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1 Introduction

In Branzel, Tijs and Timmer (2000) information collecting (IC) situations and corresponding 1C—
games were introduced. They modelled situationswhere an action taker in an uncertain situation can
improve his action choices by gathering information from players more informed about the situation.
The problem of sharing the gains, when cooperating with informants, is tackled by constructing the
corresponding |C—game and considering solutions devel oped for such games.

In Slikker, Norde, and Tijs (2000) information sharing (1S) situations were introduced and cor-
responding |S-games. They modelled situations where all players are action takers in an uncertain
situation and where they can gain by sharing their information about the situation.

It turned out that the family of O—normalized |C—games for a fixed action taker and fixed player
set coincides with the cone of 0—normalized monotonic games where the action taker is aveto player
(cf. Theorem 3.5 in Branzei et a. (2000)). In Slikker et a. (2000) it was proved that the class of
information sharing games coincides with the class of cooperative games for which a population
monotonic allocation scheme exists.

In Section 2 of this paper we study relations between |C—situations and |S-situations and the
corresponding games. We show that an n-person |S-game can be seen as the sum of n |C—games.
Further we introduce local games corresponding to 1C—situations and show that an IC-game is a
suitable convex combination of thelocal games. Properties as convexity and k-concavity for thelocal
games are inherited by the IC—games. For k—symmetric games a geometric method is described to
discover whether the gameis k-concave, convex or noneof them. In Section 3 specia attentionispaid
to total big boss games and bi—monotonic allocation schemes. It turns out that k-concave |C—games
aretotal big boss games.

2 Information collecting and infor mation sharing situations and games

We start with recalling (and modifying a bit) the notions |C—situation, |C—game, |S-situation and
IS-game introduced in Branzei et al. (2000) and Slikker et a. (2000).
An |C—situationisatuple

<Nk, A, (Q,pn),{Z;|i € N}, rp>

Here N = {1,2,...,n}, Ay and Q are non—empty finite sets, k € N, p is a positive probability
distributionon € (i.e. pu(w) > 0foralw € Qandd", .o p(w) = 1). Foreachi € N, Z; isapartition
of Qandry : Q x Ay, — IR isareal valued functionon Q x Aj.

The set N iscaled the set of players, player k € N isthe action taker, 2 is the set of possible
states (relevant for the action taker), . is the prior probability distribution and Z; is the information
partition of player i. Such an |C—situation corresponds to the following decision problem for player
k. He hasto choose an action ay, from his action set Ay, under uncertainty of the true state, leading to
areward ri(w, ax) if w isthetrue state. Before choosing his action he can collect information from



all other players or asubset of players (where monetary compensationsfor delivering information can
be made). If player k works aone his expected reward will be

ve({k}) = Z Inax Zrk W, ag) i

I€T,, wel

Collectinginformation from S\ {k} C N, the expected payoff is:

(1) ve(S) = Z max Zrk W, ag) i

fezs €A et
Here Zg isthe partition of €2 consisting of the non—empty sets of the form N;cs.J;, where J; € Z; for
al ¢ € S. If weasodefine

(2) ve(S)=0foradl S C N\ {k}

we obtain the cooperative game < N, v, > which we call the IC-game corresponding to the above
|C-situation.

Example 1. (Catch the monster; onetrial) Consider the IC-situation
<Nk, A, (Q,pn),{Z;|i € N}, rp>

where N = {1,2,3,4}, k = 4, Q = Ay = {0,1}3, p(w) = 1/8forexchw € Q, 7, = {Q},
Zi={{zeQ|z;=0},{zeQ |z, =1}}fori € {1,2,3},r4(w,a) = 160 if w = a, r4(w,a) =0
otherwise.

This corresponds to a situation of an apartment with eight rooms, 000, 100, 010, 001, 110, 101,
011, and 111, where in one of the rooms a monster is hidden. Player 4 has to choose one room and
if the monster isin that room he obtains areward of 160; otherwise thereis no reward. He can make
use of the information of players 1,2,3 or not. Player i € {1, 2, 3} knows the i-th coordinate of the
room number. One can cal culate the corresponding IC-game < N, v > and obtains N = {1, 2, 3, 4},
v(S)=0foral S C Nwithd ¢ S, v({4}) =20,v({4,i})=40fori € {1,2,3},v({4,4,j}) = 80
ifi,j€{1,2,3}andi # j,and v(N) = 160.

Example 2. (Catch the monster; three trials) Take the situation as in Example 1 and modify it in
such away that player 4 can look in three rooms. Thisleads to the IC-situation

<N, 4, AL (), {Zi | i€ N}, ry>

where A} = {K C Q| |K| =3}, ry(w, K) =160 if w € K, r}(w, K) = 0 otherwise. Thisleadsto
the IC-game < N, v’ > witho'(S) =0if 4 ¢ S, v ({4}) = 60, v'({i,4}) = 120 for i € {1,2,3}
andv’(S) =160if |S| >3 and4 € S.

Notethat < N,v > and < N,v’ > in Examples 1 and 2 are monotonic games with 4 as veto
player.



An|S-situationisatuple
<N, {A;|ie N} (Qu),{Z;|ie N},{r;|i€ N}>.

Here N, Q, 4, and Z; have the same meaning as earlier. For each player ¢ € N there is now a
non-empty finite action set A; and areward functionr; : Q2 x A; — IR. Each player i € N hasto
choosean action a; € A; and obtainsthen areward r;(w, a;) depending on the chosen action and the
true state w.

If agroup S of players decides to cooperate and share their information, then the total expected
reward for S isgiven by

0 W)=Y Y max Yori(w,aule).
T wel

i€S I€Ts

Thisleadsto the IS-game < N, v > where v(S) isgiven by (3).
What to say about relations between | C-situations and | S-situations?

(i) Suppose we have an IC-situation < N, k, A}, (Q, 1), {Z; | ¢ € N}, rp > leading to the
IC-game vg.. Then thisgame isaso the | S-game corresponding to the IS-situation

<Na{Az"LGN}a(QaM)a{L"LEN}a{Tz"LEN}>

where A; = Aj if i = k, A; isanarbitrary non-empty finitesetfori # k, r; = r ifi = kandr; =0
ifi e N\ {k}.

So an I C-situation with & as action taker can be transformed into an 1S-situation, where all action
takers except k have atrivial reward function, the zero—function.

(i) Suppose we have an I1S-situation
<N, {4;|i€N},(Qp){Zi| i€ N}, {ri|ie N}>

with corresponding |S-game v.
Consider the n IC-situations

<Nk, A, < Qu>{Z;|i € N},rpy>fork e N

with corresponding 1C-games vy, va, ..., Vg, ..., Un. Then it follows from (1), (2) and (3) that v =
> icn Vi- S0 an I1S-situation can be decomposed in n | C-situations and the IS-game isthe sum of the
n 1C-games vy, v, ..., vy, Where vy, isamonotonic k-veto game. In Slikker et a. (2000) it was proved
that an 1S-game is a game with a population monotonic allocation scheme (pmas) (cf. Sprumont
(1990)). Infact, [a; s]ic v, scam\ oy Witha; s = 0if i ¢ S, and a; s = v;(5) isapmas because

Zai,S = Zvi(S) = v(S) and

iEN €S
a;s <a;rforadlie SCT
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because v; is a monotonic game.
Example 3. (Avoid or catch) Consider the | S-situation
<N, (Qaﬂ)a {AiaI’iaTi ‘ S N}>

with N = {1,2}, 4, = 4y = Q = {0,1}2, (0,0) = 1/10, u(0,1) = p(1,0) = p(1,1) = 3/10.
Further Z,; = {{00,01},{10,11}},Z, = {{00, 10}, {01, 11}} and

ri(a,w) =20(la; — wi| + |ag — wa)) foradl a = (aj,a2) € A1, we Q,
ro(a,w) =40 — 10(Ja; — w1| + |ag —wa|) foradl a = (a1, a2) € As, w € Q.

Onecan think of thefollowingsituation. In an apartment with four rooms00, 01, 10 and 11, amonster
is hidden. The probability that the monster is in 00 is 1/10 and the probability that the monster is
in one of the other rooms is 3/10. The players 1 and 2 have to visit aroom. Player 1 likesaroom
as far away from the monster as possible, while player 2 likes a room as near as possible. Player 1
knowswhether the monster is at the north side N = {00, 01} or not, and player 2 knowswhether the
monster is at thewest side W = {00, 10} or not.
The corresponding | S-game < N, v > isthesum of thetwo IC-games < N, v; > and < N, vy >,

where N = {1, 2}

u({1}) =32, u({2}) =0 w({1,2}) =40

va({1}) =0, wva({2}) =36 wa({1,2}) = 40.
A population monotonic allocation scheme for < N, v > is

{1} {2} {1,2}
Lpoad@d) o+ w2y }z{ 32« 40
o L w wd2) wdL2) £ 36 40

Now we introduce local games v,, : 2 — TR for each w € €, given an information collecting
situation
ICk = <NakaAka (Qaﬂ)a {IZ ‘ (S N}ark>'

Thegame < N, v, > isdefined by v,,(S) = 0if k ¢ S,andfor k € S:

vo(S) = max 3 ri(a, o) (p(Is(w))) " ()
k= w'elg(w)

where Is(w) is that atom in Zg containing w. The number v,,(S) can be interpreted as the best
expected reward for coalition S if w isthetrue state. In that case S knowsthat the true state is one of
the elementsin Is(w) and each w’ € Is(w) has conditional probability

(1(Is(@))) ™ ()



Notethat v,,(S) = v, (S) for al w" € Is(w) and that, according to (1), for S withk € S

v(S) = Z max Zrk(ak,w')u(az’)

fezg €A Lt
=Y WS = Y Y u(@)n(S) = 3 aw)ua(s).
I€Tg I€Zs wel we)

Alsofor S Z k wehavev(S) =0 = Zu(w)vw(S). So we have proved
we

Proposition 1. If < N, v > isthe IC-game corresponding to an information collecting situation ICy,
and {< N, v, >| w € Q} istheset of local games, thenv = Y ,co p(w)ve.

Thefollowing proposition showsthat |ocal games can be of usein discovering specia propertiesof
an|C-game. Interesting propertiesof | C-gameswith k asactiontaker are k-concavity and k-convexity.
A game < N, v > which is monotonic and has & as veto player is called k—concave if

(CC) v(S) = v(S\{i}) = o(T) —o(T'\ {i})

foralie N, and S, T € 2V withi, k € S C T and k-convex if the reverse inequality holds:

(CVk) v(8) —o(S\{i}) < o(T) —o(T\ {i}).

Notethat k-convex gamesare convex games (cf. Shapley (1971)) and have many interesting properties.
A specid section, section 3, will be devoted to k-concave | C-games.

Proposition 2. (Inheritance property) Suppose the local games v, of an IC-situation are all k-
concave (convex), then the corresponding | C-game v is k-concave (convex).

Proof. We prove only that v is k-concave, given that all local games are k-concave. It follows from
Proposition 1 that for all 4, S, T withi, ke S C T :

v(8) = o(S\{i}) —o(T) +o(T'\ {s})
= D ilw)(va(8) = v (S\ {i}) = vu(T) + vu(T\ {i})) > 0

we

where the inequality follows from the fact that the local games v, are k-concave and p(w) > 0. m

Example 4. (Treasure guessing) Consider the IC-situation < N, k, Ak, (Q, ), {Z; | i € N}, ri, >
where N = {1,2,3},k = 3, A3 = {n, ga, 9b, gc, 9a}, 2 = {a, b, ¢, d} and p(w) = 1 /4 foral w € Q.
Further Z; = {{a, b}, {c,d}}, Zo = {{a, b,c},{d}},Z3 = {Q}, and ri(w,n) = 0 for al w € ,

ri(w, gz) = 40 if w = z and ri(w, g,) = —60 otherwise.

One can think of a situation where a treasure with a value of 40 dollarsis hidden in one of the places
a, b, ¢, d (equal prior probabilities). Player 3 can guesswherethetreasureis, and if he guessesright he



obtainsthetreasure. If he guesseswrong he hasto pay 60 dollars. Another action for player 3isnot to
guess (n) with resulting reward 0. It only makes sense to guess if player 3 knows where the treasure
is. Thisimplies that for the local games we have v, = v, = 0, v.({1,2,3}) = 40 and v.(S) = 0
otherwise, v4({2, 3}) = v4({1, 2,3}) = 40 and v4(S) = 0 otherwise. These local games are convex,
so the IC-game v is also convex by Proposition 2 and v = (v, + v + ve + v4)/4; v({2, 3}) = 10,
v({1,2,3}) =20, v(S) = 0 otherwise.

For the specia class of k-symmetric |C-games we can discover whether the game is convex, k-
concave or hone of them by looking at the graph of the so-called detection function as the proposition
below shows.

Let uscal agamewv € MV (i.e. vismonotonic and k isaveto player) k-symmetric if

v(S)=v(T)fordl S, T withk € S, k € Tand |S| = |T|.

Corresponding to such a k-symmetric game v we construct the detection function B : [1,n] — R
asfollows. Denote by b, thevalue v(.S) of acodlition S 5 k with |S| = r. Then B is defined by

B(z)=(x —r)byy1+ (1 —x +r)b.forz € [r,r+ 1]

wherer € {1,2,...,n — 1}. Note that the graph of B coincides with the broken linein IR? obtained
by connecting for r € {1, 2, ...,n— 1} the points (r, b,) and (r + 1, b,41) with aline segment.

Proposition 3. Let v € MV}, be k-symmetric and let B be the corresponding detection function.
Then

(i) visaconvex gameif and onlyif B isa convex function.
(if) visak-concave gameif and onlyif B isa concave function.

(iii) v satisfiesthe property

(Uk) v(N)—v(S) > Z (v(N)—ov(N\{i}))forall S >k

iEN\S
if and only if the graph of B lies below the line in IR? through the points (n — 1, b,_1) and
(n, by).

The proof of the propositionis|eft to the reader.

Knowingthat v € MV} isaconvex game disclosesalot of properties of the solutionsof the game
(cf. Shapley (1971)) for example, the Shapley value (cf. Shapley (1953)) liesin the core of the game.
Also it isinteresting to know whether v € MV, is k-concave as the following section shows.

Example5.

(i) Consider again Examplel. Thisleadsto a4-symmetric game with aconvex detection function,
so the game is convex.

(if) Consider Example 2 (Catch the monster; 3 trials). Thisleads to a 4-symmetric game with a
concave detection function, and so the game is 4-concave.



3 Total big boss gamesand bi—monotonic allocation schemes

In this section we pay attention to games < N, v > withv € MV}, that aso satisfy the k-concavity
condition (CCy). A subclass of IC-games with k as action taker has this property. The k-concavity
condition says that for a player ¢ the margina contribution to a smaller coalition containing k is
(weakly) larger than the margina contribution to a larger coalition containing k. The first theorem
below shows that the class of games < N,v > withv € MV} and v satisfying the k-concavity
condition, coincides with the class of total big boss games with k as big boss, which we introduce
now. Recall first (cf. Muto et al. (1988) and Tijs (1990)) that a game < N, v > isahig boss game
with k asbig bossif v € MV}, and if v hasthe property (Uy,), mentioned in Proposition 3.

Let uscal agame < N, v > withv € MV}, atotal big boss gamewith & as big boss, if the game
itself and each subgame < T', v > containing k are big boss games. Stated otherwise, v € MVy isa
total big boss game with £ as big bossif and only if

(TU) o(T) —v(S) = Y M(T,v)
1€T\S
forall S,T containingk and S C T. Here M;(T,v) = v(T) — v(T \ {i}).

Theorem 1. Let v € MV;,. Then v is a total big boss game with & as big boss if and only if v is
k-concave.

Proof. Assumefirst that v is k-concave. Takek € S C T. Suppose T’ \ S = {41, i2, ..., 9n}. Then

h
o(T) —v(S) =Y _(v(SU {i, i, ..., i) — v(S U {i1, 42, ..., ip—1}))

r=1
h

h
=Y M;, (S U{ir, iz, ..., ir},0) > ZMZ,(T,U) = Y My(T,v),

r=1 1€T\S

wheretheinequality followsfrom (C'Cy,) applied h times. So k-concavity impliesthat v isatotal big
boss game with & as big boss.
Suppose now that v isatota big boss game with k as big boss. First we prove that

(@ M;(U,v) > My(UU{j},v)foral U e 2V, i, 4, k € N with
i,keUCN\{j}

By (T'U;) we have
(0) v(UU{j}) —oU@\{i}) = M;[U U{j},v) + Mi(U U {j},v).

On the other hand,

© v(UU{j}H) —oU\{i}) = ((UU{5}) —v(U)) + (v(U) —o(U\{i})) = M;(UU{j}, v) +
Mi(U,’U).



Then (a) follows directly from (b) and (c). To prove that v is k-concave take S, T € 2V with
i,k €S C Tandsupposethat 7'\ S = {i1,i9, ..., in}. Apply (8) h-timesand we obtain

Mi(S,v) > MZ(S U {il},v) > MZ(S U {il,ig},v) > > Mi(T,’U).

So M;(S,v) > M;(T,v) whichimplies (CCj).m

From Muto et al. (1988) it followsthat for atotal big boss game with & as big bosswe have for dl
T>k:

(3.1) Thecore C(T,v) of thesubgame < T, v > isequal to
{x eRT |0 <a; < My(T,v)fordlic T\ {k}, Xicrx: =v(T)}

(3.2) The r-value 7(T,v) (cf. Tijs (1981)) and the nucleolus Nu (T, v) (cf. Schmeidler (1969)) of
< T, v > coincide and are equal to the center z of the core C(T', v) where z; = M;(T, v)/2for

Teke < N, v > in MV}, and denote by P theset {S C N | k € S}. Call ascheme [b; sics,scp, an
alocation scheme if each column [b; s];cs correspondsto a core element of the subgame < S, v >.

We call such an allocation scheme [b; sics. sep, @bi—monotonic allocation scheme (bi—mas) if
forall S,T € P, with.S C T'wehaveb; s > b;r foral i € S\ {k},and by s < by 7. Inabi—mas
the big bossis better off in larger coalitions, and the other players are worse off.

Let [b; slics.sep, bedefined by b, s = v(S) and b; s = 0if i € S\ {k}. Then [b; slics.sep, iS
abi—-masfor < N,v >. Soeachv € MV} hasabi—-mas. The next theorem shows that a total big
boss game has many bi—monotonic allocation schemes. This theorem is comparable to a result by
Sprumont (1990) which tellsthat for a convex game each core element is extendabl e to a population
monotonic allocation scheme. We say that abi—mas [b; sics. se p, iSan extension of the core element
x € C(N,v)ifx; =b; yforalie N.

Theorem 2. Let < N, v > be a total big boss game with k asbigbossand let x € C(N,v). Thenz
is extendable to a bi—monotonic all ocation scheme.

Proof. Since xz € C(N,v), by (3.1), we can find for each i € N \ {k} an «;; € [0, 1], such that
x; = o; M; (N, v), and then
zp =v(N) — Z a; M;(N,v).
i€N\{k}

We will show that [b; s]ics sep,, defined by b; s = a; M;(S, v) for dl (i, S) withi € S\ {k} and
b,s = v(S) — Xies\(k @iM;(S, v), isabi-mas. Thenitisan extension of z.

Teke S, T € P, withS Cc T'andi € S\ {k}. We have to provethat b; s > b; 7 and by, s < by, 7.
First, b;.s = a; M;(S,v) > o; M; (T, v) = b; 7, where the inequality follows from the k-concavity of
< N,v >. Second,

bk’T = ’U(T)— Z OéiMi(T,’U)
i€T\{k}



> (v(8)+ D Mi(T,v))— > aiMi(T,v)

1€T\S 1€T\{k}
= (v(S)— Z a; M;(T,v)) + Z (1 — ;) M;(T,v)
1€S\{k} 1€T\S
> (0(S)— Y aiMi(S,0))+ Y (1— ;) M;(T,v)
i€S\{k} i€T\S
= brs+ Y, (1— o) Mi(T,v) > brs
1€T\S

where the first inequality follows from (T'Uy), the second inequality from the k-concavity and the
third inequality from the monotonicity of the total big bossgame < N,v >. S0 by 7 > b 5. ®

Example6. Consider againthelC-gamein Example2. Thisgame < N, v’ > isatotal bigbossgame.
A bi—-mas, consisting in each column S of the 7-value of < S, v’ > (see (3.2): b; s = M;(S,v")/2is
given by

{4} {1,4} {2,4} {3,4} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}

1 I * 30 * * 20 20 * 0 1

2 | x % 30 * 20 % 20 0 |

3 | * * * 30 * 20 20 0 |

4 L 60 90 90 90 120 120 120 160 J
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