WB(x, y), (x, y) ∈ R̄2), (6.5)

with (W (x, y), (x, y) ∈ [0, T ]2; W1(x), x ∈ [0, T ]; W2(y), y ∈ [0, T ]) and (WB(x, y), (x, y) ∈ R̄2)
independent.

Proof. From the weak convergence, and hence tightness, of
(
vn(x, y), (x, y) ∈ [0, T ]2; vn1(x), x ∈ [0, T ]; vn2(y), y ∈ [0, T ]

)

and (rn(x, y), (x, y) ∈ R̄2), we get the tightness of the process in (6.4).
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By the Cramér-Wold device, see for example [24], and the univariate Lindeberg-Feller central
limit theorem, using Lemma 6.1, we get convergence of the finite-dimensional distributions. ¤

Using the Skorohod construction we get a probability space containing all processes ṽn, ṽn1,
ṽn2, r̃n, W̃ , W̃1, W̃2 and W̃B , where

(ṽn, ṽn1, ṽn2, r̃n) d= (vn, vn1, vn2, rn),

(W̃ , W̃1, W̃2, W̃B) d= (W,W1,W2,WB),

and it holds that as n →∞, k →∞, k/n → 0,

sup
(x,y)∈[0,T ]2

|ṽn(x, y)− W̃ (x, y)| → 0 a.s., (6.6)

sup
(x,y)∈R̄2

|r̃n(x, y)− W̃B(x, y)| → 0 a.s., (6.7)

and the analogous statements hold for marginal processes vn1, vn2, rn1 and rn2 as well. We work
on this space from now on, but keep the old notation (without tilde’s).

Lemma 6.3. Assume the situation as in Theorem 4.4. On the probability space of the Skorohod
construction
(√

k

(∫

[0,1]

R̂n(1− x, x)dx−
∫

[0,1]

R(1− x, x)dx

)
,
√

n(ρ̂− ρ0)

)
P→

(∫

[0,1]

B(1− x, x)dx,Nρ

)
,

(6.8)
as n →∞, k →∞ and k/n → 0, where

∫
[0,1]

B(1− x, x)dx and Nρ are independent, and B is the
process defined in (4.5).

Proof. By Lemma 6.2 it is sufficient to show that
√

k
(∫

[0,1]
R̂n(1− x, x)dx− ∫

[0,1]
R(1− x, x)dx

)
P→ ∫

B(1− x, x)dx, (6.9)

and √
n(ρ̂− ρ0)

P→ Nρ, (6.10)

since Nρ is a functional of WB , by (6.12) and the delta method.

For the convergence in (6.10) we will first show that
√

n(τ̂−τ0)
P→ Nτ , where Nτ is the limiting

normal random variable for τ̂ , see for example [17] or [21]. By the Hoeffding representation of
U-statistics and its properties, see for example [21], we get that

√
n(τ̂ − τ0) = 2

√
n

(∫∫

R̄2
Φ(x, y)dFn(x, y)−

∫∫

R̄2
Φ(x, y)dFn(x, y)

)
+ oP(1),

where Φ(x, y) = 1−2F1(x)−2F2(y)+4F (x, y). Let rn, rn1, rn2, WB , WB1 and WB2 be as defined
before Lemma 6.1. From integration by parts we get

√
n(τ̂ − τ0) = −8

∫∫

R2
rn(x, y)dF (x, y) + 4

∫

R
rn1(x)dF1(x) + 4

∫

R
rn2(y)dF2(y) + oP(1). (6.11)

Denote

Nτ := −8
∫∫

R2
WB(x, y)dF (x, y) + 4

∫

R
WB1(x)dF1(x) + 4

∫

R
WB2(y)dF2(y). (6.12)

The result in (6.7), its marginal versions and (6.11) yield that
√

n(τ̂ − τ0)
P→ Nτ . Since ρ̂ =

sin((π/2)τ̂), the delta method yields (6.10), where Nρ is an appropriate function of Nτ . Note that
Nρ is a normally distributed random variable with mean zero and some variance, σ2

ρ, say. ¤
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Lemma 6.4. Assume the situation as in Proposition 4.1. As n →∞, k →∞ and k/n → 0,

ϕ−1
ρ̂ (

∫
[0,1]

R̂n(1− x, x)dx)− ϕ−1
ρ̂ (

∫
[0,1]

R(1− x, x; ρ0, ν0)dx)
∫
[0,1]

R̂n(1− x, x)dx− ∫
[0,1]

R(1− x, x; ρ0, ν0)dx

P→ c, (6.13)

where c is defined in (4.6), and

√
k

(
ϕ−1

ρ̂

(∫

[0,1]

R(1− x, x; ρ0, ν0)dx

)
− ϕ−1

ρ0

(∫

[0,1]

R(1− x, x; ρ0, ν0)dx

))
P→ 0. (6.14)

Proof. Throughout the proof we omit writing the region of integration, [0, 1]. As before, let
H be the function on Θ given by H(ρ, ν) = (ρ, ϕρ(ν)), let K be its local inverse, and let p2

be the projection to the second coordinate. Since K(ρ, µ) = (ρ, ν), where ν is such that µ =∫
[0,1]

R(1− x, x; ρ, ν)dx, we see that (p2 ◦K)(ρ, µ) = ϕ−1
ρ (µ). Denote µ0 :=

∫
R(1− x, x; ρ0, ν0)dx.

First we prove (6.13). Define the function f : [0, 1] → R by

f(t) := (p2 ◦K)
(
ρ̂, µ0 + t

(∫
R̂n(1− x, x)dx− µ0

))
.

Using the mean value theorem for f on [0, 1] we get

f(1)− f(0) = (1− 0) · f ′(t)
∣∣
t=t∗ , t∗ ∈ (0, 1).

Since f(1) = (p2 ◦K)(ρ̂,
∫

R̂n(1− x, x)dx) = ϕ−1
ρ̂ (

∫
R̂n(1− x, x)dx) and f(0) = (p2 ◦K)(ρ̂, µ0) =

ϕ−1
ρ̂ (µ0), we get

ϕ−1
ρ̂ (

∫
R̂n(1− x, x)dx)− ϕ−1

ρ̂ (µ0) =
∂

∂µ
(p2 ◦K)(ρ̂, µ)

∣∣
µ=µ∗ ·

(∫
R̂n(1− x, x)dx− µ0

)
,

with µ∗ = µ0 + t∗(
∫

R̂n(1 − x, x)dx − µ0). Because µ∗ is between
∫

R̂n(1 − x, x)dx and µ0, the

consistency of
∫

R̂n(1 − x, x)dx implies that µ∗ P→ µ0, as n → ∞, k → ∞ and k/n → 0. This,
together with the consistency of ρ̂ and the continuous differentiability of K, see Corollary 4.2,
implies that the left-hand side of (6.13) converges in probability to (∂/∂µ)(p2 ◦ K)(ρ0, µ0) =
(∂/∂µ)ϕ−1

ρ0
(µ0). By the inverse mapping theorem, this constant equals c.

Next we show that (6.14) holds. Similarly, we define the function f : [0, 1] → R by

f(t) := (p2 ◦K)(ρ0 + t(ρ̂− ρ0), µ0).

The mean value theorem applied to f on [0, 1] yields

f(1)− f(0) = (1− 0) · f ′(t)
∣∣
t=t∗ , t∗ ∈ (0, 1).

Write ρ∗ := ρ0 + t∗(ρ̂ − ρ0). Since f(1) = ϕ−1
ρ̂ (µ0), and f(0) = ϕ−1

ρ0
(µ0), the left-hand side of

(6.14) is equal to
∂

∂ρ
ϕ−1

ρ (µ0)
∣∣
ρ=ρ∗

√
k(ρ̂− ρ0). (6.15)

By Corollary 4.2, ρ 7→ (∂/∂ρ)ϕ−1
ρ (µ0) is continuous, hence it is bounded on a closed neighborhood

of ρ0. The consistency of ρ̂ then implies that (∂/∂ρ)ϕ−1
ρ (µ0)

∣∣
ρ=ρ∗ is bounded with probability

tending to one. Since the rate of convergence of ρ̂ is 1/
√

n, the expression in (6.15) converges to
zero in probability as n →∞, k →∞ and k/n → 0. ¤
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Proof of Theorem 4.4. Here we again omit writing the region of integration, [0, 1], and we write
R(1− x, x) instead of R(1− x, x; ρ0, ν0). We have

√
k (ν̂n − ν0) =

ϕ−1
ρ̂ (

∫
R̂n(1− x, x)dx)− ϕ−1

ρ̂ (
∫

R(1− x, x)dx)
∫

R̂n(1− x, x)dx− ∫
R(1− x, x)dx

·
√

k
(∫

R̂n(1− x, x)dx− ∫
[0,1]

R(1− x, x)dx
)

+
√

k
(
ϕ−1

ρ̂ (
∫

R(1− x, x)dx)− ϕ−1
ρ0

(
∫

R(1− x, x)dx)
)

.

By Lemma 6.4 it follows that

√
k (ν̂n − ν0) = c(1 + oP(1))

√
k

(∫
R̂n(1− x, x)dx− ∫

R(1− x, x)dx
)

+ oP(1). (6.16)

Combining (6.8) and (6.16) we conclude that
(√

k(ν̂n − ν0),
√

n(ρ̂− ρ0)
)

d→ (Nν , Nρ),

where Nν and Nρ are independent, and if σ2
R is the variance of

∫
B(1 − x, x)dx, we have that

σ2
ν = c2σ2

R. ¤
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