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Abstract
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1. Introduction

In most industrialized countries housing is one of the main categories of household expenditure. Its

understanding is therefore crucial for analyzing household consumption. The decision how much to

spend on housing is strongly related to the choice between renting and owning. The standard

reference is Lee and Trost (1978), who explain annual family expenditure on housing taking the

decision to own or to rent explicitly into account. They use cross-section data and apply a

switching regression model with endogenous switching and normally distributed error terms, which

is also referred to as Tobit V by Amemiya (1984).

Several authors have focused on different aspects of the demand for housing. Ioannides and

Rosental (1994) analyze the choice between renting and owning in relation to consumption and

investment demand for housing. Zorn (1993) models the fact that some households cannot obtain a

mortgage due to mortgage constraints, which results in a kinked budget set. Haurin (1991)

investigates the same issue as Zorn (mortgage constraints) and analyzes how the intertemporal

variation in income affects tenure choice.

In this paper we focus on housing expenditure and thus not on housing assets, housing equity or

mortgage constraints. We will combine the model by Lee and Trost (1978), henceforth referred to

as LT model, with the consumer demand literature on expenditure on goods. We extend the LT

model in two ways. First, we use panel data, and can therefore allow for time constant unobserved

household specific effects which can be correlated with the regressors. In other words, we will

allow for fixed effects, which would be impossible in the cross-section context. The usual cross-

section model imposes independence between individual effects and regressors or instruments,

which, in a panel data context, leads to the more restrictive random effects model. There are two

types of fixed effects models that we consider: a linear model in which selectivity only enters

through the fixed effects, and a model similar to that of Kyriazidou (1995), which incorporates

more general selectivity effects than the linear model. We will compare results for these two fixed

effects models with those of the random effects model.

Secondly, when modelling the budget share spent on housing as a function of total expenditure,

account has to be taken of the possibility of endogeneity of total expenditure. We test for this and

present estimates allowing for it.

Our main findings are that the random effects model, the model in which selectivity enters

through the fixed effects only, and the model which assumes that total expenditure is exogenous,

are all rejected against the more general fixed effects model. Moreover, the models lead to

different conclusions about aggregate elasticities of housing expenditure.

The remainder of this paper is organized as follows. In section 2 we describe the data, drawn
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from the Dutch Socio Economic Panel, 1987-1989. In section 3 we discuss various parametric and

semiparametric panel data models and estimates explaining housing. Section 4 concludes.

2. Data

We will use data from the waves 1987-1989 of the Dutch Socio-Economic Panel (SEP). Although

this panel exists since 1984, information concerning housing is only present since 1986 and wealth

data are available as of 1987. We will use a cleaned subsample for each year with information on

family characteristics (including marital status, number of children living with the family, age of

the head of household, education level and region of residence), and labour market characteristics

(including hours of work, gross and net earnings). The labour market characteristics are used to

construct household income which consists of labour earnings, other family income (mainly from

letting rooms or child allowances), benefits and pensions. Personal income of children is excluded.

Asset income and capital gains are also excluded, because this type of income is strongly related to

the home ownership decision. Wealth data2 are used to construct savings.3 For issues on cleaning

the savings data we refer to Camphuis (1993). Income and savings are used to construct total

expenditure. Expenditure and income are reported inDutch guilders per month.

The budget share spent on housing is defined as the fraction of total expenditure spent on

housing. Housing expenditure for renters is the amount of money spent on rent by the family (i.e.,

excluding gas/water/electricity/heating as well as rental subsidy). For owners expenditure on

housing consists of the following components: net interest costs on the mortgage,4 net rent paid if

the land is not owned, taxes on owned housing,5 costs of insuring the house, opportunity costs of

housing equity, maintenance costs, and minus the increase of the value of the house. The latter

three costs components are not observed in the data. The opportunity cost of the foregone interest

on housing equity is set equal to 4% of the value of the house minus the mortgage value.

Maintenance costs and the increase of the value of the house are set equal to 2% and 1% of the

value of the house, respectively. In Appendix A, we shall investigate the sensitivity of the results

2 Net wealth is constructed using checking accounts, savings and deposits accounts, saving certificates,
certificates of deposits, bonds and mortgage bonds, shares, options and other securities, antiques, jewels,
coins etc., real estate other than one’s own residence, one’s own car, claims against private persons, other
assets, life-insurance with saving elements, personal loan or revolving credit, hire-purchase and other loans.

3 We also corrected for donations, bequests, and capital gains.

4 Mortgage interest payments are tax deductible. See Data Appendix for computation of the marginal tax
rate.

5 This refers to a direct tax on housing property and to extra income tax due to adding the imputed
rental value of the house to household income.
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with respect to these choices. It appears that our main results are hardly affected.

The Data Appendix contains some further details on the construction of the sample and the

variables of interest, and a comparison with macro data on housing expenditure. Given this sample,

we excluded households with a missing observation for expenditure, and a few households with

housing budget share larger than 3.6 For the 1987 wave this reduces the dataset from 3006 to 2357

observations. Variable definitions and summary statistics for the three resulting panel waves are

presented in table 1. The average budget share of housing is approximately 0.24 for renters and

about 0.22 for owners. For both groups, this share decreased slightly over time. From 1987 to

1989, average total monthly expenditure increased from 2304 to 2477 for renters and from 3233 to

3606 for owners. For both owners and renters, the average age of the head of the household and

the average values of the three region dummies do not change much over time. For renters the

fraction of married household heads as well as the number of children living with the family

decreased slightly.

We present several graphs for 1987, the year we will use to obtain estimates in the random

effects model. In figure 1, nonparametric density estimates for the budget shares BS0 for renters

and BS1 for owners are reported, as well as nonparametric regressions of these budget shares on

log(total expenditure). Both budget share distributions are skewed to the right. Some budget shares

larger than one are observed (see footnote 6). The regression estimates suggest that the housing

budget share is nonlinear in log(total expenditure), but can be approximated reasonably well by a

quadratic function. This is similar to what Banks et al. (1994) find for many commodity groups.

In figure 2, the result of a nonparametric regression of the probability of owning a house as a

function of log(total income) is presented together with the frequency distribution of log(total

income). Families with higher total income tend to have a higher probability of owning a house for

the main part of the income range.

3. Models

The panel data models we consider allow for household specific effects which either are assumed

to be independent of the explanatory variables (random effects) or allowed to be correlated with

the explanatory variables (fixed effects). Starting point is the following system of equations.

dit = 1(π′xit + ηi − uit ≥ 0).

y0it = β′0xit + α0i + ε0it if dit=0

6 Some budget shares are larger than one, possibly due to the fact that total expenditure is constructed
from income minus savings, which might lead to substantial measurement errors for some households.
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y1it = β′1xit + α1i + ε1it if dit=1

Here the indices i and t refer to household i in period t (t=1,...,T). dit is a sector selection dummy

variable which is 1 for owners and 0 for renters, xit is a vector of explanatory variables (log total

expenditure and its square, and taste shifters), y0it and y1it are the budget shares spent on housing

for renters and owners, respectively.α0i, α1i, and ηi are unobserved household specific time-

invariant effects,ε0it, ε1it, and uit are error terms, varying across households as well as time.β1, β0

andπ are vectors of unknown parameters.

3.1. Random effects

In a random effects model whereα0i, α1i, ηi, ε0it, ε1it, and uit are normally distributed and

independent of xit, we could apply the estimation procedure proposed by Vella and Verbeek

(1994). However, their estimation procedure relies strongly on the normality assumptions. An

alternative approach to estimate the slope parameters in the random effects panel data model is to

focus on only one wave of data (i.e. a cross-section), drop the t-subscript, include the random

effects in the error terms which then become vi=(α0i+ε0i,α1i+ε1i,ηi−ui), and use existing estimation

techniques for a cross-section endogenous switching regression model. By using a semi-parametric

cross-section model estimator, consistent estimates for the slope parameters in the three equations

can be obtained without imposing normality of the errors.

Even if the error terms in the cross-section endogenous switching regression model are

independent of the regressors, without further distributional assumptions, identification of the

parameters of this model requires that at least one component of bothβ1 and β0 is equal to zero

(possibly the same), while the corresponding components ofπ are not equal to zero. Such

exclusion restrictions are not required if normality of the errors is imposed, but are needed in a

semi-parametric framework. We will therefore impose them throughout. Our main exclusion

restriction is that the head of household’s education level is not included in the budget share

equations. Education level may affect the family’s information set and interest in financial matters,

and may therefore influence the family’s portfolio choice, of which the choice between owning and

renting is an important component. It is not obvious, however, why education should have a direct

impact on housing consumption, given the ownership decision. Another variable which we exclude

from the share equations is the number of children. Although there is noa priori reason for this,

the number of children was always insignificant in the share equations at any conventional level.

As mentioned above, xi will include the log of total expenditure and its square, which might be
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endogenous. For example, in the two-stage budgeting literature7 a household first decides how

much to spend in total in each period and, given this decision, it decides how much of this to

spend on food, clothing, housing, etc. Thus, total expenditure per period is a decision variable and

could be endogenous. In the standard model where error terms arise due to future uncertainty only,

total expenditure is exogenous to the share equations. However, introducing random preferences in

a life-cycle consistent way will lead to a model in which the resulting error term is correlated with

total expenditure and hence total expenditure is endogenous.

To the best of our knowledge, practically feasible semiparametric estimators of the model

allowing for endogenous regressors in the binary choice selection equation are not available yet.

We shall therefore assume that the log of total expenditure and its square are not present in the

selection equation. Instead, this equation includes the log of household income and its square,

which can be seen as instruments for the total expenditure variables.

We decompose xi into xai, containing log total expenditure and its square, xbi, containing log

household income and its square, and xdi, containing the taste shifters. xci is a subvector of xdi. xbi

and the part of xdi that is not in xci are excluded from the budget share equations, while xai is

excluded from the selection equation. The random effects assumption implies that we assume that

the error termsα0i+ε0i, α1i+ε1i andηi−ui are independent of (x′bi,x′di)′.

A detailed analysis of various cross-section models is given in Charlier et al. (1996). Since in

that paper, the normality assumption on (α0i+ε0i,α1i+ε1i,ηi−ui)′ is strongly rejected, we here only

report the results based on the approach of Newey (1988). This yields consistent estimators under

weaker distributional assumptions than normality, and also has the advantage of computational

convenience. Newey’s approach consists of two steps. The first step is to estimate the binary

choice selection equation. In our search for a flexible enough specification for this, we have

experimented with several generalizations of a probit model, and found that the following one-

parameter extension of the probit model performs well:

P{di=1 xbi,xdi} = Φ(π′bxbi+π′dxdi+τ[π′bxbi+π′dxdi]
2).

This binary choice single index model is estimated by ML.

The second step is to estimate the budget share equations, taking account of selectivity bias and

potential endogeneity of expenditure variables. Selection is accounted for by adding an additional

regressor which can be seen as a correction term. This correction term is an unknown function of

the single indexπ′bxbi+π′dxdi in the selection equation. The unknown function is replaced by a

7 See Blundell and Walker (1986), for example.
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polynomial with coefficients to be estimated, and the parametersπb and πd are replaced by their

first round estimates. Newey shows that, for the case of exogenous regressors, OLS on the

respective subsamples with the terms of the polynomials added as additional regressors, leads to

consistent estimates if the order of the polynomial tends to infinity with the number of

observations. He also derives the asymptotic covariance matrix of the estimator and a consistent

estimate for it.

Potential endogeneity of xai can be accounted for using IV (with xci and log family income and

its square as instruments) instead of OLS in the second step. This is all described extensively in

Charlier et al. (1996). To make the current paper self-contained, we have also included the details

of this estimator and its implementation (choice of smoothing parameters, etc.) in Appendix B.

Results for the wave of 1987 are presented in Table 2. In the lower panel are the ML estimates

of the selection equation as specified above.τ, the coefficient of (π′bxbi+π′dxdi)
2, is significantly

negative, but the probability P{di=1 xbi,xdi} increases with the indexπ′bxbi+π′dxdi over the sample

range.8 The income pattern is U-shaped, and the probability of ownership increases with income

over most of the income range. The education effect is also positive, and much stronger and

significant than the income effect. The age pattern is inversely U-shaped with a maximum

probability of ownership at about 47 years. Being married increases the probability of ownership,

the number of children is insignificant. The regional dummies imply that ownership is higher in

other regions than in the west of the country, where house prices are higher than elsewhere.

The semiparametric estimates based upon Newey (1988) for the case that LEXP and L2EXP are

assumed to be exogenous, are presented in the second column of (the upper part of) table 2. In the

series approximation of the correction term, six terms were used for owners and four for renters.

These choices resulted from estimating models with up to nine terms; the estimates did not change

much after including more than six and four terms, respectively.

The estimated standard errors, which take into account the first stage estimation error in the

parameters of the selection equation, appear to differ substantially from the standard OLS standard

error estimates, but are similar to the Eicker-White standard errors. This indicates that the first

stage errors hardly affect the standard errors of the second stage estimates.

We present Newey instrumental variables (IV) estimates, allowing for endogeneity of LEXP and

8 Using LM tests similar to those in Chesher and Irish (1987), normality in this extended probit model
could not be rejected. Homoskedasticity, however, is still rejected, suggesting that the single index
specification might be inadequate. Due to the lack of feasible alternatives, however, we have to retain this
assumption (see also previous footnote).
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L2EXP in the budget share equation, in the fourth column of table 2.9 We used series

approximations of six terms for owners and five terms for renters. Using IV instead of OLS mainly

affects the parameter estimates related to LEXP and L2EXP. A Hausman type test on exogeneity

of LEXP and L2EXP is based on the difference between the share equation estimates in table 2.

The realization of the test statistic is 1.2 for owners and 12.9 for renters. Both are below the

critical value of aχ2
8 distribution for any conventional significance level, so that exogeneity of

LEXP and L2EXP cannot be rejected.

The age terms are insignificant in both equations for both estimators. The regional dummies

suggest that housing costs are lower in the north than in the rest of the country. Marital status is

insignificant for owners. The only substantial difference between IV and OLS estimates is that

marital status is significantly negative for renters according to the former, and virtually zero

according to the latter.

The estimated shares spent on housing as a function of LEXP are presented as dotted curves in

graphs 1 and 3 in figure 3. The other explanatory variables are set to their sample means. The

constant terms are not estimated; they are chosen such that the means of the predicted budget

shares equal the means of the observed budget shares. Therefore, only the shapes of the curves can

be compared, and not their level. For both owners and renters, we find that allowing for

endogeneity of total expenditure makes a big difference for high levels of total expenditure.

For each panel wave implied elasticities of housing expenditure with respect to total expenditure

are presented in table 5. We present means of these elasticities for owners and renters separately,

weighted with total household expenditure. These can be interpreted as aggregate elasticities (cf.

Banks et al. (1994)). We present the means and their standard errors, and the fraction of

households for which the elasticity estimate is larger than zero.10 In all cases, the elasticities are

much smaller than one, suggesting that housing is a necessity. The standard errors are often quite

large, so that the means are insignificantly different from zero.

To see whether the negative sign for the elasticity in the Newey IV model is caused by an

inappropriate choice of the instruments, we also replaced the instruments by the lagged values of

log(household income) and its square. This, however, led to similar parameter estimates as before

and the elasticities for renters increased only slightly.

3.2. Fixed effects

9 Results in Appendix A show that the results of the Newey (1988) estimates are not sensitive with
respect to the definition of the expenditure measure for owners.

10 The median elasticities (not reported), were very close to zero in all cases.
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Using more than one wave for estimation requires that we explicitly include the time period in the

notation. As in the previous model, we decompose xit into xait, containing log total expenditure and

its square, xbit, containing log household income and its square, and xdit, containing the taste

shifters. xcit again is a subvector of xdit. xbit as well as the part of xdit that is not in xcit are excluded

from the budget share equations, while xait is excluded from the selection equation. We allow for

correlation between the household specific effects and (x′ait,x′cit)′. Throughout, we assume strict

exogeneity of xbit and xdit, i.e., {(ε0it,ε1it,uit), t=1,...,T} is independent of {(xbit,xdit),t=1,...,T}.

Estimation can be based on taking differences between periods t andτ, t≠τ. This yields, for

households with dit=diτ

ypit−ypiτ = β′pa(xait−xaiτ) + β′pc(xcit−xciτ)+ (εpit−εpiτ) if dit=diτ=p, p=0,1,

with

dis = 1(π′bxbis + π′dxdis + ηi − uis ≥ 0), s=t,τ.

Thus, if dit=diτ=p, p=0,1, we can write

ypit−ypiτ = β′pa(xait−xaiτ) + β′pc(xcit−xciτ) + gptτ(xbit,xbiτ,xdit,xdiτ) + ε̃pitτ

where the functions gptτ, p=0,1, are given by

gptτ(xbit,xbiτ,xdit,xdiτ)=E{εpit−εpiτ xbit, xbiτ, xdit, xdiτ, dit=diτ=p}.

and wherẽεpitτ satisfies

E{ ε̃pitτ xbit, xbiτ, xdit, xdiτ, dit=diτ=p} = 0, p=0,1.

The assumptions with respect to the error terms (ε0it,ε1it,uit) determine the functions g0tτ and g1tτ and

the way to estimate the parameters. We discuss the two that will be applied.

(i) Linear Panel Data Model

If we assume that no selection bias is present after differencing, i.e., gptτ≡0, p=0,1, standard panel

data estimation procedures can be used. In this case there is no reason to estimate the auxiliary

selection equation. Only the budget share equations need to be estimated. This corresponds to the

assumption thatηi−uit is independent ofε0it and ε1it, for all t, implying that possible selection
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effects on the budget share equations only enter through correlation betweenαi and (ηi,ui1,..,uIt).

This assumption is often used in applications, for example, by Pedersen et al. (1990) in a model

for wage differentials between public and private sector.

Estimation results for the linear panel data model estimator are presented in table 3, both under

the assumption that LEXP and L2EXP are exogenous (OLS), and allowing for their endogeneity

(IV). A Hausman type test comparing these two leads to rejecting exogeneity for renters but not

for owners. The only significant variables are LEXP and its square. Graphs of the budget share as

a function of LEXP are presented as solid curves in figure 3. Not only the other observed

characteristics are fixed, but also the unobserved household specific effects. We chose them in such

a way that the average shares for owners and renters equal the observed sample means. For owners

the difference between the curves for exogenous and endogenous LEXP and L2EXP are

substantial. For renters, the two curves are more similar to each other.

Elasticities of housing expenditure with respect to total expenditure can be calculated in the

same way as in the random effects panel data model. These elasticities are now not only

conditional upon the exogenous variables and the choice between renting and owning, but also on

the household specific fixed effects. We calculated the aggregate elasticities (weighted with total

expenditure) for each panel wave. The results are presented in table 5. For owners the aggregate

elasticity is significantly positive when LEXP and L2EXP are treated as exogenous, but

insignificant if endogeneity is allowed for. The latter conclusion also holds for renters. In general,

the elasticities are close to zero. Comparing the results with the ones for the random effects model,

the fairly large standard errors do not allow strong conclusions concerning differences in sign or

magnitude. The main difference occurs when LEXP and L2EXP are assumed to be exogenous: the

results for owners in the linear panel data model are significant but insignificant in the random

effects model.

(ii) Semiparametric model

For a panel with two time periods Kyriazidou (1995) proposes an estimator requiring weaker

assumptions than those in the model discussed above. The main assumption in her paper is the

exchangeability of the error terms. For the share equation of owners, this means that, conditional

on the household specific effects, (ε1it,ε1iτ,uit,uiτ) and (ε1iτ,ε1it,uiτ,uit) are identically distributed. It

implies that for households for which dit=diτ andπ′bxbit+π′dxdit=π′bxbiτ+π′dxdiτ, the effect of selection on

the budget share equation (i.e., the g-functions) is the same in periods t andτ. For such

observations, differencing will not only eliminate the fixed effect, but also the selection effect.

Note the difference with the linear model introduced above, where we could use all the
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observations, since the assumptions implied that correction terms were zero. Now, we only use that

the correction terms are the same for certain observations. The subsample consisting of these

observations is used for estimation.

Since observations withπ′bxbit+π′dxdit = π′bxbiτ+π′dxdiτ are scarce, all observations for which the

difference between these two values is sufficiently close to zero are used. This leads to weighted

IV or weighted LS estimators for (β′0a,β′0c)′ and (β′1a,β′1c)′. We present the IV estimation procedure

for the owners’ share equation; the procedure applied to the other cases is very similar.

Denote the regressors in the budget share equations byx̃it=(x′ait,x′cit)′, and the corresponding

instruments by wit=(x′bit,x′cit)′ (of the same dimension as̃xit). Let

where π̂b and π̂d are estimates ofπb and πd (to be discussed below), and K is a kernel with

bandwidth satisfying s1n→0 as n→∞. Then the IV estimator for (β′1a,β′1c)′ is Ŝ−
w

1
xŜwy1. The estimator

is asymptotically normal with an asymptotic bias and an asymptotic covariance matrix that can be

estimated consistently. The rate of convergence is (ns1n)
½.

We use the standard normal density function for the kernel. In choosing the bandwidth, we used

the plug-in procedure as described by Horowitz (1992): first, some initial value for the bandwidth

is chosen and the parameter estimates, the estimate of the asymptotic bias and the estimate of the

covariance matrix are computed. These estimates are used to compute the MSE minimizing

bandwidth and then the bias and the covariance matrix are re-estimated.11

The approach for two time periods can easily be generalized to the case of more than two time

periods. Given some estimates for the selection equation, the budget share equations can be

estimated using the IV approach for each combination of panel waves (t,τ). Minimum Distance,

preferably with the optimal weighting matrix, can then be applied to combine these estimates.

Details can be found in Appendix C. To estimate the optimal weighting matrix, an estimate for the

covariance matrix of the estimators for the different time periods is required. These covariances

converge to zero due to the fact that the bandwidth tends to zero. The proof is similar to that in

Charlier (1994) and is included in Appendix C. The Minimum Distance estimator is therefore a

11 Details on this procedure are available upon request from the authors.
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weighted average of the estimators for each pair (t,τ), t≠τ, with weights given by the inverse of the

corresponding covariance matrix estimate.

The above estimator requires a first stage estimator (π̂′b,π̂′d)′ for (π′b,π′d)′. This can be, for

instance, smoothed maximum score (see Charlier et al., 1995 or Kyriazidou, 1995) or conditional

logit, depending on the distributional assumptions for the selection equation. Kyriazidou proposes

to use smoothed maximum score. Both estimators only use transitions from owning to renting and

from renting to owning. Such transitions are scarce in our data, however. Consequently, it is

impossible to estimate a very flexible specification. Therefore, we will impose the stronger

assumptions that the uit (t=1,...,T) are iid with a logistic distribution, and use the conditional logit

ML estimator to estimate the selection part of the model (see Chamberlain, 1980). Since this

estimator for (π′b,π′d)′ converges at a faster rate than those for (β′1a,β′1c)′ and (β′0a,β′0c)′, the former will

not affect the limit distribution of the latter. This is similar to the result in Kyriazidou (1995).

In order to retain as many observations as possible, we extend the conditional logit estimator to

the case of unbalanced panels. Let ci=(ci1,..,cit) denote a vector of zeros and ones, with cit=1

indicating that all the variables are observed for household i in time period t. Assuming

independence between yi and ci conditional on xi, it is easy to show that ci can be treated as

exogenous. The conditional likelihood contribution of an observation then only depends on

observed values of (yit,xit).

We estimate the selection equation using the unbalanced panel for the years 1987 till 1989,

consisting of 4089 households, with 2348 present in all three years, 943 in two years, and 798 in

only one year.12 This leads to 3065, 3276 and 3387 observations in the three waves. Important for

the precision of the estimates, however, is the number of households that switch at least once

between the two states renting and owning. This number is 170.

In the fixed effects logit model, only the coefficients corresponding to the time varying

regressors are identified. This implies that, due to little or no time variation in these variables, the

constant term and the parameters related to the education dummies, the dummy for being married,

and the regional dummies cannot be estimated. Only the parameters of AGE, AGE2, LINC, L2INC

and NCH remain. We supplemented the equation with time dummies for each of the three years,

two of which can be estimated; the coefficient for the dummy for 1989 is normalized to zero.

The results are presented in the second column of table 4. The estimates for the time dummies

show that the ownership rate increases over time,ceteris paribus. The age variables imply an

inversely U-shaped pattern of the probability of owning similar to that in table 2. The coefficients

12 Since total expenditure does not play a role in the selection equation, observations with missing
information on total expenditure were also used.
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related to LINC and L2INC are jointly insignificant. Excluding L2INC still leads to an

insignificant parameter estimate for LINC. This result is different from that for the random effect

panel data model, where income had a positive impact on the probability of home ownership. That

finding was probably due to the positive relation between permanent income and home ownership.

In the fixed effects model, permanent income is part of the fixed effect, and the interpretation of

our result is that transitory income components do not affect the home ownership decision

significantly. This makes sense in a life cycle context.

The other columns of table 4 contain the minimum distance estimates and their standard error

estimates for owners and renters.13 The bias in the first step Kyriazidou estimates was generally

large for AGE, AGE2 and the time dummy whereas it was small for LEXP and L2EXP (±4% of

the parameter estimates) using 87/88 or 88/89 in estimation. However, the bias for these

parameters was a lot larger for 87/89 (±30%). The parameters related to AGE, AGE2, LEXP and

L2EXP are substantially different from their random effects counterparts based on IV. For renters,

the age variables are insignificant. The coefficients of LEXP and L2EXP are strongly significant.

They imply that, ceteris paribus,the budget share spent on housing negatively responds to a

change in total expenditure. For owners the main difference between the two estimates are the

estimates for LEXP and L2EXP as well as the significance of the time dummy for 1987 when

endogeneity of LEXP and L2EXP is taken into account. For renters the same remark applies, but

also the time dummy for 1988 is significant and the age pattern changes.

To test the assumption of no selectivity bias in the linear panel data model, we perform a

Hausman type test comparing the IV parameter estimates in tables 3 and 4. Because the Kyriazidou

estimator converges slower than the linear panel data estimator, the limit distribution of the

difference between the estimators is determined by the limit distribution of the Kyriazidou

estimator only. The resulting values for the test statistics are 138.3 for owners and 2881.3 for

renters. Both are larger than the critical values of theχ2
6 at any conventional significance level.

This indicates that the model that does not allow for correlation between the error terms in the

share equations and the error term or fixed effect in the selection equation is misspecified.

To test the assumption of no correlation between the household specific effects and (x′bi,x′di)′ we

perform a Hausman type test based on the difference between the Newey IV and the Kyriazidou

IV estimates for those explanatory variables present in both estimates (AGE, AGE2, LEXP and

L2EXP). The limit distribution of the difference between the estimators is again determined by the

13 Results in Appendix A show that most parameters tend to change slightly but not significantly with
the different definitions for housing expenditure for owners.
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limit distribution of the Kyriazidou estimator only. The resulting values for the test statistics are

117.9 for owners and 28.9 for renters. For owners this is larger than the critical values of theχ2
4 at

any conventional significance level. This indicates that the random effects panel data model that

does not allow for correlation between the household specific effects and the explanatory variables

is misspecified. This result continues to hold when we compare the estimates for owners and

renters simultaneously.

To test whether the model could be simplified to a model with one budget share equation

instead of separate equations for renters and owners, we use a Wald test to check whetherβ1 is

equal toβ0. Because T=3, no household can both own a house for two periods or more and rent a

house for two periods or more. As a consequence, the covariance between the estimates forβ0 and

β1 in table 4 is zero, which makes it straightforward to perform the Wald test. The value of the test

statistic is 31.27 which exceeds the critical value of theχ2
6 distribution at all conventional

significance levels. This implies that the model cannot be simplified in this direction.

Graphs of the budget share spent on housing according to the Kyriazidou model are presented

as dashed lines in figure 3. In general most curves are again decreasing except for the very high

levels of total expenditure. For owners the curves based upon estimates allowing and not allowing

for endogeneity of LEXP and L2EXP are very similar. They are also similar to the curve for the

linear panel data model with exogenous LEXP and L2EXP. For renters, the curve allowing for

endogeneity of LEXP and L2EXP in the Kyriazidou model alters the shape of the curve and makes

it closer to linear. For owners we also present the curves for alternative definitions of housing

expenditure (BS12, BS10, see Appendix A) in graph 2. The curves for the different definitions of

housing expenditure for owners are similar.

In table 5 we present the weighted elasticity estimates for the Kyriazidou model, i.e. the

aggregate elasticities of housing expenditure with respect to total expenditure. For owners the

results are similar to those in the linear panel data model: elasticity estimates are significantly

positive under exogeneity of LEXP and L2EXP, and insignificant when LEXP and L2EXP are

endogenous. For renters the elasticity estimates change substantially compared to those in the linear

panel data model. Compared to the random effects model the results change substantially both for

owners and for renters. For the Kyriazidou model the estimated elasticities have the wrong sign

under endogeneity. To see whether the negative sign is due to an inappropriate choice of

instruments, we also replaced the instruments by the lagged values of log(household income) and

its square.14 Although the parameter estimates changed, the elasticity estimates remained negative

14 We used the balanced panel. Due to the extra time lag in the instruments we can only compute the
estimates for the 1988 and 1989 waves of the panel so no minimum distance step is required.
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and they became significant. Therefore the choice of current income variables as instruments does

not seem to explain the negative sign for the elasticities.

Again, the importance of the fixed effects for the interpretation of these results should be

emphasized. Permanent income effects enter through the fixed effect, and can still be positive. The

estimates imply that for renters transitory shocks on total expenditure are more likely to be

negatively correlated to changes in housing expenditure. We have no economic explanation for

this.

The final panel of table 5 contains the results for the elasticities for different measures of

housing expenditure for owners (see Appendix A). The elasticities as well as the standard errors

are slightly affected.

Finally, we performed a specification test on the Kyriazidou model. A natural approach here is

to perform a test on overidentifying restrictions in the minimum distance step. However, as

discussed in Appendix C, we have to choose smoothing parameters. When choosing the smoothing

parameters as in Appendix C, the realizations of the test statistics are 26.29 for renters and 27.56

for owners, which both exceed the critical value of aχ2
9 distribution at conventional significance

levels.15 The choice of smoothing parameters we employ, corresponds to setting weights for the

first step estimates equal to one. However, these weights that depend on n, the first round

smoothing parameters, and the minimum distance smoothing parameters, only have to converge to

one for the sample size approaching infinity. Small changes in the smoothing parameters do not

affect the conclusion of misspecification, but more substantial changes in the weights (say, weight

1.5 instead of 1) yield as conclusion that the null of no misspecification cannot be rejected.16

4. Conclusions

We have modelled expenditure on housing for owners and renters using endogenous switching

regression models for panel data. Attention was paid to the construction of the variables needed in

the econometric model, especially to the definition of housing expenditure for owners. In choosing

the model assumptions we were guided by economic theory, but to a large extent also by the

availability of suitable estimators and the nature of the data. We extended the standard switching

regression model in several directions. First, we used (unbalanced) panel data instead of cross-

15 There are 6 parameters to be estimated. Using one pair of waves, only the difference of the two
corresponding time dummies is identified. Therefore we have 4x3+3=15 constraints in the minimum distance
step. This yields 15−6=9 degrees of freedom.

16 The same sensitivity analysis can also be performed in the tests comparing the random effects IV
model or the linear panel data IV model with the Kyriazidou IV model, and the Wald test comparing the
estimates forβ1 andβ0. In all these cases, the sensitivity analysis yields similar results.
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section data, and considered random effects and fixed effects models. For the random effects case,

cross-section models and data can be used to obtain consistent estimates, but the fixed effects case

requires different techniques. We used two of them, allowing for different types of selection

effects. Where possible, we tried to avoid normality assumptions and relied on semiparametric

techniques. Finally, we focused on estimation techniques which allow some of the explanatory

variables in the budget share equations to be endogenous.

We estimated the slope coefficients in the random effects model using the cross-section data for

1987 on the basis of a semiparametric model. We have compared results which do and do not take

account of potential endogeneity of the variables related to total expenditure. Differences between

these two sets of estimates mainly concern the parameter estimates related to the total expenditure

variables themselves.

For the fixed effects panel data case we estimated two models. The first one is the linear panel

data model which can be estimated using standard estimation techniques. The alternative estimator

based on weaker assumptions was proposed by Kyriazidou (1995). Here the parameters in the

selection equation were estimated using conditional logit. The parameters in the budget share

equations are estimated in a second step, making use of the conditional logit estimates. The models

were compared using Hausman type tests. The results indicate that both the random effects and the

linear panel data model are too restrictive. Exogeneity of total expenditure variables is not always

rejected. Finally, we also applied a test on overidentifying restrictions in the Kyriazidou (1995)

model, the most general model that we considered. The results suggest that an even more general

model might yield better results.
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Figure 1: Nonparametric density estimates for BS1 and BS0 and nonparametric regression

estimates of the same variables on log total expenditure (LEXP), together with

95% uniform confidence bands
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Figure 2: Nonparametric estimates of the probability of owning a house as a function of log

household income (LINC), and distribution of LINC
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Figure 3: Budget share spent on housing as a function of LEXP for the panel data models
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Table 1. Overview of variables and summary statistics for 1987, 1988 and 1989 (standard errors in parentheses)

Variable Description Mean Renters Mean Owners

year 1987 1988 1989 1987 1988 1989

number of obs. 1190 1235 1191 1167 1235 1278

BS0, BS1 Budget share (i.e. monthly expenditure on
housing divided by monthly total expenditure)

0.24
(0.23)

0.23
(0.17)

0.23
(0.18)

0.22
(0.18)

0.22
(0.19)

0.21
(0.19)

DOP2
DOP3
DOP4
DOP5

dummies for education level 0.24
0.37
0.09
0.03

0.26
0.36
0.08
0.03

0.26
0.38
0.11
0.03

0.15
0.48
0.19
0.07

0.16
0.44
0.18
0.06

0.17
0.47
0.20
0.07

AGE

AGE2

age of the head of the household in decennia

and its square

4.03
(1.21)
17.64

3.94
(1.22)
16.98

3.97
(1.23)
17.24

4.10
(0.98)
17.78

4.10
(0.96)
17.70

4.11
(0.97)
17.83

LINC

L2INC

logarithm of monthly family income and

its square (in guilders)

7.69
(0.47)
59.34

7.70
(0.48)
59.45

7.73
(0.48)
59.96

8.04
(0.44)
64.90

8.05
(0.47)

65.09

8.13
(0.42)
66.24

EXP monthly total family expenditure 2304
(1117)

2422
(1139)

2477
(1223)

3233
(1483)

3440
(1702)

3606
(1737)

LEXP

L2EXP

logarithm of monthly total family expenditure

and its square

7.62
(0.54)
58.56

7.67
(0.53)
59.11

7.68
(0.56)
59.31

7.97
(0.51)
63.73

8.02
(0.54)
64.55

8.08
(0.50)
65.49

DMAR dummy for married 0.73 0.70 0.68 0.94 0.93 0.93

NCH number of children living with the family 0.83 0.80 0.77 1.22 1.22 1.15

DREG1
DREG2
DREG3

region dummies for north, east and south res-
pectively

0.11
0.20
0.23

0.11
0.20
0.24

0.12
0.20
0.24

0.11
0.22
0.28

0.10
0.24
0.27

0.11
0.23
0.27
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Table 2. Estimation results for the random effects panel data model using BS1 for owners

and BS0 for renters (standard errors in parentheses)a

Variable Neweyb Newey IVc

BS owners

CONSTANT 9.234d 15.454d

AGE −0.027 (0.033) 0.023 (0.066)

AGE2 0.002 (0.004) −0.005 (0.008)

LEXP −2.024** (0.336) −3.670 (1.939)

L2EXP 0.112** (0.021) 0.212 (0.121)

DMAR 0.024 (0.022) 0.041 (0.024)

DREG1 −0.050** (0.011) −0.037* (0.016)

DREG2 −0.011 (0.011) −0.003 (0.012)

DREG3 −0.020 (0.010) −0.009 (0.014)

BS renters

CONSTANT 11.290e 5.589e

AGE 0.017 (0.036) −0.068 (0.042)

AGE2 −0.002 (0.004) 0.008 (0.004)

LEXP −2.690** (0.324) −1.107* (0.469)

L2EXP 0.162** (0.021) 0.056 (0.032)

DMAR −0.002 (0.016) −0.049* (0.018)

DREG1 −0.028* (0.011) −0.038* (0.016)

DREG2 −0.015 (0.012) −0.024 (0.015)

DREG3 −0.003 (0.011) −0.003 (0.013)

Selection

CONSTANT 23.113** (4.440) «

DOP2 0.207* (0.083) «

DOP3 0.510** (0.075) «

DOP4 0.599** (0.121) «

DOP5 0.570** (0.208) «

AGE 1.252** (0.223) «

AGE2 −0.134** (0.026) «

LINC −7.991** (1.193) «

L2INC 0.581** (0.080) «

DMAR 0.481** (0.088) «

NCH 0.051 (0.033) «

DREG1 0.303** (0.094) «

DREG2 0.240** (0.078) «

DREG3 0.302** (0.073) «

τ2 −0.172** (0.036) «

a * means significant at the 5% level,** means significant at the 1% level.
b series approximation using single index ML probit in estimating the selection equation.
c IV using AGE, AGE2, LINC, L2INC, DMAR, DREG1, DREG2, DREG3 as instruments
d estimates include the estimate for the constant term in the series approximation
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Table 3: Estimation results based on the linear panel data model using the unbalanced panel,
standard errors in parentheses

Equation Variable OLS Estimates IVa Estimates

BS1 owners AGE
AGE2
LEXP
L2EXP
Dummy87
Dummy88

0.041 (0.073)
0.005 (0.008)

−1.655** (0.051)
0.091** (0.003)
0.009 (0.006)
0.003 (0.003)

−0.082 (0.122)
0.026 (0.013)

−3.750** (0.454)
0.218** (0.028)
0.017 (0.011)
0.009 (0.005)

BS0 renters AGE
AGE2
LEXP
L2EXP
Dummy87
Dummy88

0.038 (0.063)
0.0000 (0.007)

−2.487** (0.054)
0.147** (0.004)

−0.0001 (0.007)
−0.005 (0.004)

0.093 (0.072)
−0.005 (0.008)
−1.604** (0.192)

0.090** (0.013)
0.002 (0.007)

−0.005 (0.004)

a In IV estimation AGE, AGE2, LINC, L2INC, Dummy87 and Dummy88 are used as instruments.

Table 4: Fixed effects logit selection equation estimates and the results for the budget share

equations after performing minimum distance with the optimal weighting matrix

Variable Fixed effects logit ‘OLS’ Estimates IVa Estimates

AGE
AGE2
LEXP
L2EXP
Dummy87
Dummy88
LINC
L2INC
NCH

16.592* (6.587)
−1.964* (0.755)

−2.432** (0.735)
−1.245** (0.459)

7.658 (12.894)
-0.534 (0.813)
−0.545 (0.481)

owners
0.158 (0.152)

−0.018 (0.016)
−1.538** (0.095)

0.084** (0.006)
−0.004 (0.006)
−0.0001 (0.004)

0.115 (0.106)
−0.012 (0.012)
−2.312** (0.205)

0.130** (0.013)
−0.009* (0.004)
−0.001 (0.003)

AGE
AGE2
LEXP
L2EXP
Dummy87
Dummy88

renters
−0.283 (0.119)

0.034* (0.014)
−2.262** (0.171)

0.131** (0.011)
0.007 (0.006)

−0.002 (0.003)

0.115* (0.055)
−0.012 (0.007)
−1.545** (0.123)

0.085** (0.008)
−0.013** (0.002)
−0.007** (0.003)

a In IV estimation AGE, AGE2, LINC, L2INC, Dummy87 and Dummy88 are used as instruments.
Choices for initial bandwidth (s1 and s0) and resulting optimal bandwidths (s*

1 and s*0):
exogenous LEXP and L2EXP IV

Year s1 s*
1 s0 s*

0 s1 s*
1 s0 s*

0

87/88 0.5 0.54 0.5 0.44 0.6 0.60 0.4 0.41
87/89 0.3 0.38 0.3 0.33 0.7 0.91 0.5 0.50
88/89 0.5 0.50 0.6 0.60 0.5 0.50 0.6 0.61
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Table 5: Budget elasticities for the panel data models (standard errors in parentheses)a

owners fr > 0 renters fr > 0

Random Effects,

exogenous LEXP

and L2EXP

1987

1988

1989

−0.037 (0.101)

0.010 (0.119)

0.047 (0.128)

0.37

0.38

0.41

0.242** (0.092)

0.292** (0.103)

0.342** (0.109)

0.55

0.59

0.62

Random Effects,

endogenous LEXP

and L2EXP

1987

1988

1989

0.507 (0.590)

0.670 (0.718)

0.766 (0.783)

0.62

0.65

0.68

−0.138 (0.226)

−0.159 (0.250)

−0.149 (0.261)

0.32

0.31

0.32

Linear, exogenous

LEXP and L2EXP

1987

1988

1989

0.113** (0.028)

0.149** (0.031)

0.179** (0.032)

0.56

0.56

0.57

0.049 (0.031)

0.082* (0.034)

0.125** (0.035)

0.43

0.46

0.51

Linear,

endogenous LEXP

and L2EXP

1987

1988

1989

0.002 (0.109)

0.140 (0.127)

0.228 (0.138)

0.35

0.36

0.43

0.014 (0.087)

0.016 (0.095)

0.039 (0.100)

0.46

0.48

0.50

Kyriazidou,

exogenous LEXP

and L2EXP

1987

1988

1989

0.166** (0.038)

0.199** (0.042)

0.226** (0.044)

0.62

0.61

0.64

−0.024 (0.059)

−0.002 (0.065)

0.035 (0.068)

0.38

0.42

0.45

Kyriazidou,

endogenous LEXP

and L2EXP

1987

1988

1989

0.019 (0.057)

0.083 (0.064)

0.130* (0.068)

0.41

0.42

0.46

−0.061 (0.057)

−0.064 (0.062)

−0.043 (0.064)

0.36

0.40

0.41

Kyriazidou IV

BS12

BS10

1987

1987

−0.018 (0.053)

0.078 (0.063)

0.38

0.45

a * means significant at the 5% level,** means significant at the 1% level.
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DATA APPENDIX

In this appendix we give some details on the construction of the variables for 1986 till 1989, used

in the application. Although we only use wealth from the 1986 data (to subtract from the wealth in

1987 to get savings for 1987) we include them here because the features discussed below are

representative for the other years as well (unless indicated) and because we can compare the 1986

data to macro data that are not available for 1987 and 1988.

Housing

Initial dataset: 3850, 3613, 3818, 3896 households for ’86, ’87, ’88 and ’89 respectively.

Dropped from the analysis are:

• families that live for free (±0.8 % in 1986);

• families with a total income below Dfl. 1,- per month (±200 obs);

• families that receive a so calledhuurgewenningsbijdrage(i.e., a governmental allowance for

people who experienced a large rent increase because of renovation of their dwelling or who

had to search for a different dwelling after pull down of their previously rented dwelling). The

reason for this latter drop is that the amount is a substantial part of the housing expenditure

(16% on average) and it is not clear from the data whether this amount is included in the

answers on rent payments or not (±1.2% of the renters in 1986).

Housing consumption for owners:

(1-tax)*erfpacht + tax*huurwaardeforfait + (1-tax)*interest payment + foregone interest −

increase in the value of the house + maintenance costs +eigenaarsgedeelte onroerend

goedbelasting+ opstalverzekering.

Here erfpacht is the amount of money you have to pay if you do not own the land on which your

dwelling is built (which is partly deductible), tax is the marginal tax rate of the most earning adult

in the household,huurwaardeforfait is tax levied on the value of the house of owners,

eigenaarsgedeelte onroerend goedbelastingis municipal tax for house owners and

opstalverzekering is a house insurance for fire, broken windows etc. Expenditure on

gas/water/electricity/heating is excluded.

Computation of the variables in expenditure for owners

Approximately 140 house owning families dropped because the value of the house is not known,

which is necessary to correct for, among other things,huurwaardeforfait. In the data we have

either the amount spent on interest payments on the mortgage or the interest rate on the mortgage.
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If we only have the interest rate on the mortgage we computed the interest payments by

multiplying this percentage with the mortgage value. If the mortgage value is not reported we used

149000, 155000 and 163000 (the average value of a house for 1987, 1988 and 1989). Foregone

interest is set equal to 0.04 times the difference in the value of the house and the mortgage value.

Maintenance costs are defined as 2 percent of the value of the house. In the main text we

investigate the sensitivity of the results with respect to the percentage increase in the value of a

house and the percentage used in the maintenance costs. Because theeigenaarsgedeelte onroerend

goedbelastingcan differ per municipal it is calculated as follows: we have data over 1986-1989 on

Tilburg and we will consider Tilburg to be representative for its province. Per province we have

the amount of tax that was payed to the local government per inhabitant of the municipality (CBS,

Statistiek der gemeentebegroting). Theeigenaarsgedeelte onroerend goedbelastingper province is

calculated as the figure for Tilburg times the relative tax per inhabitant of the province. The

relative tax for the provinces is approximately constant over time. Theopstalverzekeringis simply

12.95 times the value of the house divided by 100000 (Budgethandboek NIBUD, 1987).

Computation of marginal tax rate

In the SEP we only observe net income like net wages, net unemployment benefits, net pensions

etc. To calculate the marginal tax rate we need gross income of the spouse that earns most because

he/she will have to report the tax related issues of owning a house (like e.g.huurwaardeforfait).

From the net income we could try to invert the tax system and infer gross income. However, this

is a very cumbersome approach. Therefore we will follow Euwals and Van Soest (1995). Gross

income is already available for individuals with a payed job. We now estimate a net wage equation

using the households in which at least one individual has a paid job. An important variable to be

included is the tax free allowance (TFA). Constructing this for married couples involves the gross

income of the other spouse. All the households for whom we could determine the TFA were

included in estimation. The equation estimated is the same as in Euwals and Van Soest (1995), i.e.

without a constant term. Without making differences between men and women we got an R2 of

.9955 and the parameter estimates are fairly similar. Given the net income we can now estimate

gross income by inverting the relationship. By taking derivatives of net income with respect to

gross income we can estimate the marginal tax rate.

General remarks concerning the data

The following data cleaning operations have been applied.

• People who got married or divorced are left out in the analysis to avoid dependence between
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households in the sample (±140 households per year);

• households that spend more than 1.5 times their monthly income on housing (±70 households

per year) are also left out.

In general we loose approximately 600 households per year. In 1986 we loose 100 more because

we do not have good data on the value of the house. If we use only the observations with income

budget shares smaller than 1.5 we end up with 3122, 3006, 3224 and 3321 observations.

Comparing the data with macro data

We will compare the 1989 and the 1986 data with the figures inWoningbehoeftenonderzoek

1989/1990and theWoningbehoeftenonderzoek 1985/1986reported by Statistics Netherlands (CBS).

Their definitions for rent and income are the same as the ones we use. For renters the CBS

tabulates rent, net annual income and budget shares. The definition of expenditure on housing for

owners differs from our measure. The CBS measure of housing expenditure includes expenditure

on the mortgage,erfpacht, opstalverz., eigenaarsgedeelte onroerend goed belasting, rijksbijdrage

eigen woning bezitand tax issues like interest,erfpacht, huurwaardeforfaiten rijksbijdrage eigen

woning bezit. We constructed this measure withoutopstalverz., eigenaarsgedeelte onroerend goed

belasting, rijksbijdrage eigen woning bezitand related tax issues. For owners the CBS tabulates net

yearly income and budget shares.

Comparing the 1989 data with the statistics in theWoningbehoeftenonderzoek 1989/1990we

conclude that:

• house owners are overrepresented in our sample. We see two reasons for this: the group of one-

person households is underrepresented and 75% of this group rents, and the owners are

overrepresented in the more-than-one-person households;

• for renters our rent data follow the results of the CBS, but low income households (<26000 net

per year) are underrepresented and the higher budget shares are overrepresented yielding an

average budget share of 0.22 instead of 0.18. The median is 0.19 but this is not reported in the

CBS figures;

• the data for owners with a mortgage are similar to the CBS results in the sense that the

distribution of net annual income is similar, the distribution of budget shares is similar and the

average budget share is 0.133 instead of 0.137;

• households owning a house without a mortgage are underrepresented.

Comparing the 1986 data with the statistics in theWoningbehoeftenonderzoek 1985/1986we

conclude that:
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• again house owners are overrepresented in our sample, probably for same two reasons discussed

above.

• the distribution of the rent per month is similar to the CBS data but for renters the high net

yearly incomes (>38000) are underrepresented and, related to this, higher budget shares are

overrepresented (on average it is 0.21 whereas it should be 0.17 according to the CBS).

Especially the budget shares larger than 0.32 are overrepresented. The median is 0.18 but this

figure is not reported in the CBS figures;

• for owners the low net yearly incomes (<25000) are underrepresented but the budget shares (for

the ones with a mortgage) are conform the CBS data except that again the budget shares larger

than 0.32 seem to be a bit overrepresented the mean is 0.17 whereas it should be approximately

0.15). The median is 0.13 but this figure is not reported by the CBS;

• households owning a house without a mortgage are underrepresented.

In general the data have the following features:

• the density of income shifts a little bit to the right over time;

• the density of the budget shares for renters remains approximately the same over time;

• the density of the budget shares for owners is slightly shifted to the right when compared to the

1989 macro data. The data for 1986 contain too many people with budget shares over 0.32;

• the density of the interest payments on mortgages looks the same for all years. However, the

average value for 1986 is still a bit high but the average is increasing (slightly) over 1987-1989.
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APPENDIX A

In this appendix we will investigate the sensitivity of the cross-section Newey IV results and the

panel data Kyriazidou IV results with respect to the maintenance costs and the mortgage costs in

housing consumption for owners. Let BS1ab denote the Budget Share spent on housing for owners

with a% increase of the value of a house (a=0,1,2,3,4) and b% of the value of the house as the

maintenance costs (b=1,2). In the main text a equals 1 and b equals 2. From the definition of

housing costs for owners it follows that BS1ab=BS1a+1,b+1 so eg. BS121=BS132. Because the

averages for BS142, BS132 (and henceBS131 and BS121) are very low compared to the average

for renters we only consider BS122, BS112 and BS102. The last digit is then dropped because it is

fixed at 2. Hence we consider BS1a with the maintenance costs fixed at 2 % of the value of the

house. BS11 is used throughout the main text. The means for BS12, BS11 and BS10 are

respectively 0.18, 0.22 and 0.27 with standard errors of 0.15, 0.18 and 0.22.

In the next table we indicate the sensitivity of the parameter estimates of the Newey IV

estimates with respect to the measure for housing expenditure for owners. The coefficients related

to LEXP, L2EXP, DMAR and DREG1 tend to change somewhat, but the main conclusions remain

the same. The standard errors remain rather large such that we do not find significant differences

in the parameter estimates when varying housing expenditure for owners.

Sensitivity of the estimation results with respect to the measure for housing expenditure of owners,
cross-sectiona

Variable BS12 Newey IVb,c BS11 Newey IVb,c BS10 Newey IVb,c

CONSTANT 7.289d 15.454d 18.108d

AGE 0.028 (0.053) 0.028 (0.066) 0.035 (0.077)

AGE2 −0.004 (0.007) −0.005 (0.008) −0.005 (0.009)

LEXP −3.040 (1.634) −3.670 (1.939) −4.300 (2.241)

L2EXP 0.181 (0.105) 0.219 (0.121) 0.256 (0.144)

DMAR 0.032 (0.020) 0.041 (0.024) 0.050 (0.028)

DREG1 −0.029* (0.013) −0.037* (0.016) −0.045** (0.018)

DREG2 −0.005 (0.010) −0.003 (0.012) −0.001 (0.014)

DREG3 −0.010 (0.011) −0.009 (0.014) −0.008 (0.017)

a * means significant at the 5% level,** means significant at the 1% level. The results for renters
and for the selection equation are the ones presented in the second and third column of table 3
b series approximation using single index ML probit in estimating the selection equation
c IV using AGE, AGE2, LINC, L2INC, DMAR, DREG1, DREG2 and DREG3 as instruments
d estimates include the estimate for the constant term in the series approximation
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In the next table we indicate the sensitivity of the parameter estimates of the Kyriazidou IV

panel estimates with respect to the measure for housing expenditure for owners. Most coefficients

change somewhat but the main conclusions remain the same.

Sensitivity of the estimation results with respect to the measure for housing expenditure of owners,
panela

Variable Kyriaz. IV BS12 Kyriaz. IV BS11 Kyriaz. IV BS10

AGE
AGE2
LEXP
L2EXP
Dummy87
Dummy88

0.051 (0.095)
−0.006 (0.010)
−1.942** (0.162)

0.110** (0.010)
−0.004 (0.004)
−0.001 (0.002)

0.115 (0.106)
-0.012 (0.012)
-2.312** (0.205)
0.130** (0.013)

-0.009* (0.004)
-0.001 (0.003)

0.1605 0.117
−0.0160 0.013
−2.6841 0.249
0.1505 0.015

−0.0143 0.005
−0.0017 0.004

a * means significant at the 5% level,** means significant at the 1% level. The results for the
selection equation are the ones presented in the second and third column of table 6 and the results
for renters are the ones in the sixth and seventh column of table 6. Because the smoothing
parameters are related to the index of the first step estimates only, the smoothing parameters are
the ones reported in table 6.
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Appendix B

In this appendix we discuss some details of implementing the Newey (1988) estimator discussed in

section 3.1. Starting point is the random effects model which, for one cross-section, can be written

as

di = 1(π′xi − vsi ≥ 0).

y0i = β′0xi + v0i if di=0

y1i = β′1xi + v1i if di=1

Compared to the notation in section 3.1, the time index t is omitted and the random effects are

incorporated in the error terms vi=(vsi,v0i,v1i), which is independent of xi. Newey uses the fact that

the independence assumption implies that the distribution of vi depends on (xbi,xdi) only through the

index π’x i=π′bxbi+π′dxdi. This implies that

ypi = β′paxai + β′pcxci + gp(xbi,xdi) + ε̃pi, with

gp(xbi,xdi)=E{εpi xbi, xdi, di=p} and E{ε̃pi xbi, xdi, di=p} = 0, p=0,1.

and where the functions g0 and g1 can then be written as

gp(xbi,xdi) = g̃p(π′bxbi+π′dxdi), p=0,1.

To estimate the budget equations,g̃0 and g̃1 are approximated byΣK
k=0αpk(π′bxbi+π′dxdi)

k, p=0,1, with

K=K(p,n) (p=0,1, n is the number of observations). The following regression equations can now be

used for the subsamples of renters and owners separately

ypi = β′paxai + β′pcxci + ΣK
k=0αpk(π̂′bxbi+π̂′dxdi)

k + ε̂pi, (1)

where π̂b and π̂d denote estimates ofπb and πd, respectively (to be discussed below). If xai is

exogenous, consistent and asymptotically normal estimates for (β′0a,β′0c) and (β′1a,β′1c) can be

obtained by applying OLS to equation (1) for each subsample. This was shown by Newey (1988),

who also derives a consistent estimator for the asymptotic covariance matrices of the estimators.

We apply Newey’s procedure to the case that xai is allowed to be endogenous by replacing OLS

with IV. Denote the regressors in equation (1) corresponding for the case p=1 byx̂s
i, i.e.

x̂s
i=(x′ai,x′ci,1,(π̂′bxbi+π̂′dxdi)

1,..,(π̂′bxbi+π̂′dxdi)
K)′ (with now K=K(1,n)) and letX̂s=(x̂s

1,..,̂x
s
n1)′ where n1 is

the number of observations with di=1. Furthermore, let̂ws
i be the vector of instruments, i.e.x̂s

i with
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xai replaced by xbi (hence ŵs
i is of the same dimension aŝxs

i), and let Ŵs=[ŵs
1,..,ŵ

s
n1]′. The

parametersβ1a, β1c, and α11 to α1K can now be estimated by applying IV to equation (1). Under

appropriate regularity conditions17 the IV-estimates forβ1a and β1b will be consistent and

asymptotically normal: n((̂β′1a,β̂′1c)′−(β′1a,β′1c)′)→dN(0,V). Notice, however, that the constant term in

the regression equation cannot be estimated separately, since the series approximation also includes

a constant term.18 The asymptotic covariance matrix V can be estimated consistently by

whereẽi is the IV residual and

whereα̂1k, k=1,..,K are the IV estimates of theα1k. The expressions in Newey (1988) are a special

case withŴs replaced byX̂s, ẽi by the OLS residuals and̂α1k, k=1,..,K by the OLS estimates. The

parameters in the other equation (p=0) can be estimated analogously.

The smoothing parameter in the estimation procedure is the number of terms in the series

approximation, which is chosen such that adding more terms in the series approximation no longer

affects the parameter estimates for the regression coefficients. In practice, often only a few terms in

the series approximation turn out to be required.

The Newey approach for estimatingβp, p=0,1, requires estimation of a single index binary

choice model19 to obtain estimates for (π′b,π′d). Klein and Spady (1993) have proposed an

estimator which is semiparametrically efficient under weak regularity assumptions. This estimator,

however, is difficult to compute. Instead, we started with the probit ML estimates for (π′b,π′d). We

17 Appropriate regularity conditions should include conditions guaranteeing consistency of the IV
estimates ofβ1a and β1c and conditions that allow one to derive the presented limit distribution. The former
conditions will be different from Newey’s, since identification should now be based on moment restrictions.
Given identification (and consistency) the latter conditions will be comparable to Newey’s conditions.

18 Andrews and Schafgans (1995) show how the constant term can be estimated if observations with
selection probability close to one are available. Since, however, we do not have many observations with
probability of ownership close to zero or one, this approach is practically infeasible for both renters and
owners.

19 Ahn and Powell (1993) allow for a more general model, in which the probability of ownership is
estimated completely nonparametrically. Due to the large number of explanatory variables in the selection
equation, such an approach is practically infeasible for our purposes.
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tested for normality and heteroskedasticity of exponential form using tests described in Chesher

and Irish (1987). Both normality and homoskedasticity were rejected. Therefore, we experimented

with the following specification, in which the single index assumption is retained:

P{di=1 xbi,xdi} = Φ(m(τ,π′bxbi+π′dxdi)/exp{σ(γ,π′bxbi+π′dxdi)})

Here m andσ are power series inπ′bxbi+π′dxdi with coefficientsτ and γ, respectively. This can be

seen as a series approximation to an arbitrary single index model. Letτj and γj denote the

coefficients related to (π′bxbi+π′dxdi)
j. The normalizations imposed areτ0=0, τ1=1 and γ0=0. We

estimated this model for several lengths of the two power series, and found one significant term in

m: (π′bxbi+π′dxdi)
2.
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APPENDIX C

In this appendix we derive the limit distribution of the minimum distance estimator for the

Kyriazidou panel data model with more than two time periods. The estimators used in the first step

are the Kyriazidou estimators based on two time periods. They play a major role in determining

the limit distribution of the minimum distance estimator. Particularly, we will show that the

asymptotic covariance between the Kyriazidou estimators based on a different combination of two

different time periods is asymptotically zero. For notational convenience we will show the results

comparing the estimator based on time periods one and two with the one based on the periods two

and three. The result can be easily extended including more estimators in the first step.

Let β̃1,ts denote the estimator for (β′1a,β′1c)′ based on time periods s and t. It is easy to show that

for the second step minimum distance estimator, b1, say, we can write

for some matrix An converging in probability to A, say, when n→∞, and some smoothing

(C.1)

parameter s3n. Hence the limit distribution of the minimum distance estimator is determined by the

limit distribution of

From Kyriazidou (1995) we have

(C.2)

√(ns1n)(β̃1,21−β1) →d N(AB1,V1), and

√(ns2n)(β̃1,32−β1) →d N(AB2,V2),

with AB1, AB2 the asymptotic bias, and V1, V2 the asymptotic covariance matrices.

Using the optimal estimators (i.e minimizing asymptotic MSE) in the first round it follows that

s1n=O(n−α) and s2n=O(n−α) for some 0<α<½. Therefore also s3n=O(n−α).

Now define

with 0<c31<∞ and 0<c32<∞.

(C.3)



- 35 -

Then

We will now show that cov=cov(√(ns3n)(β̃1,21−β1),√(ns3n)(β̃1,32−β1)) tends to zero as n tends to

(C.4)

infinity. Because the first round estimator forπ converges at a faster rate, the limit distribution of

the estimators can be analyzed assuming we know the true value forπ (analogously to Kyriazidou,

1995). Thenβ̃1,21 and β̃1,32 are (following the notation in the main text)

Because the inverted matrices in (C.5) and (C.6) converge in probability they will be ignored in

(C.5)

(C.6)

the remainder.

Analogous to Kyriazidou (1995, proof of lemma 1) one can show that

and a similar expression holds for Sw32,ε32. Now drop the subscript i and define∆w21=w2−w1,

(C.7)
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∆w32=w3−w2, G21=π′b(xbi2−xbi1)+π′d(xdi2−xdi1) and G32=π′b(xbi3−xbi2)+π′d(xdi3−xdi2). Using that ξi21n and

ξi32n have expectation zero it follows that (suppressing i subscripts)

Using (C.3) and (C.8) it now follows that

(C.8)

In practice we need to estimate

(C.9)

The quantities AB1/√(ns1n), AB2/√(ns2n), V1/(ns1n) and V2/(ns2n) are what we estimate in the first

(C.10)

step of the estimation procedure, so the question is how to estimate the other quantities. A possible

way to do this is to assume that sjn=cjn
−α for some cj, j=1,2,3. Then it follows that all the remaining

quantities in (C.10) are equal to 1 and hence we only need the bias and variance estimates from

the first step. We use this choice in the main text. For sjn, j=1,2, Kyriazidou (1995) assumes the

structure mentioned before. However, the assumption that s3n=c3n
−α, although natural, can be

restrictive in small samples. Therefore, we also investigated the sensitivity of the results when the

remaining quantities in (C.10) are slightly different from 1.


