
Center
for

Economic Research

No. 2000-42

COOPERATIVE GAMES ARISING FROM
INFORMATION SHARING SITUATIONS

By Rodica Brânzei, Stef Tijs and Judith Timmer

April 2000

ISSN 0924-7815

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6794572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Cooperative Games Arising From
Information Sharing Situations

Rodica Brânzei1, Stef Tijs2 and Judith Timmer2,3

Abstract

Relations are established between information sharing (IS) situations and IS–games on one

hand and information collecting (IC) situations and IC–games on the other hand. It is shown

that IC–games can be obtained as convex combinations of so-called local games. Properties

are described which IC–games possess if all related local games have the respective properties.
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1 Introduction

In Brânzei, Tijs and Timmer (2000) information collecting (IC) situations and corresponding IC–

games were introduced. They modelled situations where an action taker in an uncertain situation can

improve his action choices by gathering information from players more informed about the situation.

The problem of sharing the gains, when cooperating with informants, is tackled by constructing the

corresponding IC–game and considering solutions developed for such games.

In Slikker, Norde, and Tijs (2000) information sharing (IS) situations were introduced and cor-

responding IS–games. They modelled situations where all players are action takers in an uncertain

situation and where they can gain by sharing their information about the situation.

It turned out that the family of 0–normalized IC–games for a fixed action taker and fixed player

set coincides with the cone of 0–normalized monotonic games where the action taker is a veto player

(cf. Theorem 3.5 in Brânzei et al. (2000)). In Slikker et al. (2000) it was proved that the class of

information sharing games coincides with the class of cooperative games for which a population

monotonic allocation scheme exists.

In Section 2 of this paper we study relations between IC–situations and IS–situations and the

corresponding games. We show that an n-person IS–game can be seen as the sum of n IC–games.

Further we introduce local games corresponding to IC–situations and show that an IC–game is a

suitable convex combination of the local games. Properties as convexity and k-concavity for the local

games are inherited by the IC–games. For k–symmetric games a geometric method is described to

discover whether the game is k-concave, convex or none of them. In Section 3 special attention is paid

to total big boss games and bi–monotonic allocation schemes. It turns out that k-concave IC–games

are total big boss games.

2 Information collecting and information sharing situations and games

We start with recalling (and modifying a bit) the notions IC–situation, IC–game, IS–situation and

IS–game introduced in Brânzei et al. (2000) and Slikker et al. (2000).

An IC–situation is a tuple

<N, k, Ak, (Ω, µ), {Ii | i ∈ N}, rk>

Here N = {1, 2, ..., n}, Ak and Ω are non–empty finite sets, k ∈ N , µ is a positive probability

distribution on Ω (i.e. µ(ω) > 0 for all ω ∈ Ω and
∑
ω∈Ω µ(ω) = 1). For each i ∈ N , Ii is a partition

of Ω and rk : Ω×Ak −→ IR is a real valued function on Ω× Ak.

The set N is called the set of players, player k ∈ N is the action taker, Ω is the set of possible

states (relevant for the action taker), µ is the prior probability distribution and Ii is the information

partition of player i. Such an IC–situation corresponds to the following decision problem for player

k. He has to choose an action ak from his action set Ak, under uncertainty of the true state, leading to

a reward rk(ω, ak) if ω is the true state. Before choosing his action he can collect information from
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all other players or a subset of players (where monetary compensations for delivering information can

be made). If player k works alone his expected reward will be

vk({k}) =
∑
I∈Ik

max
ak∈Ak

∑
ω∈I

rk(ω, ak)µ(ω).

Collecting information from S \ {k} ⊂ N , the expected payoff is:

(1) vk(S) =
∑
I∈IS

max
ak∈Ak

∑
ω∈I

rk(ω, ak)µ(ω).

Here IS is the partition of Ω consisting of the non–empty sets of the form ∩i∈SJi, where Ji ∈ Ii for

all i ∈ S. If we also define

(2) vk(S) = 0 for all S ⊂ N \ {k}

we obtain the cooperative game < N, vk > which we call the IC-game corresponding to the above

IC-situation.

Example 1. (Catch the monster; one trial) Consider the IC-situation

<N, k, Ak, (Ω, µ), {Ii | i ∈ N}, rk>

where N = {1, 2, 3, 4}, k = 4, Ω = A4 = {0, 1}3, µ(ω) = 1/8 for each ω ∈ Ω, I4 = {Ω},

Ii = {{x ∈ Ω | xi = 0}, {x ∈ Ω | xi = 1}} for i ∈ {1, 2, 3}, r4(ω, a) = 160 if ω = a, r4(ω, a) = 0

otherwise.

This corresponds to a situation of an apartment with eight rooms, 000, 100, 010, 001, 110, 101,

011, and 111, where in one of the rooms a monster is hidden. Player 4 has to choose one room and

if the monster is in that room he obtains a reward of 160; otherwise there is no reward. He can make

use of the information of players 1,2,3 or not. Player i ∈ {1, 2, 3} knows the i-th coordinate of the

room number. One can calculate the corresponding IC-game < N, v > and obtainsN = {1, 2, 3, 4},

v(S) = 0 for all S ⊂ N with 4 /∈ S, v({4}) = 20, v({4, i}) = 40 for i ∈ {1, 2, 3}, v({4, i, j}) = 80

if i, j ∈ {1, 2, 3} and i 6= j, and v(N ) = 160.

Example 2. (Catch the monster; three trials) Take the situation as in Example 1 and modify it in

such a way that player 4 can look in three rooms. This leads to the IC-situation

<N, 4, A′4, (Ω, µ), {Ii | i ∈ N}, r
′
4>

where A′4 = {K ⊂ Ω | |K| = 3}, r′4(ω,K) = 160 if ω ∈ K, r′4(ω,K) = 0 otherwise. This leads to

the IC-game < N, v′ > with v′(S) = 0 if 4 /∈ S, v′({4}) = 60, v′({i, 4}) = 120 for i ∈ {1, 2, 3}

and v′(S) = 160 if |S| ≥ 3 and 4 ∈ S.

Note that < N, v > and < N, v′ > in Examples 1 and 2 are monotonic games with 4 as veto

player.
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An IS-situation is a tuple

<N, {Ai | i ∈ N}, (Ω, µ), {Ii | i ∈ N}, {ri | i ∈ N}>.

Here N,Ω, µ, and Ii have the same meaning as earlier. For each player i ∈ N there is now a

non-empty finite action set Ai and a reward function ri : Ω× Ai −→ IR. Each player i ∈ N has to

choose an action ai ∈ Ai and obtains then a reward ri(ω, ai) depending on the chosen action and the

true state ω.

If a group S of players decides to cooperate and share their information, then the total expected

reward for S is given by

(3) v(S) =
∑
i∈S

∑
I∈IS

max
ai∈Ai

∑
ω∈I

ri(ω, ai)µ(ω).

This leads to the IS-game < N, v > where v(S) is given by (3).

What to say about relations between IC-situations and IS-situations?

(i) Suppose we have an IC-situation < N, k, A∗k, (Ω, µ), {Ii | i ∈ N}, r∗k > leading to the

IC-game vk. Then this game is also the IS-game corresponding to the IS-situation

<N, {Ai | i ∈ N}, (Ω, µ), {Ii | i ∈ N}, {ri | i ∈ N}>

whereAi = A∗k if i = k, Ai is an arbitrary non-empty finite set for i 6= k, ri = r∗k if i = k and ri = 0

if i ∈ N \ {k}.

So an IC-situation with k as action taker can be transformed into an IS-situation, where all action

takers except k have a trivial reward function, the zero–function.

(ii) Suppose we have an IS-situation

<N, {Ai | i ∈ N}, (Ω, µ), {Ii | i ∈ N}, {ri | i ∈ N}>

with corresponding IS-game v.

Consider the n IC-situations

<N, k, Ak, < Ω, µ >, {Ii | i ∈ N}, rk> for k ∈ N

with corresponding IC-games v1, v2, ..., vk, ..., vn. Then it follows from (1), (2) and (3) that v =∑
i∈N vi. So an IS-situation can be decomposed in n IC-situations and the IS-game is the sum of the

n IC-games v1, v2, ..., vn, where vk is a monotonic k-veto game. In Slikker et al. (2000) it was proved

that an IS-game is a game with a population monotonic allocation scheme (pmas) (cf. Sprumont

(1990)). In fact, [ai,S]i∈N,S∈2N\{∅} with ai,S = 0 if i /∈ S, and ai,S = vi(S) is a pmas because∑
i∈N

ai,S =
∑
i∈S

vi(S) = v(S) and

ai,S ≤ ai,T for all i ∈ S ⊂ T
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because vi is a monotonic game.

Example 3. (Avoid or catch) Consider the IS-situation

<N, (Ω, µ), {Ai, Ii, ri | i ∈ N}>

with N = {1, 2}, A1 = A2 = Ω = {0, 1}2, µ(0, 0) = 1/10, µ(0, 1) = µ(1, 0) = µ(1, 1) = 3/10.

Further I1 = {{00, 01}, {10, 11}}, I2 = {{00, 10}, {01, 11}} and

r1(a, ω) = 20(|a1 − ω1|+ |a2 − ω2|) for all a = (a1, a2) ∈ A1, ω ∈ Ω,

r2(a, ω) = 40− 10(|a1 − ω1|+ |a2 − ω2|) for all a = (a1, a2) ∈ A2, ω ∈ Ω.

One can think of the following situation. In an apartment with four rooms 00, 01, 10 and 11, a monster

is hidden. The probability that the monster is in 00 is 1/10 and the probability that the monster is

in one of the other rooms is 3/10. The players 1 and 2 have to visit a room. Player 1 likes a room

as far away from the monster as possible, while player 2 likes a room as near as possible. Player 1

knows whether the monster is at the north side N = {00, 01} or not, and player 2 knows whether the

monster is at the west sideW = {00, 10} or not.

The corresponding IS-game < N, v > is the sum of the two IC-games < N, v1 > and< N, v2 >,

where N = {1, 2}

v1({1}) = 32, v1({2}) = 0 v1({1, 2}) = 40

v2({1}) = 0, v2({2}) = 36 v2({1, 2}) = 40.

A population monotonic allocation scheme for < N, v > is

{1} {2} {1, 2}

1 d v1({1}) ∗ v1({1, 2}) e

2 b ∗ v2({2}) v2({1, 2}) c
= d

32 ∗ 40 e
b ∗ 36 40 c

Now we introduce local games vω : 2N −→ IR for each ω ∈ Ω, given an information collecting

situation

ICk = <N, k, Ak, (Ω, µ), {Ii | i ∈ N}, rk>.

The game <N, vω> is defined by vω(S) = 0 if k /∈ S, and for k ∈ S:

vω(S) = max
ak∈Ak

∑
ω′∈IS(ω)

rk(ak, ω
′)(µ(IS(ω)))−1µ(ω′)

where IS(ω) is that atom in IS containing ω. The number vω(S) can be interpreted as the best

expected reward for coalition S if ω is the true state. In that case S knows that the true state is one of

the elements in IS(ω) and each ω′ ∈ IS(ω) has conditional probability

(µ(IS(ω)))−1µ(ω′).
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Note that vω(S) = vω′(S) for all ω′ ∈ IS(ω) and that, according to (1), for S with k ∈ S

v(S) =
∑
I∈IS

max
ak∈Ak

∑
ω′∈I

rk(ak, ω
′)µ(ω′)

=
∑
I∈IS

µ(I)vω(S) =
∑
I∈IS

∑
ω∈I

µ(ω)vω(S) =
∑
ω∈Ω

µ(ω)vω(S).

Also for S 63 k we have v(S) = 0 =
∑
ω∈Ω

µ(ω)vω(S). So we have proved

Proposition 1. If < N, v > is the IC-game corresponding to an information collecting situation ICk

and {< N, vω >| ω ∈ Ω} is the set of local games, then v =
∑
ω∈Ω µ(ω)vω.

The following proposition shows that local games can be of use in discovering special properties of

an IC-game. Interesting properties of IC-games with k as action taker are k-concavity and k-convexity.

A game < N, v > which is monotonic and has k as veto player is called k–concave if

(CCk) v(S)− v(S \ {i}) ≥ v(T )− v(T \ {i})

for all i ∈ N, and S, T ∈ 2N with i, k ∈ S ⊂ T and k-convex if the reverse inequality holds:

(CVk) v(S)− v(S \ {i}) ≤ v(T )− v(T \ {i}).

Note that k-convex games are convex games (cf. Shapley (1971)) and have many interesting properties.

A special section, section 3, will be devoted to k-concave IC-games.

Proposition 2. (Inheritance property) Suppose the local games vω of an IC-situation are all k-

concave (convex), then the corresponding IC-game v is k-concave (convex).

Proof. We prove only that v is k-concave, given that all local games are k-concave. It follows from

Proposition 1 that for all i, S, T with i, k∈S ⊂ T :

v(S)− v(S \ {i})− v(T ) + v(T \ {i})

=
∑
ω∈Ω

µ(ω)(vω(S)− vω(S \ {i})− vω(T ) + vω(T \ {i})) ≥ 0

where the inequality follows from the fact that the local games vω are k-concave and µ(ω) > 0.

Example 4. (Treasure guessing) Consider the IC-situation < N, k, Ak, (Ω, µ), {Ii | i ∈ N}, rk >

whereN = {1, 2, 3}, k = 3,A3 = {n, ga, gb, gc, gd}, Ω = {a, b, c, d} and µ(ω) = 1/4 for all ω ∈ Ω.

Further I1 = {{a, b}, {c, d}}, I2 = {{a, b, c}, {d}}, I3 = {Ω}, and rk(ω, n) = 0 for all ω ∈ Ω,

rk(ω, gx) = 40 if ω = x and rk(ω, gx) = −60 otherwise.

One can think of a situation where a treasure with a value of 40 dollars is hidden in one of the places

a, b, c, d (equal prior probabilities). Player 3 can guess where the treasure is, and if he guesses right he
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obtains the treasure. If he guesses wrong he has to pay 60 dollars. Another action for player 3 is not to

guess (n) with resulting reward 0. It only makes sense to guess if player 3 knows where the treasure

is. This implies that for the local games we have va = vb = 0, vc({1, 2, 3}) = 40 and vc(S) = 0

otherwise, vd({2, 3}) = vd({1, 2, 3}) = 40 and vd(S) = 0 otherwise. These local games are convex,

so the IC-game v is also convex by Proposition 2 and v = (va + vb + vc + vd)/4; v({2, 3}) = 10,

v({1, 2, 3}) = 20, v(S) = 0 otherwise.

For the special class of k-symmetric IC-games we can discover whether the game is convex, k-

concave or none of them by looking at the graph of the so-called detection function as the proposition

below shows.

Let us call a game v ∈MVk (i.e. v is monotonic and k is a veto player) k-symmetric if

v(S) = v(T ) for all S, T with k ∈ S, k ∈ T and |S| = |T |.

Corresponding to such a k-symmetric game v we construct the detection function B : [1, n] −→ IR

as follows. Denote by br the value v(S) of a coalition S 3 k with |S| = r. Then B is defined by

B(x) = (x− r)br+1 + (1− x + r)br for x ∈ [r, r+ 1]

where r ∈ {1, 2, ..., n− 1}. Note that the graph of B coincides with the broken line in IR2 obtained

by connecting for r ∈ {1, 2, ..., n− 1} the points (r, br) and (r + 1, br+1) with a line segment.

Proposition 3. Let v ∈ MVk be k-symmetric and let B be the corresponding detection function.

Then

(i) v is a convex game if and only if B is a convex function.

(ii) v is a k-concave game if and only if B is a concave function.

(iii) v satisfies the property

(Uk) v(N )− v(S) ≥
∑

i∈N\S

(v(N )− v(N \ {i})) for all S 3 k

if and only if the graph of B lies below the line in IR2 through the points (n − 1, bn−1) and

(n, bn).

The proof of the proposition is left to the reader.

Knowing that v ∈MVk is a convex game discloses a lot of properties of the solutions of the game

(cf. Shapley (1971)) for example, the Shapley value (cf. Shapley (1953)) lies in the core of the game.

Also it is interesting to know whether v ∈MVk is k-concave as the following section shows.

Example 5.

(i) Consider again Example 1. This leads to a 4-symmetric game with a convex detection function,

so the game is convex.

(ii) Consider Example 2 (Catch the monster; 3 trials). This leads to a 4-symmetric game with a

concave detection function, and so the game is 4-concave.

7



3 Total big boss games and bi–monotonic allocation schemes

In this section we pay attention to games < N, v > with v ∈ MVk that also satisfy the k-concavity

condition (CCk). A subclass of IC-games with k as action taker has this property. The k-concavity

condition says that for a player i the marginal contribution to a smaller coalition containing k is

(weakly) larger than the marginal contribution to a larger coalition containing k. The first theorem

below shows that the class of games < N, v > with v ∈ MVk and v satisfying the k-concavity

condition, coincides with the class of total big boss games with k as big boss, which we introduce

now. Recall first (cf. Muto et al. (1988) and Tijs (1990)) that a game < N, v > is a big boss game

with k as big boss if v ∈MVk and if v has the property (Uk), mentioned in Proposition 3.

Let us call a game < N, v > with v ∈MVk a total big boss game with k as big boss, if the game

itself and each subgame < T, v > containing k are big boss games. Stated otherwise, v ∈ MVk is a

total big boss game with k as big boss if and only if

(TUk) v(T )− v(S) ≥
∑
i∈T \S

Mi(T, v)

for all S, T containing k and S ⊂ T . Here Mi(T, v) = v(T )− v(T \ {i}).

Theorem 1. Let v ∈ MVk. Then v is a total big boss game with k as big boss if and only if v is

k-concave.

Proof. Assume first that v is k-concave. Take k ∈ S ⊂ T . Suppose T \ S = {i1, i2, ..., ih}. Then

v(T )− v(S) =
h∑
r=1

(v(S ∪ {i1, i2, ..., ir)− v(S ∪ {i1, i2, ..., ir−1}))

=
h∑
r=1

Mir(S ∪ {i1, i2, ..., ir}, v) ≥
h∑
r=1

Mir(T, v) =
∑
i∈T \S

Mi(T, v),

where the inequality follows from (CCk) applied h times. So k-concavity implies that v is a total big

boss game with k as big boss.

Suppose now that v is a total big boss game with k as big boss. First we prove that

(a) Mi(U, v) ≥Mi(U ∪ {j}, v) for all U ∈ 2N , i, j, k ∈ N with

i, k ∈ U ⊂ N \ {j}.

By (TUk) we have

(b) v(U ∪ {j})− v(U \ {i}) ≥Mj(U ∪ {j}, v) +Mi(U ∪ {j}, v).

On the other hand,

(c) v(U ∪{j})−v(U \ {i}) = (v(U ∪{j})−v(U)) + (v(U)−v(U \ {i})) = Mj(U ∪{j}, v) +

Mi(U, v).
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Then (a) follows directly from (b) and (c). To prove that v is k-concave take S, T ∈ 2N with

i, k ∈ S ⊂ T and suppose that T \ S = {i1, i2, ..., ih}. Apply (a) h-times and we obtain

Mi(S, v)≥Mi(S ∪ {i1}, v) ≥Mi(S ∪ {i1, i2}, v) ≥ · · · ≥Mi(T, v).

So Mi(S, v) ≥Mi(T, v) which implies (CCk).

From Muto et al. (1988) it follows that for a total big boss game with k as big boss we have for all

T 3 k:

(3.1) The core C(T, v) of the subgame< T, v > is equal to

{x ∈ IRT | 0 ≤ xi ≤Mi(T, v) for all i ∈ T \ {k},
∑
i∈T xi = v(T )}

(3.2) The τ -value τ(T, v) (cf. Tijs (1981)) and the nucleolus Nu(T, v) (cf. Schmeidler (1969)) of

< T, v > coincide and are equal to the center z of the coreC(T, v) where zi = Mi(T, v)/2 for

all i ∈ T \ {k} and zk = v(T )−
∑
i∈T \{k}Mi(T, v)/2.

Take < N, v > in MVk and denote by Pk the set {S ⊂ N | k ∈ S}. Call a scheme [bi,S]i∈S,S∈Pk an

allocation scheme if each column [bi,S]i∈S corresponds to a core element of the subgame < S, v >.

We call such an allocation scheme [bi,S]i∈S,S∈Pk a bi–monotonic allocation scheme (bi–mas) if

for all S, T ∈ Pk with S ⊂ T we have bi,S ≥ bi,T for all i ∈ S \ {k}, and bk,S ≤ bk,T . In a bi–mas

the big boss is better off in larger coalitions, and the other players are worse off.

Let [bi,S]i∈S,S∈Pk be defined by bk,S = v(S) and bi,S = 0 if i ∈ S \ {k}. Then [bi,S]i∈S,S∈Pk is

a bi–mas for < N, v >. So each v ∈ MVk has a bi–mas. The next theorem shows that a total big

boss game has many bi–monotonic allocation schemes. This theorem is comparable to a result by

Sprumont (1990) which tells that for a convex game each core element is extendable to a population

monotonic allocation scheme. We say that a bi–mas [bi,S]i∈S,S∈Pk is an extension of the core element

x ∈ C(N, v) if xi = bi,N for all i ∈ N .

Theorem 2. Let < N, v > be a total big boss game with k as big boss and let x ∈ C(N, v). Then x

is extendable to a bi–monotonic allocation scheme.

Proof. Since x ∈ C(N, v), by (3.1), we can find for each i ∈ N \ {k} an αi ∈ [0, 1], such that

xi = αiMi(N, v), and then

xk = v(N )−
∑

i∈N\{k}

αiMi(N, v).

We will show that [bi,S]i∈S,S∈Pk , defined by bi,S = αiMi(S, v) for all (i, S) with i ∈ S \ {k} and

bk,S = v(S)−
∑
i∈S\{k} αiMi(S, v), is a bi–mas. Then it is an extension of x.

Take S, T ∈ Pk with S ⊂ T and i ∈ S \ {k}. We have to prove that bi,S ≥ bi,T and bk,S ≤ bk,T .

First, bi,S = αiMi(S, v) ≥ αiMi(T, v) = bi,T , where the inequality follows from the k-concavity of

< N, v >. Second,

bk,T = v(T )−
∑

i∈T \{k}

αiMi(T, v)

9



≥ (v(S) +
∑
i∈T \S

Mi(T, v))−
∑

i∈T \{k}

αiMi(T, v)

= (v(S)−
∑

i∈S\{k}

aiMi(T, v)) +
∑
i∈T \S

(1− αi)Mi(T, v)

≥ (v(S)−
∑

i∈S\{k}

αiMi(S, v)) +
∑
i∈T \S

(1− αi)Mi(T, v)

= bk,S +
∑
i∈T \S

(1− αi)Mi(T, v)≥ bk,S

where the first inequality follows from (TUk), the second inequality from the k-concavity and the

third inequality from the monotonicity of the total big boss game < N, v >. So bk,T ≥ bk,S.

Example 6. Consider again the IC-game in Example 2. This game< N, v′ > is a total big boss game.

A bi–mas, consisting in each column S of the τ -value of < S, v′ > (see (3.2): bi,S = Mi(S, v
′)/2 is

given by

{4} {1, 4} {2, 4} {3, 4} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

1 d ∗ 30 ∗ ∗ 20 20 ∗ 0 e

2 | ∗ ∗ 30 ∗ 20 ∗ 20 0 |

3 | ∗ ∗ ∗ 30 ∗ 20 20 0 |

4 b 60 90 90 90 120 120 120 160 c
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