
Center
for

Economic Research

No. 2000-63

COMBINING DOMAIN KNOWLEDGE AND DATA IN
DATAMINING SYSTEMS

By Hennie Daniels and Ad Feelders

July 2000

ISSN 0924-7815

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6794551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Combining domain knowledge and data

in datamining systems

Hennie Daniels1;2 and Ad Feelders1

1 Tilburg University
CentER for Economic Research

PO Box 90153
5000 LE Tilburg, The Netherlands

A.J.Feelders@kub.nl

2 Erasmus University Rotterdam
ERIM Erasmus Research Institute for Management Studies

PO Box 1738
3000 DR Rotterdam, The Netherlands

1 Introduction

Despite the predominant attention for analysis in the datamining
literature, data selection and preprocessing have a substantial in-

uence on the success of data mining projects. Since a database is
always an imperfect description of a real business process, there are
numerous problems to overcome. If the description of the domain is
too limited, essential patterns in the environment may not have a
counterpart in the database. On the other hand, a lot of information
stored in the database may be super
uous with respect to the prob-
lem under consideration. Furthermore, incorrect information such as
missing attribute-value pairs and wrong attribute-values may lead to
incorrect conclusions. Finally, retrieval, merging and aggegration of
the data can be a major task on its own especially if the information
is stored in distributed and heterogeneous databases.

Recently, it has been argued that the usual datamining algo-
rithms may also have several shortcomings when used to support
real-world decision-making [FDH00]. These limitations are due to a
variety of factors such as:

{ The incompatibility of domain knowledge with patterns in trans-
action databases, such as knowledge embedded in corporate pol-
icy rules and business regulations;

{ Di�culties in representing uncertainty, imprecision or incomplete-
ness of knowledge about the considered phenomena;

{ The unsuitability in adequately representing a priori knowledge,
such as causal knowledge;

{ In some applications, computational expense.

Consequently, there is a growing interest in integrating the tra-
ditional datamining software, which derives knowledge purely from
data alone with descriptive methods for encoding domain knowledge.
It is well-known that a manager's assessment of the plausibility of
knowledge derived from databases using datamining techniques, de-
pends on his perspicacity and intuition. He will often also need to
convince other managers about the correctness of this knowledge,
but current datamining tools do not contribute much to this pro-
cess of persuasion. The current limitations of datamining software
would be partly removed if the explicativity of the system to decision
makers were improved. One such improvement would be the incor-
poration of explicit knowledge based on experience and intuition of
the decision maker or analyst in the datamining process. There is a
great scope here for an integration of knowledge extracted from ex-
perts in the domain encoded in some accessible way, with knowledge
derived from conventional datamining algorithms. There is a variety
of applications where this could be useful like:

{ Risk assessment in the presence of both qualitative knowledge
and legal or contractual constraints.

{ Knowledge structuring and concept identi�cation in evaluation
decision processes such as credit loan evalution, risk-assessment
and fraud detection.

{ Validation of business rules especially in a distributed user envi-
ronment.

{ All kinds of price models for trend analysis or automatic trading
employed in combination with transaction databases.

Cases have been explored in the �elds of reinsurance, marketing
and credit control, and more are envisaged. In many administrative
tasks there is a need to comply with existing legislation or busi-
ness policy rules. The rules must be enforced in business processes
which can be a problem if knowledge is derived with datamining

algorithms from distributed databases. In this paper we will show
that datamining systems can be succesfully combined with explicit
domain knowledge , yielding improvement of transparancy and ef-
fectiveness of the complete system.

We refer to such programs as Hybrid Datamining Systems (HDS),
they are based on the expert domain knowledge or rules used in
business operations coupled with datamining techniques that derive
additional knowledge from cases stored in the database.

In learning from data one can imagine two extreme situations
with respect to the availability of domain knowledge. The �rst is
that no prior knowledge whatsoever is available, the second is that
the relationship is known with certainty up to a limited number of
parameters. Both extremes are unlikely to occur in practice. Data
mining is often associated with the situation where little prior knowl-
edge is available and an extensive search over possible models is
performed.

The estimation of economic relationships from empirical data
is studies in the �eld of econometrics. The textbook approach to
econometrics assumes the other extreme with respect to a priori
knowledge. In the model speci�cation stage the relevant explanatory
variables and the functional form of the relationship with the depen-
dent variable are derived from economic theory. Then the relevant
data are collected and the model is estimated and tested.

Applied econometrics does not conform to this textbook ap-
proach, but is often characterized by what Leamer ([Lea78]) calls
speci�cation searches. Researchers who perform a speci�cation search
on the data are actually accused of data mining in the econometrics
literature ([Lea78,Lov83]). The problem is that standard econometric
model testing is no longer valid in this case. In the data mining com-
munity this problem is well-known (over�tting), and out-of-sample
testing and cross-validation have become standard practice.

Why does the applied econometrician not follow the textbook ap-
proach but perform an amount of speci�cation search? One reason
might be the wish to obtain \signi�cant" results that warrant pub-
lication. The best model, selected from the large amount of models
tried, is sometimes presented as if it where speci�ed completely in
advance and no other models were tried. The other reason is that

very often \economic theory" is not formulated in such a way that
a unique model speci�cation may be derived from it.

In data mining we usually start at the other end of the spectrum
and assume very little prior knowledge is available. Of course one has
to have some ideas, for how else does one decide which explanatory
variables to include in the model? But often the algorithm is able to
select the relevant variables from a large collection of variables (like
in stepwise regression) and furthermore
exible functions are used,
i.e. there is little known about the functional form of the relation
between the dependent and explanatory variables. Even though data
mining is often applied to domains where little theory is available,
in some cases useful prior knowledge is available, and one would like
the mining algorithm to make use of it one way or the other.

One form of prior knowledge that is often available (in economic
theory) is about the sign of a relation between dependent and ex-
planatory variable. Economic theory would state that people tend
to buy less of a product if its price increases (ceteris paribus), so
there would be a negative relationship between price and demand.
The strength of this relationship and the precise functional form are
however not always dictated by economic theory. The usual assump-
tion that such relationships are linear are more for mathematical
convenience than anything else.

2 Domain knowledge in data mining

The term domain knowledge (background knowledge, prior knowl-

edge) are used for di�erent types of knowledge in the data mining
literature. We make a broad distinction between

1. Auxiliary knowledge.
2. Normative knowledge about the model to be constructed.
3. Knowledge about the data generating process.

An example of the �rst category concerns the cost of measure-
ment of di�erent variables, e.g. in the context of medical diagnosis
(see [Nn91]). In that case one would like to consider both the amount
of information and cost of measurement of a variable in model con-
struction. Another form of auxiliary knowledge frequently encoun-
tered is knowledge about the hierarchical structure of the domains

of attributes [Nn91]. In �gure 1 we give an example of such an hier-
archy for an application concerning the analysis of tra�c accidents.
The objective of this study was to �nd pro�les of fatal tra�c acci-
dents. One important attribute indicates which objects are involved
in the accident. Although the attribute values are recorded at the
lowest level of generalization (the leaves of the hierarchy), the data
mining algorithm can use the hierarchy to �nd rules at a higher level
of abstraction.

object
involved

pedestrian motor
vehicle

fixed
object

truck car lamppost tree

bike

motorbike

Fig. 1. Hierarchy of attribute values for tra�c accident application

Normative knowledge may be important if the objective of data
mining is to �nd a model that will be used in decision making, e.g.
acceptance/rejection decisions. Examples are loan acceptance and
employee selection. A common sense requirement is that the deci-
sion rule should be monotone with respect to certain variables. In
loan acceptance the decision rule should be monotone with respect
to income for example, i.e. it is not acceptable that an applicant
with high income is rejected whereas another applicant with low in-

come and otherwise equal characteristics is accepted. Monotonicity
of a relationship is a very common form of domain knowledge, and
therefore we provide much attention to it in this study.

Finally, knowledge of the data generating process or the \true"
model is also an important type of domain knowledge. In the next
section we give an example of this type of prior knowledge for the
domain of economics.

3 Economic domain knowledge in regression

According to most textbooks, econometrics concerns itself with the
application of tools of statistical inference to the empirical mea-
surement of relationships postulated by economic theory. Regression
analysis is by far the most widely used technique in econometrics.
This is quite natural since economic models are often expressed as
(systems of) equations where one economic quantity is determined
or explained by one or more other quantities.

The a priori domain knowledge is primarily used in the model

speci�cation phase of the analysis. Such a priori knowledge is sup-
posed to be derived largely from economic theory.

Model speci�cation consists of the following elements:

1. Choice of dependent and explanatory variables.

2. Speci�cation of the functional form of the relation between de-
pendent and explanatory variables.

3. Restrictions on parameter values.

4. Speci�cation of the stochastic process.

In practice economic theory is rarely so detailed that it leads
to a unique (unambiguous) model speci�cation (or there may be
many rival theories). Especially the usual ceteris paribus clauses of
economic theory yield some choices to be made when it comes to the
empirical estimation and testing of relationships.

In applied econometrics usually alternative speci�cations are tried,
and the speci�cation, estimation and testing steps are iterated a
number of times (see [Lea78] for an excellent exposition of di�erent
types of \speci�cation-searches" used in applied work).

As a historical note, this search for an adequate speci�cation
based on preliminary results has sometimes been called \data min-
ing" within the econometrics community [Lea78,Lov83]. There is
nothing wrong in principle with this behaviour, its combination how-
ever with classic testing procedures that do not take into account the
amount of search performed have given \data mining" a negative
connotation.

We give example from empirical demand theory to illustrate the
di�erent types of domain knowledge that may be used in the model
speci�cation phase. Empirical demand theory asserts that ceteris

paribus an individual's purchases of some commodity depend on his
income, the price of the commodity and the price of other commodi-
ties. We consider a simple demand equation taken from [Lea78]

logDo
i = a + b logP o

i + c logYi + d logP g
i + "i

where Do denotes the purchases of oranges, P o the price of oranges,
Y denotes income,P g denotes the price of grapefruit, and index i
stands for di�erent households. The log-linear speci�cation is cho-
sen primarily for convenience. It allows us to interpret the estimated
coe�cients as elasticities, e.g. the estimate of b is interpreted as the
price elasticity of demand, and the estimate of c as the income elas-
ticity of demand. A priori we would expect that b < 0 (if price
increases, ceteris paribus demand decreases). Likewise we would ex-
pect c > 0 and d > 0 (since grapefruits are a substitute for oranges).

According to (an) economic theory there should be absence of
money illusion, i.e. if income and all prices are multiplied by the
same constant, demand will not change. If we believe in the\absence
of money illusion" we can add the restriction that the demand equa-
tion should be homogeneous of degree zero. For the log-linear speci-
�cation this leads to the constraint b + c+ d = 0.

Finally, for the stochastic part, one could assume that the random
disturbances "i are normally distributed with mean 0 and constant
variance, and "i independent of "j for i 6= j.

3.1 Monotonic regression

There are many economic regression and classi�cation problems where
it is known that the dependent variable has a distribution that is

monotonic with respect to its independent variables. A well-known
example is labor wages as a function of age and education (see e.g.
[MS94]) or in so-called hedonic price models where the price of a
consumer good depends on a bundle of characteristics for which a
valuation exists [HR78].

An example is treated in this paper where the price of a house is
estimated as a function of the characteristics of the house. The tra-
ditional method used in isotonic regression is the pool-adjacent vio-

laters algorithm [RWD88]. This method however only works in the
one-dimensional case. A versatile non-parametric method is given
in [MS94]. In general we have a dataset (yp;xp) of points in IR �
IRm,which can be considered as a random sample of the joint dis-
tribution of (y;x). The regression function we want to estimate is
E(y j x). We assume that E(y j x) is monotonic increasing (more
precisely non-decreasing). That is:

x1 � x2) E(y j x1) � E(y j x2);

where x1 � x2 is de�ned as x1i � x2i for all i = 1; 2; : : : ; m.
Now if t is any estimator of E(y j x) we can make t into a

monotonic regression by simply de�ning:

G+(x) = max
x

0�x
t(x0);

and
G�(x) = min

x
0�x

t(x0):

Any convex combination of G+ and G� is a monotonic estimator
of E(y j x). G+ is the smallest monotonic majorant of t and G�

is the largest monotonic minorant. For t one usually takes a kernel
smoother with a variable bandwidth

ta(x) =
X
k

yk K

�
kx� xkk

a

�
:

Noise in the data that may cause non-monotonic behaviour of the
kernel smoother will be recti�ed by the maximization and minimiza-
tion procedure in G+ and G� respectively. An undesirable side-e�ect
of the method is that this type of noise is accumulated in G+ and
G�.

4 Domain knowledge in trees

Tree-based algorithms such as CART and C4.5 are very popular in
data mining. It is therefore no surprise that many variations on these
basic algorithms have been constructed to allow for the inclusion of
di�erent types of domain knowledge such as the cost of measur-
ing di�erent attributes and misclassi�cation costs. Another common
form of domain knowledge concerns monotonicity of the allocation
rule. Monotonicity of the allocation rule is often a common-sense re-
quirement when the allocation rule is used for acceptance/rejection
decisions like in loan evaluation. It would for example be hard to
explain to an applicant why he is rejected whereas someone with a
lower income but otherwise identical features is accepted.

First we make the notion of monotone classi�cation precise. Let
X be the feature space, with partial ordering �, and let C be a set
of classes with linear ordering �. An allocation rule is a function
r : X ! C which assigns a class from C to every point in the feature
space. Let r(x) = i denote that an entity with feature values x is
assigned to the ith class.

An allocation rule is monotone if

x1 � x2) r(x1) � r(x2);

for all x1;x2 2 X .
A classi�cation tree partitions the feature space X into a number

of hyperrectangles (corresponding to the leaf nodes of the tree) and
elements in the same hyperrectangle are all asigned to the same class.
As is shown in [Pot99], a classi�cation tree is non-monotonic if and
only if there exist leaf nodes t1; t2 such that

r(t1) > r(t2) and min(t1) � max(t2);

where min(t) and max(t) denote the minimum and maximum ele-
ment of t respectively.

In order to construct an allocation rule we have a dataset (cp;xp),
which is called monotone if

xi � xj) ci � cj;

for all i; j = 1; : : : ; p.

Potharst [Pot99] provides a thorough study for the case that the
training data may be assumed to be monotone. This requirement
however makes the algorithms presented of limited use for data min-
ing. For example, in loan evaluation the dataset used to learn the
allocation rule would typically consist of loans accepted in the past
together with the outcome of the loan (say, defaulted or not). It is
very unlikely that this dataset would be monotone.

A more pragmatic approach is taken by Ben-David [BD95], who
proposes a splitting rule that includes a measure of the degree of
monotonicity of the tree in addition to the usual impurity measure.

To this end a k � k symmetric non-monotonicity matrix M is
de�ned, where k equals the number of branches of the tree. The mij

element of M equals 1 if branch i is non-monotonic with respect to
branch j and 0 otherwise. Clearly, the diagonal elements of M are
0. Ben-David now de�nes a non-monotonicity index I as follows

I =
W

k2 � k
;

where W denotes the sum ofM 's entries, and k2�k is the maximum
possible value of W for any tree with k branches. Based on this non-
monotonicity index the order-ambiguity-score of a decision tree is
de�ned as follows

A =

�
0 if I = 0
�(log2 I)

�1 otherwise

Finally the splitting rule is rede�ned to include the order- ambiguity-
score

T = E +RA;

where T denotes the total-ambiguity-score to be minimized, E is the
well-known entropy measure, and R is a parameter that expresses
the importance of monotonicity relative to inductive accuracy.

A possible improvement of Ben-David's non-monotonicity index
would to to weight the di�erent branches according to their proba-
bility of occurrence. This makes sense because if two low-probability
branches are non-monotonic with respect to each other, this is less
severe than for two high-probability branches. The matrix M could
now be adapted as follows. The mij element of M equals p(i)� p(j)

if branch i is non-monotonic with respect to branch j and 0 oth-
erwise, where p(i) denotes the proportion of cases in branch i. The
non-monotonicity index becomes

I =
W

(k2 � k)=k2
=

W

1� 1=k
;

where W is again the sum of M 's entries, and the maximum is at-
tained when all possible branches are non-monotonic with respect to
each other and occur with equal probability 1=k. W is an estimate
of the probability that if we draw two points at random from the
features space, these points turn out to lie in two leaves that are
non-monotonic with respect to each other. The reader should note
that p(i)� p(j) is only a crude approximation to the degree of non-
monotonicity between node i and j because not all elements of i and
j have to be non-monotonic with respect to eachother (some may be
incomparable). We could estimate this proportion with bootstrap-
ping, but then the algorithm would become computationally very
complex. As a measure of the degree of non-monotonicity it is an
improvement however over giving equal weight to each pair of non-
monotonic branches.

To illustrate the idea we consider a simple example (see Table 1).
This is a binary classi�cation problem (C = f0; 1g), whith two binary
features x and y (X = f(1; 1); (1; 2); (2; 1); (2; 2)g).

y = 1 y = 2

Class 0 1 0 1

x = 1 14 136 20 0
x = 2 66 34 70 0

Total 80 170 90 0

Table 1. Table with example data

We consider two possible splits from the root node where we have
170 cases from class 0 and 170 cases from class 1 (see Figure 2).

The tree on the left (r1) sends half of the cases (x = 1) to the
left subtree, and the other half (x = 2) to the right. We assume the
allocation rule assigns a case in a node to the majority class, which is
class 1 for the left subnode, and class 0 for the right subnode. Thus,

170 170

80 170 90 0

170 170

34 136 136 34

y =1: 250 y =2: 90x =1: 170 x =2: 170

Class 1 Class 0 Class 1 Class 0

r1
r2

Fig. 2. Trees with the same impurity reduction but di�erent degree of monotonicity.

the allocation rule is non-monotonic according to our de�nition. We
compute the impurity reduction of this split with the Gini-index, i.e.

�i(s; t) = i(t)� pRi(tR)� pLi(tL);

where
i(t) =

X
j 6=k

p(jjt)p(kjt)

is the Gini-index, and p(jjt) is the relative frequency of class j at
node t. For r1 this is

(1=2� 1=2)� 1=2(1=5� 4=5)� 1=2(4=5� 1=5) = 9=100

The rightmost tree (r2) splits on y, also leading to a non-monotonic
allocation rule. We compute the impurity reduction of this split

(1=2� 1=2)� 25=34(8=25� 17=25)� 9=34(1� 0) = 9=100:

Thus, both splits give the same impurity reduction. Furthermore
both splits are non-monotonic, but r1 has a higher degree of non-
monotonicity than r2. If we were to draw two points at random

from the data, the probability that the class-allocations are non-
monotonic (with respect to the variable actually used in the tree)
is 0.5 for r1, but only about 0.39 for r2. One may also consider the
degree of non-monotonicity on the entire (x; y) space. In that case
the trees may still have di�erent degrees of non-monotonicity. The
allocation rules are summarized in table 2.

(x; y) r1 r2 p(x; y)

(1,1) 1 1 15/34
(1,2) 1 0 2/34
(2,1) 0 1 10/34
(2,2) 0 0 7/34

Table 2. Allocation rules on (x; y) space with probabilities

The non-monotonicity matrices corresponding to these allocation
rules are (all entries should be divided by 1156):

M1 =

0
BB@

0 0 150 105
0 0 0 14

150 0 0 0
105 14 0 0

1
CCA M2 =

0
BB@

0 30 0 105
30 0 0 0
0 0 0 70

105 0 70 0

1
CCA

Allocation rule r1 has W1 = 538/1156 � 0.47, and r2 has W2 =
410/1156 � 0.35.

Thus, whether we consider the degree of monotonicity on the
entire space, or only on the space restricted to the variables actually
used in the allocation rule, in both cases r1 is less monotonic than r2.
This di�erence in degree of monotonicity is however not detected by
the measure used in [BD95] since it just counts the number of pairs
of nonmonotonic branches without weighting the for the probability
of occurrence.

Of course one may argue that in this example, if both trees are
split further they result in the same allocation rule. However, one has
to consider the complex interaction of the splitting rule with other
tree-growing rules such as stopping rules and pruning methods. This
may result in the trees not being split any further, or being pruned
back to the trees depicted in Figure 2.

To conclude this section we note that this approach is easily
extended to the case where the allocation rule has to be monotonic
only with respect to some features but not others (e.g. some features
are not ordinal). We would only have to check monotonicity with
respect to these designated variables.

5 Weighted rule systems

In most expert systems knowledge is stored in so called production
rules. The rules correspond to chunks of articulated expert knowl-
edge. In expert systems the rules interact with the user in a reasoning
process and may reach conclusions just like experts can do in the do-
main of expertise. The usual standarized form in which the rules are
encoded is the CNF (conjunctive normal form) syntax. Each rule
consists of a IF and THEN part and the IF part is denoted in CNF
syntax:

Ri: IF (A or B or ...) and (C or D or....) and ... THEN RHS

Here A,B,C,D are predicates that contain variables of the domain
and RHS is the right hand side of the rule which stands for a conclu-
sion of the rule. If the system operates in a forward reasoning mode
new conclusions are generated during the consultation until the user
is satis�ed. Below we will show how production rules of this form
can be integrated in a general framework with data. We developed
this approach during a project on fraud detection in life insurance.
The method is described here in a sympli�ed way, but can be ap-
plied to a wide range of applications. Each rule corresponds to a risk
indicator articulated by an expert. Suppose the rules are numbered
R1; R2; R3, etc. The rules can only yield the result true or false when
applied to a certain case. The more rules apply, the larger the risk
of fraud. The expert however does not know how the risk indicators
can be combined to obtain a �nal risk score. In the case study at
hand however there also exists a database with cases of proven fraud.
The estimated probability of fraud is now written as the weighted
sum of the invidual indicators, normalized such that the outcome is
a number between 0 and 1:

p =
exp(

P
wiri)

1 + exp(
P

wiri)
;

where ri = 1 if rule Ri evaluates to true and 0 otherwise. The weights
are real numbers.

The optimal weights can be found by �ne tuning the weights
using a regression on the database. This can be done by using a
standard logistic regression model with binary predictors (see for
example [Rip96], chapter 3, section 5). The weighted rules approach
is a very
exible framework for combining declarative knowledge in
combination with patterns.

6 Domain knowledge in neural networks

6.1 Monotonic neural networks

It is well-known that neural networks can be used to build
exible
estimators. It can be shown that any relation can be approximated
by a neural network with one hidden layer and su�ciently many neu-
rons. The process of controlling the
exibility of neural networks in
practical regression or classi�cation problems is often cumbersome.
Especially when the number of hidden neurons is large, neural net-
works have a tendency to over�t the data. This may lead to bad out
of sample performance. Various approaches have been suggested to
cope with the over�tting problem. The regularisation of the network
can be done using domain independent methods such as weight de-
cay, cross-validation and Bayesian approaches ([Rip96], chapter 4,
section 3). In this paper we focus on methods that are based on the
incorporation of domain knowledge. In this way one can decrease
the variance of the network without increasing bias. Since the error
term of the neural network approximation can be written as the sum
of a bias and variance term, this will also diminish the total error.
(see e.g.[DK99]) The method proposed can be succesfully combined
with other regularisation methods. As mentioned in section many
classi�cation problems in economics and accounting possess mono-
tonicity properties. The implementation of monotonicity constraints
in neural networks can be done in di�erent ways. In [Wan94] the
monotonicity of the neural network is guaranteed by enforcing con-
straints on the weights during the training process. Here we apply
a class of neural network that are monotonic by construction.This
class is obtained by considering multilayer neural networks with non-

negative weights. In can be shown that the elements of this class can
approximate any monotonic increasing function.

For a neural network with one hidden layer and one output neu-
ron we have

y =
hX
i=1

vi f(
nX

j=1

wjixj + �i)

where vi denotes the weight connecting hidden neuron i with the
output, f is the squashing function, wji is the weight connecting
input j with hidden neuron i, and �i is the threshold of hidden
neuron i. It can be easily seen that y is monotonic increasing (non-
decreasing) if vi and wji are positive (non-negative).

The maximum number of layers required is theoretically equal to
the number of inputs but in many case studies it turned out that less
will do. The training algorithm for monotonic neural networks that
we have developed is a modi�cation of the standard backpropaga-
tion algorithm. There are two ways of enforcing positive weights. The
�rst one is by adding a bias term to the error function of the neural
network such that the negative weights are penalised. The weight
of the penalty term is gradually increased which eventually leads
to a solution with only positive weights, corresponding to a mono-
tonic network.In the second approach negative weights are set to
zero in each step of the modi�ed backpropagation algorithm. Both
algorithms have been extensively studied on arti�cially generated
datasets. The performance di�ers slightly but not signi�cant. Testing
on arti�cially generated datasets is preferable to adjust and �netune
the algorithms, since everything is under control. In this paper we
do not report on these studies but prefer to illustrate the method
with a case study from real world.

7 Den Bosch Housing Data

In this case study we study a neural network predicting the price of a
house in the city of Den Bosch. It is a medium sized Dutch city with
approximately 120,000 inhabitants. The basic principle of a hedonic
price model is that the consumption good is regarded as a bundle
of characteristics for which a valuation exists ([HR78]). The price of

the good is determined by a combination of these valuations:

P = P (x1; : : : ; xn)

In the case at hand the variables x1; x2; :; xn are characteristics of
the house.The explanatory variables have been selected on the basis
of interviews with experts of local house brokers, and advertisements
o�ering real estate in local magazines. The most important variables
are listed in table 3.

Symbol De�nition

DISTR type of district, four categories ranked from bad to good
SURF total area including garden
RM number of bedrooms
TYPE 1. apartment

2. row house
3. corner house
4. semidetached house
5. detached house
6. villa

VOL volume of the house
GARD type of garden, four categories ranked from bad to good
GARG 1. no garage

2. normal garage
3. large garage

Table 3. De�nition of model variables

In the simulation study we compare ordinary neural networks
and monotonic neural networks. Firstly a ordinary neural network
is trained on the dataset using 5 fold cross-validation. The error
R2 varies between 0.8089 and 0.9288. As a check for monotonicity
we computed the monotonicity indices for each of the variables. All
indices are approximately equal to 1 with accuracy 0:5�10�3. Except
for the variable GARG, which is relatively unimportant compared
to the others (see table 4).

This is in line with economic intuition. In the next step we trained
ordinary neural network s and monotonic neural networks with dif-
ferent number of hidden neurons up to 20 in the hidden layer. The
results of the experiments with ordinary neural networks and mono-
tonic networks are listed in table 5.

Variable mon(xi) Sign

DISTR 1.00 +
SURF 1.00 +
RM 1.00 +
TYPE 1.00 +
VOL 1.00 +
GARD 1.00 +
GARG 0.56 +

Table 4. Monotonicity indices of the Den Bosch house price model

Normal Neural Network

hidden n. 5 10 15 15 20 20
learning rate 0.1 0.1 0.1 0.1 0.1 0.01
momentum 0.9 0.9 0.1 0.9 0.9 0.1
R2 (train) 0.9125 0.9423 0.9192 0.9748 0.9750 0.9517
R2 (test) 0.8973 0.8207 0.8174 0.7366 0.6716 0.6926

Monotonic Neural Network

hidden n. 5 10 15 15 20 20
learning rate 0.1 0.1 0.01 0.01 0.1 0.1
momentum 0.9 0.9 0.9 0.01 0.1 0.9
R2 (train) 0.8679 0.8535 0.8365 0.8646 0.8491 0.8612
R2 (test) 0.8815 0.9096 0.9239 0.9055 0.9167 0.9085

Table 5. Performance of normal and monontonic networks

It is clear from the table that monotonic neural networks show
better out-of-sample performance and smaller variations of R2 on
the training set and test set.

8 Conclusion

The goal of dataming is to derive valuable business knowledge from
patterns in databases. In the majority of cases there is theoretical
and domain dependent knowledge available to the decision maker
beforehand. In this paper we have shown that the e�ectiveness of
datamining systems can be substantially be improved by using ex-
pert knowledge. We explicitly studied the framework of combining
knowledge and data for di�erent datamining algorithms, with a focus
on decision trees, regression trees and neural networks. Those being
the most important in economic decision making. We also showed
that the framework developed may serve as a tool to implement nor-
mative requirements, that are often enforced by third parties in a
business setting. Futhermore we introduced a versatile model for in-
tegrating rule based systems with statistical regression techniques,
often necessary when decisions have to be taken in agreement with
legislation or business policy rules. The metods are illustrated in
practical case studies: predicting house prices and the generation of
pro�les of fatal tra�c accidents.

References

[BD95] A. Ben-David. Monotonicity maintenance in information-theoretic machine
learning algorithms. Machine Learning, 19:29{43, 1995.

[DK99] H. Daniels and B. Kamp. Application of mlp networks to bond rating and
house pricing. Neural Computation and Applications, 8:226{234, 1999.

[FDH00] A. Feelders, H. Daniels, and M. Holsheimer. Methodological and practical
aspects of data mining. Information & Management, 2000. to appear.

[HR78] O. Harrison and D. Rubinfeld. Hedonic prices and the demand for clean air.
Journal of Environmental Economics and Management, 53:81{102, 1978.

[Lea78] E. Leamer. Speci�cation Searches: Ad Hoc Inference with Nonexperimental

Data. Wiley, 1978.
[Lov83] Michael C. Lovell. Data mining. The Review of Economics and Statistics,

65(1):1{12, 1983.
[MS94] H. Mukarjee and S. Stern. Feasible nonparametric esimation of multiargu-

ment monotone functions. Journal of the American Statistical Association,
89(425):77{80, 1994.

[Nn91] M. N�u~nez. The use of background knowledge in decision tree induction.
Machine Learning, 6:231{250, 1991.

[Pot99] R. Potharst. Classi�cation using decision trees and neural nets. PhD thesis,
Erasmus Universiteit Rotterdam, 1999. SIKS Dissertation Series No. 99-2.

[Rip96] B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge Univer-
sity Press, Cambridge, 1996.

[RWD88] T. Robertson, F. Wright, and R.L. Dykstra. Order Restricted Statistical

Inference. Wiley, 1988.
[Wan94] S. Wang. A neural network method of density estimation for univariate

unimodal data. Neural Computation & Applications, 2:160{167, 1994.

