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Abstract

For the familiar (R; s; S) inventory control system only approximate expres-

sions exist for the …ll rate, i.e. the fraction of demand that can be satis…ed from

stock. Best-known are the approximations derived from renewal theory by Tijms

& Groenevelt (1984), holding under speci…c conditions; in particular, S ¡s should

be reasonably large. They considered, more speci…cally, the cases of normally and

gamma distributed demand.

Here, an exact expression for the …ll rate is derived, holding generally in the

situation that demand has a gamma distribution with known integer-valued pa-

rameters, while lead time is constant. This formula is checked through extensive

simulations; besides, detailed comparisons are made with Tijms & Groenevelt’s

approximation.

Key words: …ll rate, gamma demand, inventory control, (R; s; S)-policy, sim-

ulation
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1 Introduction

One of the most frequently met inventory control methods is the (R; s; S) system: in-

ventory is checked at review moments, R time-units apart; only if the inventory position

is at or below s, an order up to level S is placed. R is called the review period, s

the reorder point. Orders are delivered with a …xed delay: the lead time L: Finally,

backlogging of excess demand is assumed.

For evaluating inventory control methods, both cost-based and material perfor-

mance measures can be found in the literature. Since cost factors are notoriously hard

to determine, we will stick to the (European) tradition of material-based service mea-

sures: throughout this paper, our performance measure will be the …ll rate ¯; i.e. the

fraction of total demand that can be satis…ed immediately from stock at hand.

So, demand is the only stochastic feature in our model. In earlier literature, demand

often is assumed to be normally distributed; however, this distribution has the obvious

restriction of being symmetric and the even more obvious disadvantage of taking negative

values. Hence, following Burgin (1975) and Strijbosch & Moors (1999), demand will be

assumed here to follow a (stationary) gamma-process ¡(¸; ½t); meaning that

² demand during any interval of length t has distribution ¡(¸; ½t);

² demands during disjoint time intervals are independent.

Since 1=¸ is just a scale parameter, for the moment it will be taken equal to 1; the shape

parameter ½ will be assumed to take only integer values, both for demand during review

period R, and during lead time L: (So, in fact Erlang instead of gamma distributions

are considered.)

Note the consequence of stochastic demand: not every review moment results in an

order. Therefore, the number of review periods between subsequent orders is a random

variable. Consequently, the length of a replenishment cycle - the interval between two

deliveries - is stochastic too.

The remaining sections of this paper can be summarized as follows. In Section 2 our

notation is introduced, describing the (R; s; S) model in detail. Section 3 presents our

main result: an exact expression for the …ll rate ¯, attained under this model for given

values of R; L; s and S. Outcomes are presented in Section 4, together with extensive

simulation results, while four special cases are considered in Section 5. Section 6 presents

the comparison with the approximations of Tijms & Groenevelt (1984). The …nal Section

7 discusses a research plan involving important applications of these …ndings. From the
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function ¯(R; L; s; S), it now is very easy to calculate the reorder point s leading to a

prescribed …ll rate ¯. Recent experience (Strijbosch & Moors, 1999) has shown that it

then is easy to …nd an approximate relation between ¯ and s that is simple to use for

practitioners. We plan to execute this follow up programme in the near future.

2 Notation

First, the (R; s; S) system will be described in detail, introducing our notation. Review

moments are denoted by ri (i = 1; 2; :::); ri+1 = ri + R. Some of these ri are order

moments: only if the inventory position is smaller than s; an order (up to level S) is

placed. (The inventory position is de…ned as the net stock plus all orders that have

not yet been delivered.) Orders are delivered after a delay of length L; hence, the time

between two subsequent order moment (and between two subsequent deliveries) is a

multiple kR of R. In other words, kR is the length of this replenishment cycle (RC).

Per RC, net stock reaches its minimum just before delivery; if this minimum is

negative, a shortage occurs. However, measuring shortage just by means of those minima

leads to double counts: they occur if net stock remains negative after the subsequent

delivery. Denoting the net stock at a speci…c delivery moment by n, and just before

delivery by n¡, the shortage t of this RC will be de…ned as

t = [¡n¡]+ ¡ [¡n]+

where

x+ =

(
x for x > 0

0 for x · 0

A shortage can occur only if demand between an order moment and the second next

delivery exceeds S; this period of length kR + L will be called an extended replishment

cycle (ERC). Figure 2.1. shows these notations. Note that t1 and t3 are measured from

the horizontal axis downwards; only for t2 the correction term [¡n]+ is relevant.



4

Figure 2.1 (R; s; S)-system; L < R.
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Note that our de…nition of t di¤ers just slightly from the usual one; although the same

expression is used by both, standardly the second term [¡n]+ refers to the start of the

preceeding RC. Of course, in the addition process di¤erences cancel our; since we will

be interested only in average shortage, both de…nitions might be used. We prefer ours,

because it refers to a single moment in time.

In denoting random variables, corresponding capital letters will be used; e.g., for a

random RC, K will denote its number of review periods. Hence, a possible shortage T

at the end of a random RC is given by

T = [¡N¡]+ ¡ [¡N ]+ (2.1)

It should be stressed that this formula holds very generally: also for L ¸ R, and for any

demand distribution. Since we assume stationary demand, the distribution of demand

during any time-interval only depends on the length of the interval. The following

notations will be used:

Xk : demand during k review periods,

Z : demand during lead time
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Of course X0 = 0: Then, (2.1) can be rewritten as

T = [XK + Z ¡ S]+ ¡ [Z ¡ S]+

In the sequel, only the average shortage E(T ) will be needed. To evaluate that expec-

tation, conditioning on the value of K will be used. De…ning

pk = P (K = k); k 2 N

then gives the equally general expression

E(T ) =
1P

k=1

pkE[Xk + Z ¡ S]+ ¡ E[Z ¡ S]+ (2.2)

The hardest nut to crack is the (conditional) distribution of Xk +Z (demand in an ERC

of given RC-length k). This distribution is derived in Section 3, leading to a formula

for E(T ) that is suitable for computation. Then, the performance measure ¯ is found

easily: denoting the expected demand during a review period by ¹R; this …ll rate equals

¯ = 1 ¡ E(T )

¹RE(K)
(2.3)

The general expressions (2.2) and (2.3) will be evaluated now for stationary gamma

demand.

3 The exact …ll rate for gamma demand

The assumption that demand follows a stationary gamma process implies that in any

period of length t demand has distribution ¡(¸; ½t) with parameters ¸ and ½: Since 1=¸

is simply a scale-parameter, the simplifying assumption ¸ = 1 will be used from here

on. Normalizing ½t by equating it to b for a single review period then leads to

Xk » ¡(1; kb)

Z » ¡(1; d = bL=R)

)
(3.1)

For disjoint time-intervals, these variables are independent.

The density and the cumulative distribution function of Y will be denoted by fb

and Fb where

fb(y) =
yb¡1

¡(b)
e¡y; y ¸ 0 (3.2)
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The probability distribution of K follows. Introducing q = S ¡ s and using the convo-

lution property of gamma distributions, the event

fK = kg = fXk¡1 · qg \ fXk > qg

has probability

pk = P (K = k) = F(k¡1)b(q) ¡ Fkb(q)

since fXk · qg implies fXk¡1 · qg. For integer-valued b, this leads to

pk =
bP

j=1

qkb¡j

(kb ¡ j)!
e¡q; k 2 N (3.3)

by use of the familiar property

Fk+1(q) = Fk(q) ¡ qk

k!
e¡q = 1 ¡

kP
i=0

qi

i!
e¡q (3.4)

Next, the (conditional) distribution of demand Xk+ Z during an ERC with …xed length

k will be derived in …ve steps; consider …rst the case k ¸ 2:

(i) Under the condition A = fXk¡1 · qg, the conditional density fA of Xk¡1 satis…es

fA(x) _ f(k¡1)b(x); 0 · x · q

where _ denotes proportionality

(ii) Taking the convolution with X1 gives the conditional density gA of Xk:

gA(v) =
R

fA(x)fb(v ¡ x)dx; 0 · x · q; v ¡ x ¸ 0

_
mR
0

fk¡1)b(x)fb(v ¡ x)dx; v ¸ x

with m = min (q; v):

(iii) The additional condition B = fXk > qg implies m = q; hence, the conditional

density gk of Xk under fK = kg = A \ B becomes

gk(v) = gA\B(v) _
qR
0

f(k¡1)b(x)fb(v ¡ x)dx; v ¸ q

(iv) Now using (3.2), repeated partial integration gives for integers b

gk(v) _ e¡v
qR
0

x(k¡1)b¡1(v ¡ x)b¡1dx

_
bP

j=1

qkb¡j

(kb ¡ j)!
fj(v ¡ q); v ¸ q
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(v) By taking convolutions once more, the conditional density hk of U = Xk + Z under

fK = kg …nally follows:

hk(u) =
1

pk

bP
j=1

qkb¡j

(kb ¡ j)!
fd+j(u ¡ q); u ¸ q (3.5)

It is easy to check that this expression holds for k = 1 as well.

Now, (2.2) implies

E(T ) =
1P

k=1

pk

1R
S

(u ¡ S)hk(u)du ¡
1R
S

(u ¡ S)fd(u)du

Introducing for a > 0

va(x) =
1R
x

(u ¡ x)fa(u)du

and using (3.3), this leads to the …nal expression

E(T ) = e¡q
bP

j=1

µ 1P
k=1

qkb¡j

(kb ¡ j)!

¶
vd+j(s) ¡ vd(S) (3.6)

Since ¹R = b, an exact expression for the …ll rate ¯ follows at once. Note that the

relation

va(x) = a[1 ¡ Fa+1(x)] ¡ x[1 ¡ Fa(x)]

enables fast calculation of (3.6).

4 Outcomes and simulation results

A MATLAB program was written to calculate the expected loss from (3.6) and the cor-

responding …ll rate from (2.3), for given values of the foursome (b; d; s; q). Furthermore,

an extremely fast Delphi program was developed to simulate our (R; s; S) control sys-

tem. The simulation results were used to check our derivations: besides, this simulation

program is necessary in case of non-integer valued b and d: For this reason, the core of

our Delphi program is given in Appendix A: All our simulation experiments concerned

30,000 review periods; of course, the number of RC’s depends on E(K):

Table 4.1 shows detailed theoretical and simulated results (indicated by ^) for twelve

selected values of (b; d; s; q): (Note that d=b 2 N implies that delivery coincides with a

review moment; in that case, shortage, delivery and review are determined in this order.)
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The last columns give the 95%- con…dence interval for the expected shortage, based on

the variance of T , estimated from the simulation runs.

Table 4.1 Fill rate ¯ for (R; s; S) control system.

Parameters Theory Simulation

95% CI for E (T )

b d s q ¯ E (K) E (T ) b̄ \E (K) \E (T ) Lower Upper

1 1 2 0 0.5940 1.0000 0.4060 0.5996 1.0000 0.3980 0.3890 0.4070

1 2 2 0 0.3233 1.0000 0.6767 0.3243 1.0000 0.6729 0.6622 0.6835

2 1 2 0 0.4587 1.0000 1.0827 0.4564 1.0000 1.0901 1.0748 1.1054

2 2 2 0 0.2331 1.0000 1.5338 0.2323 1.0000 1.5368 1.5205 1.5531

1 1 2 1 0.7542 2.0000 0.4916 0.7585 2.0029 0.4807 0.4657 0.4957

1 2 2 1 0.5155 2.0000 0.9691 0.5165 2.0088 0.9672 0.9466 0.9877

2 1 2 1 0.6590 1.2838 0.8757 0.6572 1.2840 0.8826 0.8659 0.8992

2 2 2 1 0.4331 1.2838 1.4556 0.4311 1.2872 1.4658 1.4457 1.4859

1 1 2 2 0.8257 3.0000 0.5230 0.8277 3.0078 0.5151 0.4956 0.5346

1 2 2 2 0.6306 3.0000 1.1081 0.6325 3.0076 1.1008 1.0731 1.1286

2 1 2 2 0.7528 1.7546 0.8676 0.7515 1.7505 0.8723 0.8525 0.8921

2 2 2 2 0.5599 1.7546 1.5445 0.5590 1.7485 1.5434 1.5183 1.5685

The simulation results clearly con…rm our theoretical derivations; e.g., all twelve con…-

dence intervals indeed contain E(T ):

The above calculations were repeated for all combinations of parameter values

b; d; s 2 f1; 2; :::; 10g and q 2 f0; 1; :::; 20g: The maximum di¤erence between ¯ and
^̄ proved to be 1%; j¯ ¡ ^̄j < 0:4% held for 95% of all 21,000 combinations. Figure 4.1

summarizes some typical (exact) results.
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Figure 4.1 Fill rate ¯ for various values of (b; d; s; q):
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The next section considers some special cases for formula (3.6), in particular the

cases R = 0; s = S; b = 1 and L = 0:

5 Special cases

In case R = 0; the (R; s; S) control system is simpli…ed to the continous (s; S) review

system. Formula (3.6) now simpli…es to the straightforward expression

E(T ) = vd(s) ¡ vd(S) = E[Z ¡ s]+ ¡ E[Z ¡ S]+

Since demand during any RC now equals q; (2.3) must be replaced by

¯ = 1 ¡ E(T )

q

Figure 5.1 shows its typical behaviour.
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Figure 5.1 Fill rate ¯ for (s; S) control system (R = 0).
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In case s = S; or q = 0; the simpler (R; S) control system is obtained. Since now

P (k = 1) = 1; (3.6) reduces to

E(T ) = vd+b(S) ¡ vd(S) = E[X1 + Z ¡ S]+ ¡ E[Z ¡ S]+

which is obvious again; compare de Kok (1990) or Strijbosch & Moors (1999). The

behaviour of

¯ = 1 ¡ [vd+b(S) ¡ vd(S)]=b

is shown in Figure 5.2.
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Figure 5.2 Fill rate ¯ for (R; S) control system (q = 0).
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In case b = 1, (3.6) is reduced to

E(T ) = vd+1(s) ¡ vd(S) (5.1)

It can be derived directly from the general starting formula

E(T ) = E[Xk + Z ¡ S]+ ¡ E[Z ¡ S]+ (5.2)

as follows. If ri denotes an order moment, net stock at the preceeding review moment

ri¡1 can be written as

S ¡ XK¡1 = Y + s

with Y ¸ 0. Denoting demand between ri¡1 and ri by X1 then gives

E[XK + Z ¡ S]+ = E[X1 ¡ Y + Z ¡ sjX1 ¸ Y ]+ (5.3)

Since b = 1; X1 has the (standard) exponential distribution Ne(1); with the character-

istic property that its conditional distribution under condition fX1 ¸ cg is Ne(1) again.

Consequently, under condition fX1 ¸ Y g; the undershoot U = X1 ¡ Y is a Ne(1) -

distributed variable as well. Combining (5.2) and (5.3) leads to

E(T ) = E[U + Z ¡ s]+ ¡ E[Z ¡ S]+

which is (5.1).

In case L = 0, …nally, the parameter d disappears from (3.6). Figure 5.3 shows

the behaviour of ¯ for this situation.
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Figure 5.3 Fill rate ¯ for (R; s; S) control system with L = 0.
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Note that ¯ is not always increasing in q. This is probably due to the discreteness of

RC length K: an increase in q may have as consequence that ordering is postponed for

another review period.

6 Comparison with the approximations of Tijms &

Groenevelt (1984)

Various computational methods for determining approximately optimal (s; S) control

rules exist in the literature, with both periodic and continuous review. As was already

pointed out by Bashyam and Fu (1998), it has been widely recognized that penalty costs,

and in particular, the cost of losing customer goodwill, are di¢cult to assess. Therefore,

many papers deal with the problem to determine an (s; S) pair that minimizes total setup

and holding costs under the constraint that the solution satis…es a desired customer

service level. Service level may be de…ned as the probability (®) of not being out of

stock in a given period, or as the fraction (¯) of demand statis…ed directly from the

shelf, or as the fraction (1 ¡ °) of demand being on backorder each period. Two papers

on service level constraints are most relevant for the analysis in the present paper. First,

Schneider and Rinquest (1990) develop a Service Level Power Approximation, using a

°-service level constraint and assuming …xed lead times. Further, Tijms and Groenevelt

(1984) (TG) develop tractible approximations for the periodic and continuous review

(s; S) system, using a ¯-level constraint and allowing stochastic lead times. Both papers

are important contributions for the practitioner. Due to the use of asymptotic results
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from renewal theory in order to approximate the undershoot distribution, an important

limitation of both approaches is that the di¤erence q = S ¡s should be su¢ciently large

compared to the average demand during a review period; in our notation they demand:

2q ¸ 3b (6.1)

Our analysis in Section 3 does not need the undershoot distribution, thanks to the con-

ditioning on the length of the RC. Consequently, we were able to …nd exact expressions

for the expected shortage and the …ll rate. That makes it interesting to compare the

approximations of TG with our exact results.

The key result in TG is their formula (7), giving an approximation for the …ll rate,

holding for general demand patterns and stochastic lead times, provided condition (6.1)

is satis…ed and the required service level is high. (Note that for deterministic lead times,

this formula was already derived by Schneider (1978, 1981) by means of asymptotic

results of Roberts (1962).) Denoting this approximate value by ¯T and adopting our

notation, their results can be rewritten for our stationary gamma demand as

¯T = 1 ¡ [
1R
s

(x ¡ s)2fb+d(x)dx ¡
1R
s

(x ¡ s)2fd(x)dx] /[(2q + b + 1)b] (6.2)

Using

1R
s

(x ¡ s)2f½(x)dx = ½(½ + 1)[1 ¡ F½+2(s)] ¡ 2½s[1 ¡ F½+1(s)] + s2[1 ¡ F½(s)] (6.3)

(6.2) can easily be calculated.

Figure 6.1 shows the errors (in percentages) in the TG approximations, ordered

according to 2q ¡ 3b; the crucial quantity for the applicability of ¯T : Of the previously

used 21,000 combinations of values of (b; d; s; q); only those leading to ¯ > 0:6 are

presented. Since high values of ¯ are important in practice, separate pictures for ¯ < 0:9

and ¯ > 0:9 are given.
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Figure 6.1 Deviations of approximate ¯T from exact ¯:

The top picture reveals that for intermediate ¯-values ¯T may be 46% too low and 15%

too high, especially for negative 2q ¡ 3b: Even if (6.1) is not violated, ¯T may be up to

10% too low. For ¯ > 0:9; deviations of 6% in both directions may occur; however, if

(6.1) is not violated, the deviation is at most 0.6%.

A more theoretical comparison is enabled by noting that (6.3) may be rewritten as

1R
s

(x ¡ s)2f½(x)dx = ½v½+1(s) ¡ sv½(s) (6.4)

It can be checked directly that the functions va satisfy the recursive relation

(a + 1)va+2(x) = (a + x + 2)va+1(x) ¡ xva(x) (6.5)
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Repetitive use then leads to

1R
s

(x ¡ s)2fb+d(x)dx = 2
bX

j=1

vd+j(s) + dvd+1(s) ¡ svd(s)

whence (6.2) can be rewritten for Erlang distributed demand as

¯T = 1 ¡
1
b

Pb
j=1 vd+j(s)

q + (b + 1)=2
(6.6)

On the other hand, introducing for j = 1; 2; :::; b

®j = e¡q
1X

k=1

qkb¡j

(kb ¡ j)!

for q > 0 (and ®b = 1 for q = 0) leads to

bE(K) = q +
bX

j=1

j®j

so that (2.3) now may be written as

¯ = 1 ¡
Pb

j=1 ®jvd+j(s) ¡ vd(S)

q +
Pb

j=1 j®j

(6.7)

So, TG approximates the weighted mean of the vd+j(s) by their simple average. Note

that substituting ®j = 1=b in (6.7) gives (6.6) - apart from the term vd(S), but of course,

the ®j are strictly increasing.

7 Summary and further research

In this paper an exact formula has been derived for the average shortage in a replenish-

ment cycle of an (R; s; S) inventory control system where demand follows a stationary

gamma process. It is assumed that lead time is deterministic and that demand during a

review period and during the lead time have integer valued shape parameters. Extensive

Monte Carlo experiments con…rmed these theoretical …ndings.

To our knowledge the best solution up to now for this problem was the approxi-

mation derived by Schneider (1978, 1981) and Tijms & Groenevelt (1984). For gamma

distributed demand, we con…rmed that their approximations are satisfactory, in partic-

ular for high service levels, and provided that the condition q > 1:5b is satis…ed: for

¯ > 0:9, we found deviations j¯T ¡ ¯j of at most 0.6%. Note however, that even such
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small deviations may be of importance when very high service levels are required. To

illustrate this, the lower half of Figure 6.1 is presented in a slighty di¤erent way: Figure

7.1 shows relative deviations 100 (¯T ¡ ¯) = (1 ¡ ¯) up to §14% even if (6.1) is satis…ed.

Figure 7.1 Deviations of approximate ¯T from exact ¯, relative to 1 ¡ ¯:

In fact, we derived in this paper the function ¯(b; d; s; q): From that, numerical

calculation of s(b; d; ¯; q) is easy and straightforward; e.g. by means of the MATLAB

procedure fzero: As an illustration, Table 7.1 shows some results.
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Table 7.1 Exact reorder point s in (R; s; S) control system for ¯ = 0:95.

b d q = 1 q = 5 q = 9

1 1 4:0378 2:7636 2:1054

2 1 4:8566 3:5058 2:8046

1 2 5:5833 4:2100 3:4596

2 2 6:3248 4:8941 4:1220

Results like this are useful in practice, when a given service level ¯ is wanted, given b; d

and q: Standardizing s immediately gives the safety factor c:

c = (s ¡ ¹R+L)=¾R+L = (s ¡ b ¡ d) =
p

b + d

where ¹R+L and ¾R+L denote the mean and standard deviation, respectively, of demand

during review plus lead time. It is dimensionless and hence independent of the scale

parameter 1=¸; consequently, safety factors are applicable if demand follows a general

gamma process ¡ (¸; ½t) :

Although the necessary calculations are indeed reasonably simple, they may be

forbidding for large-scale application. Hence, at the moment we are looking for an

even simpler (approximative) numerical procedure. This will be done in the spirit of

Strijbosch & Moors (1999), where highly accurate approximate safety factors for the

(R; S) control system were developed, using regression techniques. More precisely, from

suitable sets of values of (¯; b; d; s; q) a regression function

bc = f(b; d; ¯; q)

will be derived for broad ranges of the regressors.

This approach is hampered by an important limitation of our paper: our results

only hold for integer valued shape parameters. There, our simulation program comes in

handy: it gives simulated values ^̄(b; d; s; q); for b; d =2 N too. (If necessary the present

precision may be improved by using runs longer than 30,000 review periods.) Including

these simulated ^̄ in the regression analysis then leads to approximations

ec = f(b; d; ¯(^̄); q)

holding for intervals of b and d values.

The resulting approximation will have three important properties: …rstly, program-

ming the calculation is reduced to a few simple lines of code; secondly, calculation time
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is reduced to a (very small) fraction of the time necessary to solve s from (5.2), which

is crucial when large numbers of stock keeping units are involved; thirdly, desired preci-

sion can be adapted by narrowing or broadening the ranges of the inputparameters. By

approximating the dimensionless safety factors, the approximations are appropriate for

gamma distributions with scale parameter unequal to one. As is described in Strijbosch

& Moors (1999), the loss of precision can easily be kept lower than the loss of precision

due to the necessary estimations of demand parameters in practice.

Appendix A

Simulation of periodic review (R; s; S)-system using gamma demand distribution and

discreet event simulation.

Additonal notation:

g = d
b

= L
R

xi : demand during [ri; ri + R (g ¡ bgc));

xi is a realisation of XL¡bgcR » ¡ (1; d ¡ bbgc)

yi : demand during [ri + R (g ¡ bgc) ; ri+1);

yi is a realisation of XR¡L+bgcR » ¡ (1; b ¡ d + bbgc)

zi = xi + yi demand during [ri; ri+1)

ii¡ : inventory position immediately before ri

ii : inventory position on ri

ni¡ : net stock immediately before ri + L

ni : net stock on ri + L (immediately after delivery, if any)

oi =

(
1 if ii¡ < s do order at ri

0 if ii¡ ¸ s don’t order at ri

)
wi =

Pbgc
j=1 zi¡1+j + xi+bgc : demand in [ri; ri + L)

Calculation scheme:

i1¡ = s + q = S

ii¡ = ii¡1 ¡ zi¡1; (i > 1)

ii =

(
s + q if oi = 1

ii¡ if oi = 0

)
ni¡ = ii¡ ¡ wi

ni = ni¡ + (s + q ¡ ii¡) oib̄ = 1 ¡ ¡P
i

£
(¡ni¡)+ ¡ (¡ni)

+¤¢
=

P
i zi
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