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Abstract

This paper generalizes the notion of mean-variance spanning as de-
fined in the seminal paper of Huberman & Kandel (1987) in three di-
mensions. It is shown how regression techniques can be used to test for
spanning for more general classes of utility functions, in case some as-
sets are nontraded, and in case some of the assets are zero-investment
securities such as futures contracts. We then implement these tech-
niques to test whether a basic set of three international stock indices,
the S&P 500, the FAZ (Germany), and the FTSE (UK), span a set
of commodity and currency futures contracts. Depending on whether
mean-variance, logarithmic, or power utility functions are considered,
the hypothesis of spanning can be rejected for most futures contracts
considered. If an investor has a position in a nontraded commodity,
then the hypothesis of spanning can almost always be rejected for fu-
tures contracts on that commodity for all utility functions considered.
For currency futures this is only the case for a power utility function
that reflects a preference for skewness. Finally, if we explicitly take
into account net futures positions of large traders that are known to
have predictive power for futures returns, the hypothesis of spanning
can be rejected for most futures contracts.
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1 Introduction

An important question in financial economics is whether investors will value
a richer investment opportunity set that results from adding securities to the
assets that are already in their portfolio. Mutual funds, emerging market
securities, and futures and options contracts for instance, are useful for an
investor if incorporating these securities in his portfolio increases his utility.
As outlined in Huberman & Kandel (1987), an investor with a mean-variance
utility function is indifferent with respect to holding the additional securities
if the Minimum-Variance Frontier (MVF) of the set of assets in an investors
portfolio coincides with the MVF of the extended set of these same assets
plus the additional securities, in which case there is mean-variance spanning.
If the two MVF’s only have one point in common then there is intersection,
and only investors for whom the intersection portfolio is optimal need not
invest in the additional securities.

It is by now well understood that mean-variance spanning means that
the minimum-variance stochastic discount factors, or pricing kernels, that
price the initial assets, also price the additional assets correctly (see, e.g.,
Ferson, Foerster, & Keim, 1993, Bekaert & Urias, 1996, and DeSantis, 1995).
The pricing kernel with a given expectation, that prices a set of assets cor-
rectly, and that has minimum variance, is linear in the asset returns (Hansen
& Jagannathan, 1991). Since the kernel is known to be proportional to
the marginal derived utility of wealth of an agent given his optimal portfo-
lio choice, kernels that are linear in the asset returns correspond to mean-
variance optimizing behaviour.

The aim of this paper is to generalize the concept of mean-variance span-
ning to arbitrary classes of utility functions and to show how to test for
spanning when futures contracts are considered as well and when there are
non-traded assets. An example of a non-traded asset is the position in a
foreign currency of an exporter. Other examples are given by a pension fund
or insurance company that does not want to trade its liabilities, or a firm
that does not want to sell its know-how or its production plants. In gen-
eral, adding a security or set of securities to a given set of assets may well
be beneficial to some investors but not to others, depending on their utility
function and the non-traded assets in their current portfolio. Apart from the
presence of non-traded assets, we will assume that there are no market fric-
tions such as short sales restrictions or transaction costs. Tests for spanning
in economies with such market frictions are discussed in a companion paper
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(De Roon, Nijman, & Werker, 1996).
From Huberman & Kandel (1987) it is well known how regression analy-

sis can be used to test for mean-variance spanning. We show that regression
techniques can also be used to test for spanning for arbitrary classes of utility
functions and to test for spanning in the presence of non-traded assets and
when futures contracts are considered. Allowing for non mean-variance util-
ity functions, testing for spanning implies that alternative regression models
have to be considered in which restrictions similar to the ones in Huberman
& Kandel (1987) have to be tested. For the case in which an investor has
a position in a non-traded asset, the payoff of his portfolio will change be-
cause of this position. For such investors, regression based tests for spanning
can be performed by using returns that are adjusted for the position in the
non-traded asset. Finally, for spanning tests the crucial difference between
futures contracts and assets is that futures are zero-investment securities.
We will show that this implies that the restrictions on the regression coeffi-
cients imposed by spanning have to be modified to reflect the zero-investment
property of futures contracts.

When applied to a basic set of assets, consisting of the S&P 500, the FAZ
(Germany), and the FTSE (UK) indices, it appears that unconditional tests
reject the null hypothesis of spanning for many futures contracts, depending
on whether we test for mean-variance, logarithmic utility, or power utility
spanning. When there is a nonmarketable position in a particular commodity,
the null hypothesis of spanning is easily rejected for the futures contract
that has the exposure asset as the underlying value for all utility functions
considered. When there is an exposure to a foreign currency, spanning can
only be rejected for investors with a power utility function that reflects a
preference for skewness. Finally, when net futures positions of large traders
are used to predict futures returns, conditional tests reject the null hypothesis
of spanning for many futures contracts for all utility functions considered.

The plan of this paper is as follows. In Section 2 we will discuss the
notion of spanning for arbitrary utility functions and show how to test for
spanning. In Section 3 the tests for spanning will be extended to the case
where there are futures contracts and nontraded assets. Here we also show
how conditional information can be incorporated in tests for spanning. In
Section 4 an illustration of the tests is presented for a set of commodity and
currency futures contracts, with different kinds of exposures. Finally, Section
5 contains a summary and some concluding remarks.
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2 Testing for spanning

2.1 Spanning for arbitrary classes of utility functions

Suppose that an investor initially considers a set ofK assets, the gross returns
of which are given by the vector Rt+1. The set Rt+1 may or may not contain
a risk free asset. Throughout this section we will take the case where Rt+1

consists of non-zero investment securities only. The case of zero-investment
securities, such as futures and forward contracts, will be considered in the
next section. Assuming that there are no market frictions such as short sales
constraints and transaction costs and that the law of one price holds, there
exists a stochastic discount factor or pricing kernel, Mt+1, such that:

E[Rt+1Mt+1 | It] = ιK , (1)

where ιK is a K-dimensional vector containing ones, and It is the information
set that is known to the investor at time t.

Recall that Mt+1 in (1) can be derived from the first order conditions
of a discrete time intertemporal portfolio selection problem. Usually, this
optimization program is solved using dynamic programming (see, e.g., In-
gersoll, 1987, and Duffie, 1988). The pricing kernel Mt+1 is then known to
be proportional to the derivative of the derived utility function of wealth
(or the value function in the dynamic program), given the agent’s optimal
portfolio choice. Suppose that the agent subsequently also takes additional
securities with gross return rt+1 into account when optimizing his utility. For
notational convenience we will assume that rt+1 contains only one element.
Spanning occurs if the original first order conditions for the optimal portfolio
choice in (1) are also satisfied by the additional security rt+1, i.e., if:

E[rt+1Mt+1 | It] = 1. (2)

In other words, spanning occurs for a class of agents if they will not be able
to increase their utility by incorporating rt+1 in their portfolio. Since each
pricing kernel Mt+1 refers to different preferences of an agent, spanning for
a given class of preferences occurs if the above reasoning holds for the set of
pricing kernels associated with this class of preferences. For instance, mean-
variance spanning holds if all pricing kernels that satisfy (1) and that are
linear in the returns Rt+1, also satisfy (2) (see also Ferson, Foerster, & Keim,
1993, Bekaert & Urias, 1996, and DeSantis, 1995). Therefore, we explicitly
mention a particular set of pricing kernelsM in the following definition.

Definition 1 Let M be a set of pricing kernels for the assets Rt+1, i.e.

∀Mt+1 ∈M : E[Rt+1Mt+1 | It] = ιK .
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Then M-spanning of the asset rt+1 by the assets Rt+1 holds by definition if
the following hypothesis is satisfied:

H ′ : ∀Mt+1 ∈M : E[rt+1Mt+1 | It] = 1.

The case where M is a singleton is denominated intersection.

This definition clearly generalizes the definition of mean-variance span-
ning in Huberman & Kandel (1987)1 .

If the asset set Rt+1 does not span the asset rt+1, then λt = E[rt+1Mt+1 |
It]−1 can be interpreted as a performance measure for the asset rt+1 relative
to the set Rt+1 (see, e.g., Chen & Knez, 1996, and Glosten & Jagannathan,
1994). If λt > 0 for a given Mt+1, then an investor with a utility function
that corresponds to Mt+1 can improve his portfolio performance by taking a
long position in the asset rt+1 in addition to his investments in the set Rt+1.
For instance, the results in Cumby & Glen (1990) indicate that a sample of
fifteen U.S.-based internationally diversified mutual funds do not have added
value for investors with either quadratic or power utility functions2 relative
to a broad international equity index and a risk free asset.

One characteristic of the empirical applications of performance evaluation
such as in Cumby & Glen (1990) and Chen & Knez (1996), is that the tests
are for intersection rather than spanning. This implies that performance is
measured with respect to the optimal portfolio of a specific utility function.
Our methodology tests for spanning for a prespecified class of utility func-
tions and a given set of assets. In order to test for spanning, we need an
equivalent formulation of H ′ that can be tested easily using regression.

2.2 Testing for spanning

To obtain an easily testable equivalent formulation of the spanning hypoth-
esis H ′, we need the following notation. Write W = {w ∈ IRk : w′ιK = 1},
so that W consists of those portfolio choices that are valid for an agent in
the sense that the portfolio weights of assets sum to one. We can now state

1The definition for spanning used in this paper originates from Huberman & Kandel
(1987). Note however, that this definition is slightly different from (although closely related
to) another definition that is used in the literature and that can be found, for instance, in
Ross (1978). We extend the results of Ross (1978) to the case where M is a subset of all
monotone concave utility functions.

2Cumby & Glen test the performance of the funds using both Jensen’s α relative to a
mean-variance efficient portfolio and a positive weighting measure as proposed by Grinblatt
& Titman (1989) with weights that are equal to the derivative of a power utility function
evaluated at the optimal portfolio choice.
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our main result.

Proposition 1 Let M be a set of kernels that includes at least the mini-
mum second moment pricing kernel Mt+1 = ι′KEt[Rt+1R

′
t+1]−1Rt+1

34. Then
the asset rt+1 is M-spanned by the assets Rt+1 if and only if 5

Π(rt+1 | [M∪{w
′Rt+1 : w ∈W}]) = w′Rt+1, for some w ∈W. (3)

In Appendix A we proof a generalized version of this proposition, in which we
also allow for zero-investment securities. The result in Proposition 1 states
that rt+1 can be written as a portfolio w of the assets Rt+1 and an error
term that is orthogonal to the setM of pricing kernels under consideration.
This implies that all agents with utility functions corresponding to the class
M prefer w′Rt+1 over rt+1, since they do not value the return difference
rt+1−w′Rt+1. If rt+1 is notM-spanned by Rt+1, then rt+1 is of value to some
investors because the difference between rt+1 and a portfolio of the initial
assets Rt+1 covaries with their intertemporal marginal rate of substitution.

The strength of Proposition 1 is that testing H ′ is straightforward once
the projection in (3) is estimated. If we denote this projection by r̂t+1, i.e.,

r̂t+1 = Π (rt+1 |[M∪{w
′Rt+1 : w ∈W}]) , (4)

then r̂t+1 follows from a regression. After r̂t+1 is estimated, testing H ′ can
be done by testing the hypothesis

H : r̂t+1 = w′Rt+1, for some w ∈W (5)

In order to estimate the projection in (4) a functional form for the kernels in
M is needed. It is well known that the pricing kernel is proportional to the
marginal utility of consumption, given the optimal portfolio and consumption
choice of the agent. The envelope theorem in turn implies that the pricing
kernel is also proportional to the marginal derived utility of wealth (see, e.g.,
Ingersoll, 1987). This allows us to estimate the projection in (4) from a
regression of rt+1 on (functions of) the initial asset returns Rt+1 only.

The case of mean-variance spanning is discussed extensively in Huberman
& Kandel (1987). However, it is useful to put these ideas in our more general

3We use Et[.] as shorthand for the conditional expectation Et[. | It].
4Notice that the minimum second moment kernel is automatically included inM in all

true extensions of mean-variance spanning.
5As usual we work in the Hilbert space of square integrable random variables. Projec-

tion in this space will be denoted by Π. For any set A in this Hilbert space, we denote by
[A] the closed linear span of the elements in A.
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context. As stated above, the pricing kernels associated with mean-variance
optimizing behaviour are linear in the returns Rt+1. The set M therefore
coincides with the set of pricing kernels that traces out the volatility bound
in Hansen & Jagannathan (1991). More precisely, for investors that choose
their portfolio from the assets Rt+1 the set M is in this case given by all
kernels of the form

Mt+1(v) = v + α′(Rt+1 − Et[Rt+1]), v ∈ IR, (6)

where
α = V art[Rt+1]

−1{ιK − vEt[Rt+1]}.

Therefore, r̂t+1 equals the projection of rt+1 on all stochastic variables of
the form α0 +α′Rt+1. Consequently, assuming that all expected returns and
(co)variances of the returns do not vary over time (this assumption will be
relaxed in Section 3.3), r̂t+1 can be estimated by the following regression

rt+1 = α0 + α′Rt+1 + εt+1. (7)

The hypothesis H now becomes

H : α0 = 0 and α′ιK = 1.

These linear restrictions are of course identical to the ones given in Huberman
& Kandel (1987) and are straightforward to test using a Wald test.

If the set Rt+1 also spans rt+1 for investors with non mean-variance (de-
rived) utility function(s) U(w∗′Rt+1), where w∗ denotes the optimal portfolio
choice for the investor, then the error term εt+1 in (7) should be orthogonal
to the marginal derived utility U ’(w∗′Rt+1). To test for both mean-variance
spanning and spanning for N different utility function(s) U(w∗′Rt+1), given
knowledge of w∗, the projection of rt+1 can now be estimated by the regres-
sion

rt+1 = α0 + α′Rt+1 +
N∑
i=1

γiUi’(w
∗′
i Rt+1) + εt+1, (8)

where Ui’(w∗′i Rt+1), i = 1, 2, .., N are the derivatives of the (non mean-
variance) utility functions of interest, i.e., for all utility functions that are in
M.

The null hypothesis that there isM-spanning is now equivalent to

H : α′ιK = 1, α0 = γi = 0, i = 1, 2, ..., N.

As with mean-variance spanning, these restrictions are easy to test using a
Wald test.

7



Given a specific utility function, from the first order conditions

E[cU ’(w∗′Rt+1)Rt+1] = ι,

estimates of c and w∗, ĉ and ŵ∗, can be obtained using, for instance, a
GMM-estimator. The parameter c is a constant of proportionality that is
determined by the risk free rate of return (if it exists). Since in empirical
applications U ’(ŵ∗′Rt+1) in (8) is based on the estimated optimal portfolio
weights ŵ∗, this will obviously affect the limit distribution of the regression
parameters in (8). In Appendix B the limit distribution of the regression
parameters is derived, accounting for the fact that we have to estimate c and
w.

Several tests for performance evaluation that are known in the literature
can also be interpreted in terms of the framework presented here. For in-
stance, Cumby & Glen (1990) test the performance of international mutual
funds for a mean-variance investor and for an investor with a power utility
function. Since they use prespecified benchmark portfolios that are optimal
for a mean-variance investor and a power-utility investor respectively, their
tests can be interpreted as tests for intersection for these two utility func-
tions. In terms of the regression in (8) we could (simultaneously) test for
mean-variance and power-utility spanning by choosing for U(w∗′Rt+1) the
specific power utility function that is used by Cumby & Glen (1990).

Similarly, Glosten & Jagannathan (1994) propose a performance test
where the set Rt+1 consists of one asset, an index portfolio, and that is based
on a polynomial fit of rt+1 on Rt+1. In terms of (8) this is similar to choosing
marginal utilities of the form Ui’(Rt+1) = Ri

t+1, i = 2, 3, ... Our motivation
for using a polynomial approach is entirely different from that of Glosten &
Jagannathan however. For instance, Glosten & Jagannathan motivate the
use of a second order polynomial, i.e. only U ’(Rt+1) = R2

t+1 is used in (8),
to account for market timing, as also suggested by Treynor & Mazuy (1966).
In our framework on the other hand, a quadratic term captures a preference
for skewness.

In the empirical application in Section 4 we will test for mean-variance
spanning and for power-utility spanning. For the power-utility function we
will use both a risk aversion coefficient of 0, that corresponds to a logarithmic
utility investor, and a risk aversion coefficient of -3, that corresponds to an
investor who has a preference for skewness.
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3 Testing for spanning with futures contracts

and nontraded assets

3.1 Futures contracts

The main result of the previous section, as stated in Proposition 1, is that
spanning of an asset rt+1 by a base set of assets Rt+1 is equivalent to stating
that the projection of rt+1 on all portfolios of Rt+1, w′Rt+1, and the relevant
class of pricing kernels M, gives a portfolio of the base securities. The
intuition behind this result is that if rt+1 is spanned by the set Rt+1, then
rt+1 can be written as the payoff of a portfolio of the initial assets Rt+1 plus
an idiosyncratic error term that is orthogonal to the asset returns Rt+1 and
the pricing kernels inM.

The crucial difference between assets and futures contracts in this respect
is that futures contracts do not require any initial investment. Whereas the
payoff of an asset at time t + 1 is its price St+1 (ignoring dividends and the
like), the payoff of a futures contract is given by the change in the futures
price, Ft+1−Ft. Whereas asset returns are defined as RS,t+1 = St+1

St
, we define

a futures return6 as RF,t+1 = Ft+1−Ft
Ft

. In case of futures contracts, equation
(1) changes to:

E[RF,t+1Mt+1 | It] = 0. (9)

Denote Rt+1 now as the K-dimensional vector, the first KS elements
of which are asset returns, RS,t+1, and the last KF elements of which are
futures returns, RF,t+1, K = KS + KF . These are the K securities initially
considered by the investors. Next, let eK be a vector consisting of KS ones
and KF zero’s, e′K = (ι′KS 0′KF ). We can now generalize equations (1) and
(9) to:

E[Rt+1Mt+1 | It] = eK . (10)

Finally, write W S
e = {w ∈ IRK : w′eK = 1} and W F

e = {w ∈ IRK : w′eK =
0}. Thus, W S

e and W F
e define portfolios in which the asset weights must sum

to either one (w ∈ W S
e ) or zero (w ∈ W F

e ), but there are no restrictions on
the futures positions. Note that the minimum second moment portfolio is
now given by α = Et[Rt+1R

′
t+1]−1eK . If Rt+1 only contains futures contracts,

then α = 0. As a generalization of Proposition 1 it is now straightforward to
show that rt+1 isM-spanned by the securities Rt+1 if and only if

Π(rt+1 | [M∪{w
′Rt+1 : w ∈ W̃}]) = w′Rt+1, for some w ∈ W̃ , (11)

6Actually, the term futures return itself is a misnomer, for the same reason that futures
contracts do not require an investment.
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where W̃ = W S
e if rt+1 refers to a non-zero investment security, and W̃ = W F

e

if rt+1 refers to a zero-investment security. The proof of this proposition is
given in Appendix A. Given this proposition, testing for spanning proceeds
in the same way as outlined in Section 2, except that in case rt+1 is a futures
contract the restriction that w′eK = 1 has to be replaced by the restriction
w′eK = 0.

First of all, note from (11) that spanning only imposes restrictions on
the sum of the asset weights, but not on the futures positions. This reflects
the fact that assets require a non-zero investment, while futures contracts
do not require any investment. Second, if rt+1 refers to a non-zero invest-
ment security, spanning requires that the asset weights in w sum to one,
while if rt+1 refers to a zero-investment security like futures contracts, the
asset weights in w must sum to zero. If the return on a futures contract is
to be written as the return on a portfolio of assets and futures, then this
must be a zero-investment portfolio, since the futures contract itself does not
require any investment either. Thus, the difference in the restrictions for
futures contracts and assets stems from the fact that futures contracts are
zero investment securities.

3.2 Nontraded Assets

So far we treated all investors as if they had the same investment opportu-
nity set. However, because investors can have positions in nontraded assets,
i.e., they can face different nonmarketable risks, they may face different in-
vestment opportunity sets. For example, the investment opportunity set of
an exporter is affected by his exposure to foreign currency. Similarly, the
investment opportunity sets of pension funds and insurance companies are
affected by their liabilities. Consequently, when considering additional secu-
rities, the initial set of assets may span the extended set for one agent, but
not for others. The reason is that the presence of a nontraded asset changes
the net portfolio payoff for an investor.

Let Wt be the wealth invested in assets by an investor, excluding non-
traded assets. The fraction of wealth invested in asset j is given by wSj, and
wS is a vector containing all wSj. Notice that w′Sι = 1. Besides investing
in assets, an investor can also take a position in futures contract k, which is
also expressed as a fraction of Wt. The vector wF similarly contains all the
futures positions of the agent. Finally, the agent may have a position in a
nontraded asset with a size qX that yields a return RX,t+1. The size of the
position is also expressed as a fraction of Wt, implying that ι′wS + qX will
not be equal to one if qX 6= 0. Thus, the total return on his invested wealth
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for the investor is given by:

RW,t+1 = w′SRS,t+1 + w′FRF,t+1 + qXRX,t+1. (12)

Of course, a similar expression arises when the additional security rt+1 is
included.

Notice that the asset weights wSj must sum to one. Therefore, an equiv-
alent way of writing the total return in (12) is:

RW,t+1 = w′S(RS,t+1 + qXιRX,t+1) +w′FRF,t+1 = w′SR̃S,t+1 + w′FRF,t+1, (13)

where R̃S,t+1 are the returns adjusted for the position in the nontraded as-
set. Since there is only a restriction on the asset weights and not on the
futures positions, only the asset weights must be adjusted for the position
in the nontraded asset. Denote R̃t+1 as the total adjusted return vector,
R̃′t+1 = (R̃′S,t+1R

′
F,t+1) . To see the implications of the presence of nontraded

assets for spanning, observe that one valid stochastic discount factor is the
intertemporal marginal rate of substitution of agent i. Since agent i will
choose his portfolio taking into account the nontraded asset, his interest will
be in the adjusted returns, R̃t+1, rather than the normal returns, Rt+1. It’s
easy to see that this implies that the following should hold:

E[R̃t+1M̃t+1 | It] = eK, (14)

where M̃t+1 indicates the stochastic discount factor that prices the adjusted
asset returns.

It is now straightforward to test for spanning taking into account the
nontraded assets. M-spanning of rt+1 by the securities Rt+1 occurs if and
only if∏

(r̃t+1 | [M∪{w
′R̃t+1 : w ∈W}]) = w′R̃t+1, for some w ∈W. (15)

All tests described in Section 2 are still valid, provided that we replace the
asset returns RS,t+1 and rS,t+1 by adjusted returns, R̃S,t+1 and r̃S,t+1, while
the futures returns remain unchanged.

3.3 Testing for spanning using conditioning informa-
tion

So far we assumed that expected returns, (co)variances, and all relevant
expected moments are constant over time. Especially in the futures mar-
kets literature however, there is substantial evidence of return predictability.
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For instance, there is ample evidence that futures returns can be predicted
from the net positions of large traders, known as hedging pressure (see e.g.
Carter, Rausser, & Schmitz, 1983, Chang, 1985, and Bessembinder, 1992).
Also, Fama & French (1987) present evidence that commodity returns can be
predicted from the observed spread between the futures and the spot price.
Similarly, Glen & Jorion (1993) show that the efficiency of international asset
portfolios significantly improves if it is taken into account that expected cur-
rency returns depend on the forward premium. Finally, there is substantial
evidence that stock and bond returns can be predicted using instruments
like lagged returns, dividend yields, short term interest rates, and default
premiums (see, e.g., Ferson, 1995).

If expected returns are dependent on conditioning information at time t,
then the parameters α0 and α in equation (7) should also be dependent on
that information. In this case, there may be spanning in one period, but not
in other periods, because of a change in economic conditions.

Suppose that expected returns are linearly dependent on a vector of vari-
ables xt that are in the investor’s information set at time t, i.e., xt ∈ It. We
will still assume that the (co)variances of the returns are constant. The ex-
tension to time-varying covariances is straightforward however. It can then
easily be shown that tests for mean-variance spanning can be based on the
following regression:

rt+1 = α0 + β ′xt + α′Rt+1 + εt+1. (16)

In this case spanning occurs for arbitrary values of xt if and only if α0 = β = 0
and α′ιK = 1. In case α′ιK = 1 and β 6= 0, it follows that spanning occurs for
α0 = −β ′xt. This implies that we can test whether there is spanning under
certain economic conditions, i.e., for specific values of xt. A slightly differ-
ent way to incorporate conditional information in tests for mean-variance
spanning can be found, e.g., in Harvey (1995) and Bekaert & Urias (1996).

This way of using conditioning information to allow for return predictabil-
ity readily extends to the tests for spanning for arbitrary classes of utility
functions. We will again assume that only expected returns are dependent
on conditioning information xt that is known at time t. The (co)variances
and all other relevant moments are assumed to be constant. As in the un-
conditional case, if there is also spanning of rt+1 by Rt+1 for investors with
non mean-variance (derived) utility functions U(w∗′Rt+1), then the error term
εt+1 in (16) should be orthogonal to the marginal derived utility U ’(w∗′Rt+1).
It is now again straightforward to show that testing forM-spanning can be
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based on the regression

rt+1 = α0 + β ′xt + α′Rt+1 +
N∑
i=1

γiUi’(w
∗′
i Rt+1) + εt+1. (17)

If there is spanning regardless of the value of xt, i.e., regardless of the eco-
nomic conditions, then α0 = β = γ = 0 and α′ιK = 1. If α′ιK = 1 and γ = 0,
then there is only spanning if α0 = −β ′xt, as in the mean-variance case.

4 Empirical results for commodity and cur-

rency futures

In this section we illustrate the analysis in the previous sections for a number
of commodity and currency futures contracts. We test whether a base set
of three international stock indices spans the extended set of these same
portfolios plus a number of futures contracts.

[Please insert Table 1]

We use semi-monthly data from January 1984 until December 1993 to
construct monthly holding returns for the S&P 500, the FTSE (UK) and the
FAZ (Germany), as well as for a number of commodity and currency futures.
The returns on the FTSE and the FAZ used here, are unhedged dollar re-
turns, so we take the perspective of a US-investor. The three indices used
here allow a US-investor to form a well-diversified asset portfolio. Summary
statistics for monthly holding returns on the three indices and the futures
contracts are presented in Table 1. The data for the FTSE and the FAZ are
obtained from Datastream, while all other data are obtained from the Futures
Industry Institute. Because semi-monthly observations of monthly holding
returns create an overlapping samples problem, consistent estimates of the
relevant covariance matrices are calculated as in Newey & West (1987). Re-
turns for the futures contracts are always for the nearest-to-delivery contract,
excluding observations in the delivery month.

4.1 Unconditional tests without nontraded assets

[Please insert Table 2]

Table 2 reports results of tests whether there is spanning for several util-
ity functions, assuming that all relevant moments of the returns are time-
invariant. The first column presents results for the null hypothesis that there
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is mean-variance spanning of the futures contracts by the three international
stock indices. The Wald test-statistics show that this null hypothesis is
only rejected for live cattle futures. This suggests that in a market without
frictions and using no conditioning information, most futures contracts con-
sidered here do not have added value for a US-investor with a mean-variance
utility function.

The second and third column of Table 2 show tests for the hypothesis
that, besides mean-variance spanning, there is also spanning for a logarith-
mic utility and power-utility investor respectively. As outlined in Section
2, the parameters for the kernels that correspond to these utility functions
are estimated using a GMM-estimator.The Wald test-statistics in the second
column are for the hypothesis that the three stock indices span the futures
contracts for both mean-variance investors and investors with a utility func-
tion U(Wt+1) = log(Wt+1). The spanning hypothesis can now be rejected for
wheat and soybean oil futures and, again, for live cattle futures. Apparently,
wheat and soybean oil futures do not have added value for investors with a
mean-variance utility function, but they do for investors with a logarithmic
utility function. For all other futures contracts the spanning hypothesis can
not be rejected.

Similar results can be reported for the third column of Table 2. Here the
null hypothesis is that the futures contracts are spanned by the three stock
indices for investors with a mean-variance utility function and for investors
with a power utility function U(Wt+1) = 1

γ
(Wt+1)γ, where the risk aversion

coefficient γ = −3, reflecting a preference for skewness. The main difference
with mean-variance and log utility spanning is that now spanning can be
rejected for the currency futures. Apparently, US-investors with a preference
for skewness would like to hedge their currency exposure that arises form
their investments abroad.

Finally, the fourth column in Table 2 shows test statistics for the null hy-
pothesis that the three international stock indices span the futures contracts
for investors with either a logarithmic or power (γ = −3) utility function,
but not for investors with a mean-variance utility function. Except for corn
futures the hypothesis of spanning can now be rejected for all commodity
futures, but it can not be rejected for the currency futures.

Summarizing, depending on the utility functions of interest, most of the
futures contracts considered here appear to have added value for a US-
investor who invests in the three stock indices.
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4.2 Unconditional tests in case there are nontraded
assets

As outlined in Section 3, if an investor has a position in a nontraded asset,
this will change his investment opportunity set. Therefore, in this section
we will test whether the set of three international stock indices spans the
futures contracts for investors with mean-variance utility functions as well
as for investors with logarithmic utility or power utility (γ = −3) functions
when there are nontraded assets. We consider the case of agents that have a
nonmarketable position in one of the assets underlying the futures contracts
considered here. The size of the position is assumed to be 25% of the wealth
invested in the three stock indices (or, equivalently, 20% of total wealth).

[Please insert Table 3]

The Wald test-statistics in Table 3 are for the null hypothesis that there
is mean-variance spanning. The results show that whenever there is an ex-
posure in a commodity, adding a futures contract on that same commodity
almost always adds value for mean-variance investors. Of course this is what
can be expected a priori. Somewhat surprisingly, the hypothesis of mean-
variance spanning can not be rejected for the currency futures, even though
there is a 25% exposure to the foreign currency. The explanation for this re-
sult may be that the returns on the international stock indices already contain
a currency component which allows mean-variance investors to choose their
portfolio in such a way that adding currency futures is not useful.

Table 3 also shows that the five agricultural futures, wheat, corn, soy-
beans, soybean meal, and soybean oil, are related, in the sense that if there
is an exposure in one of the five agriculturals, spanning is usually rejected
for most of the agricultural futures contracts. The same is true for live cattle
and live hogs. Clearly, a position in a nontraded commodity changes the in-
vestment opportunity set in such a way that the MVF of the adjusted stock
indices with a futures contract added is no longer spanned by the adjusted
stock indices only. Almost all investors with a mean-variance utility function
can benefit from adding futures contracts to their portfolio according to their
position in nontraded assets.

[Please insert Table 4]
[Please insert Table 5]
[Please insert Table 6]

We also test whether there is spanning for investors with logarithmic util-
ity and power utility functions. Table 4 presents Wald test-statistics for the
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hypothesis that there is both mean-variance and logarithmic utility spanning,
Table 5 presents test-statistics for the hypothesis that there is mean-variance
and power utility spanning (γ = −3), and Table 6 presents test-statistics for
the hypothesis that there is logarithmic and power-utility spanning, but not
mean-variance spanning. Most of the results are similar to the results for
mean-variance spanning only: For the commodity futures the spanning hy-
pothesis is almost always rejected whenever there is a nonmarketable position
in the commodity underlying the futures contract. Also, a nonmarketable
position in an agricultural commodity usually implies that the spanning hy-
pothesis is rejected for most agricultural futures contracts, and again the
same is true for live cattle and live hogs.

As with the results in Table 2 where there is no exposure, the main
difference is that the test for mean-variance and power utility spanning in
Table 5 rejects the spanning hypothesis for the currency futures, whatever the
nonmarketable position is. Thus, unlike investors with a mean-variance or
logarithmic utility function, investors with a power utility function (γ = −3),
showing a preference for skewness, can benefit from adding currency futures
to their portfolio, while we can not draw this conclusion for the other utility
functions, even though there is a 25% exposure to the foreign currencies.

4.3 Conditional tests of spanning

As indicated in Section 3.3, there is ample evidence that futures returns can
be predicted from the net positions of large hedgers in the futures markets,
known as hedging pressure. These positions are reported by the Commodity
Futures Trading Commission (CFTC). In this section we will test whether
the three international stock indices span the futures contracts in our sample,
if we use hedging pressure variables to predict futures returns.

In order to use this kind of conditioning information, we construct a
hedging pressure variable xi,t for commodity or currency i as the difference
between the positions of large hedgers that are short in futures contract i at
time t, and the positions of large hedgers that are long in futures contract i
at time t, divided by the total position of these hedgers in contract i. Thus,
the hedging pressure, xi,t, is always in the range between -1 and +1 and
represents the net position of large hedgers as a fraction of the total position
of large hedgers. Using this variable, the models in equations (16) and (17)
are estimated. Because data on hedging pressure are in our dataset since
January 1986 only, the empirical tests that use the hedging pressure variable
are for the period from January 1986 until December 1993.

[Please insert Table 7]
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Table 7 shows the results of the spanning tests with conditioning infor-
mation. The first three columns show test-statistics for the hypothesis that
there is mean-variance spanning for three different values of xi,t: -0.50, 0.00,
+0.50. For instance, the first column with xi,t gives the Wald test-statistic for
the null hypothesis whether their is spanning if the hedging pressure variable
is -0.50, i.e., if 75% of the positions of hedgers are short positions and 25%
of the positions are short positions. The first three columns show that for
three commodity futures and for the three currency futures, mean-variance
spanning can be rejected convincingly, given the appropriate economic con-
ditions. Especially for currency futures this is in sharp contrast with the
results in the previous tables. Note that for currency futures mean-variance
spanning is rejected when the hedging pressure variable is either +0.50 or
-0.50, i.e., when hedgers are either predominantly on the long or the short
side of the market, but not when the hedging pressure variable is 0.00, i.e.,
when the positions of hedgers are spread evenly over the long and short side
of the market.

Columns 4, 5, and 6 of Table 7 show similar tests for the hypothesis that
there is spanning for both mean-variance and logarithmic utility investors
and columns 7, 8, and 9 show tests for the hypothesis that there is spanning
for both mean-variance and power utility investors. Finally, the last three
columns show the tests for the hypothesis that there is for all classes of utility
functions considered: mean-variance, logarithmic utility, and power utility.
Note that because our conditional tests require that we include an intercept
and xt in the regression, our test procedure automatically tests for mean-
variance spanning besides the other utility functions included. The results
for these tests confirm the findings for mean-variance spanning. The major
difference occurs in the columns 4, 5, and 6, and the last three columns, that
show that when logarithmic utility functions are included spanning can also
be rejected for wheat and soybean futures, which is not the case for the other
utility functions.

5 Summary and conclusions

In this paper we generalize the notion of mean-variance spanning as defined in
the seminal paper of Huberman & Kandel (1987) in three dimensions. First
of all we show how regression techniques can be used to test for spanning
for more general classes of utility functions. It is shown that in projecting
a security’s return on a specific class of kernels and portfolios of the initial
set of securities, spanning implies that the projection yields a portfolio of
these securities. Second, we show how to test for spanning in case of zero-
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investment securities like futures, forwards, and swaps. If zero-investment
securities are considered, then spanning implies restrictions on the coefficients
in the spanning regression that reflect the zero-investment property. Finally,
we show how to test for spanning in case there are nontraded assets. If an
investor has a position in a nontraded asset, then this changes his investment
opportunity set. In spanning tests this can be incorporated by using returns
that are adjusted for the return on the nontraded asset.

We test whether three international stock indices, i.e., the S&P 500, the
FAZ (Germany), and the FTSE (UK), span a set of commodity futures and
currency futures. If it is assumed that all relevant moments of monthly hold-
ing returns are constant, and that there are no market frictions like short
selling constraints and transaction costs, then we can reject the hypothesis
that there is spanning for most futures contracts, but whether or not the
spanning hypothesis is rejected depends on the specific utility functions of
interest. If an investor has a nonmarketable position in a commodity underly-
ing one of the futures contracts, then spanning can almost always be rejected
for the futures contract on that same commodity for all utility functions con-
sidered. Moreover, a nonmarketable position in one agricultural commodity
usually implies that the hypothesis of spanning is rejected for most of the
agricultural futures contracts. If there is an exposure to a foreign currency,
then spanning can only be rejected for investors with power utility functions
that reflect a preference for skewness. Finally, allowing expected returns to
depend on the net positions of large hedgers in the futures market, spanning
can be rejected for many futures contracts for all utility functions considered.
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A Proof of Proposition 1

In this appendix we show the proof of proposition 1 allowing for zero-investment
securities. Let w ∈ W̃ , where W̃ = W S

e if rt+1 refers to a non-zero investment
security and W̃ = W F

e if rt+1 refers to a zero-investment security. Also let er
be 1 if rt+1 refers to a non-zero investment security and 0 if rt+1 refers to a
zero-investment security.

Proof. First (sufficiency) assume that (3) holds for w ∈ W̃ . Fix any Mt+1 ∈
M. Then

Et[rt+1Mt+1] = Et[w
′Rt+1Mt+1] = w′e = er.

Second (necessity), assume that H ′ holds. We will show that the projection
in (3) equals

w′0Rt+1 + Π(rt+1 − w
′
0Rt+1 | {(w − w0)

′Rt+1 : w ∈ W̃}), (18)

with w0 = Et[Rt+1R
′
t+1]−1e/e′Et[Rt+1R

′
t+1]e. Note that {(w−w0)′Rt+1 : w ∈

W̃} defines a linear and finite dimensional (hence closed) subspace. Denote
by w that value of w that yields the projection in (18), i.e. w solves

Et[(rt+1 − w
′
0Rt+1 − (w −w0)′Rt+1)(w − w0)′Rt+1] = 0, (19)

for all w ∈ W̃ . Now we obviously have that

w′0Rt+1 + (w −w0)
′Rt+1 = w′Rt+1 ∈ {w

′Rt+1 : w ∈ W̃}.

Furthermore, if Mt+1 ∈M, then H ′ implies that

Et[(rt+1 − w
′Rt+1)Mt+1 = er − w

′e = 0.

In particular, this holds for M0
t+1 = e′Et[Rt+1R

′
t+1]−1e ∗ w′0Rt+1, so that

Et[(rt+1 − w
′Rt+1)w′0Rt+1] = 0.

This implies for all w ∈ W̃ that

Et[(rt+1 − w
′Rt+1)w′Rt+1] = Et[(rt+1 − w

′Rt+1)(w − w0)
′Rt+1] = 0,

by (19).
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B Derivation of the limit distribution of the

OLS-estimates in (8)

In this appendix we will derive (under sufficient regularity conditions) the
limit distribution for the OLS-estimates of the regression parameters in (??).
Recall that we can test for spanning for a certain utility function U by testing
whether in the regression

rt+1 = α′Rt+1 + γU ’(R′t+1ϕ) + εt+1, (20)

α′ι = 1 and γ = 0. For simplicity, we consider the case where there is only
one utility function and we have reparametrized cU ’(w∗′Rt+1) as U ’(ϕ′Rt+1).
In empirical applications the parameters ϕ have to be estimated. From

Et[Rt+1U ’(R′t+1ϕ)] = ι,

estimates of ϕ can obtained with GMM using the sample moments:

g(ϕ,R) ≡
1

T

T∑
t=1

gt(ϕ,Rt) =
1

T

T∑
t=1

U ’(R′tϕ)Rt − ι, (21)

where gt(ϕ,Rt) = U ’(R′tϕ)Rt − ι. Denote

G(ϕ,R) = ∂g(ϕ,R)/∂ϕ =
1

T

T∑
t=1

U”(R′tϕ)RtR
′
t.

Then we have that

√
T (ϕ̂− ϕ) ≈ −G(ϕ,R)−1

√
Tg(ϕ,R). (22)

Denoting the limiting covariance matrix of
√
Tg(ϕ,R) as Sgg, and the prob-

ability limit of G(ϕ,R) as A, then the limit distribution of ϕ̂ is given by:

√
T (ϕ̂− ϕ)

L
→ N(0, A−1SggA

−1′).

As a next step, rewrite (??) as

rt+1 = α′Rt+1 + γU ’(R′t+1ϕ̂) + εt+1 + γ{U ’(R′t+1ϕ)− U ’(R′t+1ϕ̂)}

= α′Rt+1 + γU ’(R′t+1ϕ̂) + εt+1 + ut+1,
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which defines ut+1. Defining xt ≡ (R′t U ’(R′tϕ))′ and x̂t ≡ (R′t U ’(R′tϕ̂))′, the
estimates α̂ and γ̂ satisfy:

√
T

(
α̂− α
γ̂ − γ

)
=

[
1

T

T∑
t=1

x̂tx̂
′
t

]−1
1
√
T

T∑
t=1

(x̂t (εt + ut)) . (23)

Since under the null hypothesis that there is spanning γ = 0, the error term
ut equals 0, and hence does not affect the limit distribution. Using a linear
expansion we obtain for the last factor in (??) that

1
√
T

T∑
t=1

x̂tεt ≈
1
√
T

T∑
t=1

xtεt +
1

T

T∑
t=1

(
0

U”(R′tϕ)R′tεt

)
√
T (ϕ̂− ϕ). (24)

Substituting (??) into (??) gives:

1
√
T

T∑
t=1

x̂tεt ≈
1
√
T

T∑
t=1

xtεt −
1

T

T∑
t=1

(
0

Ut”R′tεt

)
G(ϕ,R)−1

√
Tg(ϕ,R).

If we denote the limit distribution of this term with N(0, V ), then the limit
distribution of the regression parameters is given by:

√
T

(
α̂− α

γ̂ − γ

)
L
→ N(0, Q),

where an estimate of Q can be obtained from

Q̂ =

[
1

T

T∑
t=1

x̂tx̂
′
t

]−1

V̂

[
1

T

T∑
t=1

x̂tx̂
′
t

]−1

.

In our applications we estimated V by V̂ using the Newey-West approach.
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Table 1: The table contains summary statistics for semi-monthly observations
of net monthly holding period returns, (Pt+1 − Pt)/Pt, over the period from
January 1984 until December 1993. The total number of observations in this
period is 240. Average returns, standard deviations, median, minimum, and
maximum are all in percentages.

Summary statistics of net monthly returns
Average Median Std.dev. Skew. Kurt.-3 Max. Min.

Basic assets
S&P 500 0.59 1.28 6.51 -0.05 1.23 18.6 -22.8
FAZ (Germany) 1.31 0.70 5.91 -0.06 1.30 17.8 -22.5
FTSE (UK) 1.17 0.80 4.23 -0.73 4.82 17.1 -22.1
Futures contracts
wheat 0.34 0.65 5.48 0.20 0.99 25.1 -15.3
corn -0.39 -0.79 6.45 2.18 13.86 45.8 -18.6
soybeans -0.34 -0.45 5.72 0.72 3.47 26.4 -21.6
soybean meal 0.06 -0.80 6.50 1.31 4.34 36.0 -16.6
soybean oil -0.14 -0.99 7.36 0.50 0.62 24.5 -18.4
live cattle 0.78 0.78 3.71 -0.07 0.69 14.5 -9.9
live hogs 1.07 0.75 6.18 0.31 0.07 21.6 -15.4
German Mark 0.42 0.21 3.69 -0.01 -0.15 11.8 -10.5
British Pound 0.42 0.22 3.98 0.24 1.66 18.4 -11.3
Japanese Yen 0.55 -0.07 3.43 0.45 0.43 12.1 -7.5
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Table 2: The results in the table are for the null hypothesis that a basic
set of assets spans a futures contract. The column ”mean-variance” is for
the null hypothesis that there is mean-variance spanning, ”log” is for the null
hypothesis that there is both mean-variance and log-utility spaning, ”power”
is for the null hypothesis that there is both mean-variance and power utility
spanning, where the power utility function has a risk aversion coefficient.
and ”log+power” is for the null hypothesis that there is spanning for both
logarithmic and power utility functions. * indicates that the null hypothesis
is rejected at the 5 %-significance level, ** indicates rejection at the 1 %-
significance level. The initial set of assets are the S&P 500, the FTSE (UK)
and the FAZ (Germany). Results are based on semi-monthly observations
of monthly holding period returns from January 1984 until December 1993,
resulting in a total of 240 observations. All test statistics are based on a
Newey-West covariance matrix with one lag.

Tests for unconditional spanning
mean-variance log power log+power

wheat 4.95 11.19∗ 6.17 10.97∗

corn 1.66 1.65 3.49 2.50
soybeans 0.74 7.37 0.97 9.30∗

soybean meal 0.73 3.51 5.81 8.67∗

soybean oil 0.15 11.07∗ 2.93 10.32∗

live cattle 8.47 ∗ 9.18 ∗ 19.48∗∗ 11.32∗

live hogs 5.20 6.26 5.66 9.43∗

German Mark 0.75 2.33 60.54∗∗ 1.70
British Pound 0.77 4.46 41.95∗∗ 0.43
Japanese Yen 2.23 2.33 25.92∗∗ 4.32
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