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Competitive environments and protective behaviour

Peter Borm∗†, Arantza Estévez-Fernández∗,
M. Gloria Fiestras-Janeiro‡

Abstract

The class of two-person competition games is introduced and analyzed. For any
game in this class the set of Nash equilibria is convex, equilibrium strategies are
exchangeable, and all Nash equilibria lead to the same payoff vector. Competi-
tion games are compared to other competitive environments such as unilaterally
competitive games and rivalry games. Moreover, protective behaviour within com-
petitive environments is analyzed. For matrix games it is known that protective
strategies profiles exactly correspond to proper equilibria. It is shown that this
result can be extended to the class of unilaterally competitive games.

Keywords: competitive environments, unilaterally competitive games, rivalry games,
competition games, protective strategies.

JEL classification: C72

1 Introduction

In a matrix game, the set of Nash equilibria exhibits the following well-known characteristics:
all Nash equilibria lead to the same payoff vector, the set of Nash equilibria is a convex set, and
equilibrium strategies are exchangeable. Moreover, the set of proper equilibria (Myerson, 1978)
can be alternatively characterized by the Dresher procedure (Dresher, 1961) or by the notion
of protectiveness (Fiestras-Janeiro, Borm and van Megen, 1998). These characterizations do
not hold in the more general class of bimatrix games.

In the literature several classes of bimatrix games have been considered in which the Nash
equilibrium set retains (most of) the first three characteristics. We mention the class of almost
strictly competitive games (Aumann, 1961), the class of strictly competitive games (Friedman,
1983), the class of unilaterally competitive games (Kats and Thisse, 1992), and perhaps less
known the class of rivalry games (Rauhut, Schmitz and Zachow, 1979). Any strictly competi-
tive game is unilaterally competitive; any unilaterally competitive game is a rivalry game; and,
any rivalry game is almost strictly competitive. For every game in any of these classes, all
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Nash equilibria have identical payoff vectors and the set of Nash equilibria is a convex set. The
property of exchangeability is valid in all these classes except for the class of almost strictly
competitive games. Here, only Nash equilibria which are also twisted equilibria (Aumann,
1961) are exchangeable.

In this paper we introduce the class of competition games. This class is in between the class
of rivalry games and the class of almost strictly competitive games. For this class, the three
properties considered above are valid. We then focus on the possible relation between proper
equilibria and protective strategy profiles in competitive environments a la Fiestras-Janeiro
et al. (1998). It turns out that the set of protective strategy profiles coincides with the set of
proper equilibria in the class of unilaterally competitive games. In the class of rivalry games,
protective strategy profiles are (perfect) equilibria but not necessarily proper equilibria. In the
process we analyze relations between the set of equilibria of bimatrix games (A,B) and the
equilibria in the related matrix games (A,−A) and (Bt,−Bt). These relations will be used in
the proofs of the main theorems.

The paper is organized as follows. Basic definitions are provided in Section 2. In Sec-
tion 3 we define the different competitive environments under consideration and describe the
relationship between them. Section 4 is devoted to the relation between protective strategy
profiles and proper Nash equilibria.

2 Preliminaries

A bimatrix game (A,B) is a two person game (∆ (S1) , ∆ (S2) , π1, π2) in strategic form, where
A and B are two m×n matrices, S1 = {e1, . . . , em} and S2 = {f1, . . . , fn} are the pure strategy
sets of player 1 and player 2, respectively, and the payoff functions π1 and π2 are defined as1

π1 (p, q) = pAq and π2 (p, q) = pBq

for every pair of mixed strategies p ∈ ∆ (S1) and q ∈ ∆ (S2). A bimatrix game (A,B) where
B = −A is called a matrix game and it is usually denoted by A.

Let us consider a bimatrix game (A,B). A combination (p, q) ∈ ∆(S1)×∆(S2) is called a
strategy profile. For any p ∈ ∆(S1), the set

B2(p) = {q̄ ∈ ∆(S2) | pBq̄ = max
q∈∆(S2)

pBq}

is the set of best replies of player 2 against the strategy p of player 1; the set

W2(p) = {q̄ ∈ ∆(S2) | pAq̄ = min
q∈∆(S2)

pAq}

gives us the set of worst replies of player 2 (from the perspective of player 1) with respect
to the strategy p of player 1. With the obvious modifications one defines the sets B1(q) and
W1(q) for any q ∈ ∆(S2).

1We write pAq in stead of ptAq and pBq in stead of ptBq.
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We say that p̄ ∈ ∆(S1) is a completely mixed strategy if p̄i(= p̄(ei)) > 0 for all i = 1, . . . , m.
Analogously, we define completely mixed strategies for player 2.

A strategy profile (p̄, q̄) is called a Nash equilibrium if

p̄Aq̄ ≥ pAq̄ for all p ∈ ∆ (S1) and p̄Bq̄ ≥ p̄Bq for all q ∈ ∆ (S2) .

Hence, (p̄, q̄) is a Nash equilibrium for (A,B) if and only if p̄ ∈ B1 (q̄) and q̄ ∈ B2 (p̄).

A strategy profile (p̄, q̄) is called a twisted equilibrium (Aumann, 1961) if

p̄Aq̄ ≤ p̄Aq for all q ∈ ∆ (S2) and p̄Bq̄ ≤ pBq̄ for all p ∈ ∆ (S1) .

Hence, (p̄, q̄) is a twisted equilibrium for (A,B) if and only if p̄ ∈ W1 (q̄) and q̄ ∈ W2 (p̄).
E(A,B) will denote the set of Nash equilibria and TE(A, B) the set of twisted equilibria of
(A,B). Notice that the twisted equilibria of (A,B) exactly correspond to the Nash equilibria
of the bimatrix game (−B,−A).

The following example shows that E(A,B) ∩ TE(A, B) can be empty.

Example 2.1. Consider the bimatrix game (A,B) defined by

A =

(
3 5
3 2

)
and B =

(
2 5
3 4

)
.

Then, E(A,B) = {(e1, f2)} but (e1, f2) is not a twisted equilibrium since W1(f2) = {e2}. Con-
sequently, E(A,B) ∩ TE(A,B) = ∅. ¤

Next, we recall the definitions of the main concepts that we will use later on. Let (A,B)
be a bimatrix game.

A strategy profile (p, q) is a proper equilibrium (Myerson, 1978) if there exist sequences{(
pk, qk

)}
k∈N of strategies profiles and

{
εk

}
k∈N of real numbers such that lim

k→∞
εk = 0,

lim
k→∞

(
pk, qk

)
= (p, q), and for all k ∈ N,

(i) εk > 0 and
(
pk, qk

)
is a completely mixed strategy profile,

(ii) for all ei, ej ∈ S1 such that eiAqk < ejAqk we have pk
i ≤ εkpk

j ,

and

(iii) for all fr, fs ∈ S2 such that pkBfr < pkBfs we have qk
r ≤ εkqk

s .

We will denote by PROP(A,B) the set of proper equilibria of the bimatrix game (A, B).

Next, let p ∈ ∆(S1) be a strategy of player 1. We recursively define ar (p) ∈ R and
Sr

2 (p) ⊂ S2, r ∈ N, by
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(i) a1 (p) = min {pAfj | fj ∈ S2} and
S1

2 (p) = {fj ∈ S2 | pAfj = a1 (p)}.
(ii) for r > 1,

ar (p) = min

{
pAfj | fj ∈ S2 \

r−1⋃

k=1

Sk
2 (p)

}
and

Sr
2 (p) = {fj ∈ S2 | pAfj = ar (p)} .

Analogously, we define br (q) ∈ N and Sr
1 (q) ⊂ S1 for any q ∈ ∆(S2) and r ∈ N.

Now, consider p̄, p̂ ∈ ∆(S1). We say that p̄ protectively dominates p̂ if there exists l ∈ N,
such that

(i) ar (p̄) = ar (p̂) and Sr
2 (p̄) = Sr

2 (p̂) for all r < l

and

(ii) al (p̄) > al (p̂) or both al (p̄) = al (p̂) and Sl
2 (p̄)  Sl

2 (p̂).

A mixed strategy for player 1 is called protective in (A,B) if there does not exist a mixed
strategy which protectively dominates it. Similarly, protective strategies for player 2 can be
defined. By PROT1(A,B) and by PROT2(A,B) we denote the set of protective strategies
for player 1 and 2, respectively. Moreover, PROT(A,B) := PROT1(A,B) × PROT2(A, B)
consists of all protective strategy profiles.

The following result can be found in Fiestras-Janeiro et al. (1998).

Theorem 2.1. For every matrix game A, PROT(A) = PROP(A).

3 Competitive environments

First, we will recall the definitions of some two-person competitive environments, i.e. bimatrix
games with the features of matrix games, from the literature.

A bimatrix game (A,B) is called strictly competitive (Friedman, 1983) if for all strategy
profiles (p, q) and (p̄, q̄) we have

pAq ≥ p̄Aq̄ if and only if pBq ≤ p̄Bq̄.

A bimatrix game (A,B) is called unilaterally competitive (Kats and Thisse, 1992) if for all
strategy profiles (p, q) and (p̄, q̄) we have

pAq ≥ p̄Aq if and only if pBq ≤ p̄Bq (1)

and

pAq ≥ pAq̄ if and only if pBq ≤ pBq̄. (2)

4



Rauhut et al. (1979) introduced the perhaps less well known class of rivalry games. A
bimatrix game (A,B) is called a rivalry game if for all strategy profile (p, q) we have that
B1(q) = W1(q) and B2(p) = W2(p).

Finally, a bimatrix game (A,B) is called almost strictly competitive (Aumann, 1961) if
E(A, B)∩TE(A, B) 6= ∅ and {(pAq, pBq)|(p, q) ∈ E(A,B)} = {(pAq, pBq)|(p, q) ∈ TE(A,B)}.

Kats and Thisse (1992) investigated the relationships between three of the four classes of
games discussed above. The class of strictly competitive games is a proper subset of the class
of unilaterally competitive games; the class of unilaterally competitive games is a proper subset
of the class of almost strictly competitive games. The position of the class of rivalry games is
in between unilaterally competitive games and almost strictly competitive games. It is readily
shown that any unilaterally competitive game is a rivalry game and any rivalry game is almost
strictly competitive.

In general, a rivalry game is not necessarily unilaterally competitive2 as the following
example illustrates.

Example 3.1. Consider the bimatrix game (A,B) defined by

A =

(
8 0 2
12 4 8

)
and B =

(
4 8 2
0 4 0

)
.

The sets of best and worst replies for agent 1 against any q ∈ ∆ (S2) and for agent 2 against
any p ∈ ∆(S1) are given by

B1 (q) = W1 (q) = {e2} and B2 (p) = W2 (p) = {f2} .

Hence, this game is a rivalry game, but it is not unilaterally competitive because,

e2Bf1 = 0 = e2Bf3

while

e2Af1 = 12 > 8 = e2Af3. ¤

An almost strictly competitive game, in general, is not necessarily a rivalry game.

Example 3.2. Consider the 2× 2 bimatrix game (A,B) given by

A =

(
1 2
0 1

)
and B =

(
2 1
3 1

)
.

This game is almost strictly competitive because E (A,B) = TE (A,B) = {(e1, f1)}. However,
B1 (f2) = {e1} while W1 (f2) = ∆ (S1). Hence, (A, B) is not a rivalry game. ¤

2It can be shown that any 2× 2 rivalry game (A,B) is unilaterally competitive.
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We now propose a new competitive environment. A bimatrix game (A,B) is called a com-
petition game if E(A,B) = TE(A,B).

Clearly, any rivalry game is a competition game and any competition game is almost strictly
competitive. The class of competition games is larger than the class of rivalry games. Example
3.2 is a competition game which is not a rivalry game. Moreover, the class of almost strictly
competitive games is larger than the class of competition games as the following example
illustrates.

Example 3.3. Consider the 2× 2 bimatrix game (A,B) given by

A =

(
1 2
1 0

)
and B =

(
2 0
2 2

)
.

This game is almost strictly competitive since its set of Nash equilibria is given by the set
E (A,B) = ∆ (S1)× {f1} and its set of twisted equilibria is given by

TE (A,B) = {((p, 1− p) , f1) | p ∈ [1/2, 1]} .

Each Nash equilibrium and each twisted equilibrium leads to the payoff vector (1, 2). Clearly,
(A,B) is not a competition game. ¤

The proof of the following proposition is straightforward and therefore omitted.

Proposition 3.1. In the class of competition games, all Nash equilibria lead to the same
payoff vector, the set of Nash equilibria is convex and equilibrium strategies are exchangeable.

The set of Nash equilibria of a competition game (A,B) corresponds to the “intersection”
of the set of Nash equilibria of the related matrix games A and Bt.

Proposition 3.2. Let (A,B) be a competition game. Then,

(p, q) ∈ E(A,B) ⇔ (p, q) ∈ E(A) and (q, p) ∈ E(Bt).

Proof. We will show first the (⇒) part. Let (p, q) ∈ E(A,B). Then

pAq̄ ≥ pAq ≥ p̄Aq for every p̄ ∈ ∆(S1) and every q̄ ∈ ∆(S2)

where the first inequality holds because (p, q) is a twisted equilibrium, and the second holds
because (p, q) is a Nash equilibrium. Hence, (p, q) ∈ E(A). Analogously, one shows that
(q, p) ∈ E(Bt).

Next, we will show the (⇐) part. Let (p, q) ∈ E(A) and (q, p) ∈ E(Bt). Hence, pAq ≥ p̄Aq
for every p̄ ∈ ∆(S1) and pBq = qBtp ≥ q̄Btp = pBq̄ for every q̄ ∈ ∆(S2). It follows that
(p, q) ∈ E(A,B).

In Figure 1 we summarize the relations between the different types of competitive environ-
ments.
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Figure 1: Relationships among the competitive environments.

4 Protective behaviour in competitive environments

In this section we analyze the relations between protective strategy profiles and proper equi-
libria in competitive environments. We will first show that protective strategy profiles lead to
Nash equilibria in the class of rivalry games. In the proof of this result we use the following
lemma.

Lemma 4.1. Let (A,B) be a rivalry game. Then3,

(a) (p̄, q̄) ∈ E(A) if and only if (q̄, p̄) ∈ E(Bt).

(b) E(A,B) = E(A).

Proof. First, we will show (a). Let (p̄, q̄) be a Nash equilibrium for the matrix game A. Then,

p̄Aq̄ ≥ pAq̄ for all p ∈ ∆ (S1) and p̄Aq̄ ≤ p̄Aq for all q ∈ ∆(S2).

This implies that p̄ is a best reply to q̄ and q̄ is a worst reply to p̄ in the game (A,B). Since
(A,B) is a rivalry game, it also holds p̄ is a worst reply to q̄ and q̄ is a best reply to p̄. Hence,

pBq̄ ≥ p̄Bq̄ for all p ∈ ∆(S1) and p̄Bq̄ ≥ p̄Bq for all q ∈ ∆(S2).

It immediately follows that (q̄, p̄) is a Nash equilibrium for the matrix game Bt. By similar
reasoning, we obtain that if (q̄, p̄) ∈ E(Bt), then (p̄, q̄) ∈ E(A).

Part (b) is a direct consequence of part (a) and Proposition 3.2.

Theorem 4.2. For any rivalry bimatrix game (A,B), PROT(A,B) ⊂ E(A,B)4.

Proof. Let (A,B) be a rivalry bimatrix game. Let (p̂, q̂) ∈ PROT(A,B) and (p̄, q̄) ∈ E(A,B).
By definition of a protective strategy for player 1, p̂ is optimal in the matrix game A and
hence, (p̂, q̃) is a Nash equilibrium of the matrix game A for some q̃ ∈ ∆(S2). Since (A,B) is
a rivalry game and by Lemma 4.1, we know that (p̂, q̃) is also a Nash equilibrium of (A,B).

3In fact, it can be shown that for a rivalry game (A,B) we have PERF(A,B) = PERF(A), where
PERF(A,B) denotes the set of perfect equilibria (Selten, 1975) of the game (A,B).

4Using the equivalence between perfect equilibria and undominated Nash equilibria (van Damme, 1991) it
in fact can be shown that every protective strategy profile is perfect.
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Since the set of Nash equilibria of (A,B) satisfies the property of exchangeability, we find
that (p̂, q̄) ∈ E(A,B). Similarly, we obtain that (p̄, q̂) ∈ E(A,B). Applying the property of
exchangeability again, it follows that (p̂, q̂) ∈ E(A,B).

The following example shows that, within rivalry games, a protective strategy profile need
not be a proper equilibrium.

Example 4.1. Consider the 2× 4 bimatrix game given by

A =

(
4 8 2 0
8 4 1 0

)
and B =

(
16 8 2 32
8 16 4 32

)
.

One readily verifies that (A,B) is a rivalry game. Using the method of Borm (1992) one can
check that E(A,B) = conv{e1, e2}×{f4}, PROP(A,B) = {(1

2
e1+

1
2
e2, f4)} and PROT(A,B) =

{(e1, f4)}. Note that PROP(A) = {(e1, f4)} and PROP(A) 6= PROP(A,B). ¤

We will show that in the class of unilaterally competitive games, the set of proper equilibria
and the set of protective strategy profiles coincide. For this we use the following two Lemmas.

Lemma 4.3. In a unilaterally competitive bimatrix game (A,B),

PROP(A,B) = PROP(A).

Proof. Let (A,B) be a unilaterally competitive bimatrix game. First, we will show that
PROP(A,B) ⊂ PROP(A). Let (p̄, q̄) ∈ PROP(A,B) and let

{(
p̄k, q̄k

)}
k∈N and

{
εk

}
k∈N be a

pair of sequences satisfying the conditions in the definition for (p̄, q̄) to be a proper equilibrium
in (A,B). For every ei, ej ∈ S1 such that eiAq̄k < ejAq̄k, it holds p̄k

i ≤ εkp̄k
j . Next, take

fi, fj ∈ S2 such that p̄k(−A)fi < p̄k(−A)fj. Then, it holds p̄kAfi > p̄kAfj and since (A,B) is
unilaterally competitive it holds p̄kBfi < p̄kBfj and hence q̄k

i ≤ εkq̄k
j . Then,

{(
p̄k, q̄k

)}
k∈N and{

εk
}

k∈N also satisfy the conditions for (p̄, q̄) to be a proper equilibrium in the matrix game A.

Next, we will prove PROP(A,B) ⊃ PROP(A). Let (p̄, q̄) ∈ PROP(A) and let
{(

p̄k, q̄k
)}

k∈N
and

{
εk

}
k∈N be a pair of sequences satisfying the conditions in the definition for (p̄, q̄) to be

a proper equilibrium of A. For every ei, ej ∈ S1 such that eiAq̄k < ejAq̄k, it holds p̄k
i ≤ εkp̄k

j .
Next, take fi, fj ∈ S2 such that p̄kBfi < p̄kBfj. Using the fact that (A, B) is unilaterally
competitive we have p̄kAfi > p̄kAfj, or equivalently p̄k(−A)fi < p̄k(−A)fj and hence q̄k

i ≤
εkq̄k

j . Then,
{(

p̄k, q̄k
)}

k∈N and
{
εk

}
k∈N also satisfy the conditions for (p̄, q̄) to be a proper

equilibrium for (A,B).

Lemma 4.4. Let (A,B) be a unilaterally competitive game. Then,

PROT(A, B) = PROT1(A)× PROT2(A).

Proof. Note that, by definition, we only need to show that PROT2(A,B) = PROT2(A). For
this, it suffices to show that the set of protectively dominated strategies for player 2 in the
bimatrix game (A,B) and in the matrix game A coincide. To avoid confusion we will add the
underlying game in our notations and write e.g. Sr

1(q; (A,B)) instead of Sr
1(q) and br(q; (A,B))

instead of br(q).
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First, we will show by induction to r that Sr
1(q; A) = Sr

1(q; (A,B)) for every q ∈ ∆(S2) and
r ∈ N. Let q ∈ ∆(S2).

Consider r = 1. Then,

ei ∈ S1
1(q; (A,B)) ⇔ eiBq ≤ ejBq, for every ej ∈ S1

⇔ eiAq ≥ ejAq, for every ej ∈ S1

⇔ ei(−A)q ≤ ej(−A)q, for every ej ∈ S1

⇔ ei ∈ S1
1(q; A)

where the second equivalence follows from the fact that (A,B) is unilaterally competitive.
Let us assume that Sr

1(q; A)=Sr
1(q; (A, B)) for r = 1, . . . , t−1. Let us take ei∈St

1(q; (A,B)).
Then, ejBq < eiBq and ej(−A)q < ei(−A)q for every ej ∈ ∪t−1

r=1S
r
1(q; (A,B)) = ∪t−1

r=1S
r
1(q; A).

Moreover,

eiBq = ekBq and hence ei(−A)q = ek(−A)q, for every ek ∈ St
1(q; (A,B))

eiBq < ekBq and hence ei(−A)q < ek(−A)q, for every ek ∈ Sr
1(q; (A,B)) with r > t.

We may conclude that ei∈St
1(q; A). In a similar way one can prove that St

1(q; A)⊂St
1(q; (A,B)).

Note that br(q; (A,B)) = eiBq and br(q; A) = −eiAq for every ei ∈ Sr
1(q) and r ∈ N.

Now, let q ∈ ∆(S2) be a protectively dominated strategy for player 2 in (A,B). Take
q̄ ∈ ∆(S2) such that q̄ protectively dominates q. By definition, there exists an l ∈ N such that

(i) For r < l, Sr
1(q̄; (A,B)) = Sr

1(q; (A, B)) and eiBq̄ = ejBq for every ei, ej ∈ Sr
1(q̄; (A,B)).

and

(ii) Either eiBq̄ > ejBq for all ei ∈ Sl
1(q̄; (A,B)) and ej ∈ Sl

1(q; (A,B)), or
eiBq̄ = ejBq for all ei ∈ Sl

1(q̄; (A,B)), ej ∈ Sl
1(q; (A,B)), and Sl

1(q̄; (A,B)) Sl
1(q; (A,B)).

Using the fact that (A,B) is unilaterally competitive game and Sr
1(q; (A, B)) = Sr

1(q; A)
for all r ∈ N we find

(i’) For r < l, Sr
1(q̄; A) = Sr

1(q; A) and ei(−A)q̄ = ej(−A)q for every ei, ej ∈ Sr
1(q̄; A).

and

(ii’) Either ei(−A)q̄ > ej(−A)q for all ei ∈ Sl
1(q̄; A) and ej ∈ Sl

1(q; A), or
ei(−A)q̄ = ej(−A)q for all ei ∈ Sl

1(q̄; A) and ej ∈ Sl
1(q; A), and Sl

1(q̄; A)  Sl
1(q; A).

Hence, q̄ protectively dominates q in A. Similarly, one derives that every protectively domi-
nated strategy for player 2 in A is also protectively dominated in (A,B).

From Lemma 4.3, Lemma 4.4, and the result in Fiestras-Janeiro et al. (1998), one obtains

Theorem 4.5. For any unilaterally competitive game (A,B)

PROP(A,B) = PROT(A,B).
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