Center for Economic Research

CANONICAL PARTITIONS
 IN THE RESTRICTED LINEAR MODEL

by

Ben Van Der Genugten

June 1997

Abstract

In the linear model $y=X \beta+\varepsilon$ under the restriction $C \beta=0$ a canonical partition $C=\left[C_{0} ; C_{1}\right]$ of the rows of C admits a simple representation of linear subspaces of values $\mu=X \beta$. Its use is shown for the identification, estimating and testing of linear combinations $D \beta$. Results are derived without imposing any rank conditions on X, C and D. Applications are in the field of experimental design with unbalanced data.

Keywords. Restricted linear model, canonical partition, identification, testing, estimation, experimental design.

JEL codes: C12, C13, C90

1 Introduction

Consider the linear model

$$
\begin{equation*}
y=\mu+\varepsilon, \quad \mu=X \beta, \quad E(\underline{\varepsilon})=0 \tag{1}
\end{equation*}
$$

with $y \in \mathbb{R}^{n}$, deterministic $X \in \mathbb{R}^{n \times k}, \beta \in \mathbb{R}^{k}, \varepsilon \in \mathbb{R}^{n}$, where $\mathcal{L}(\varepsilon)$ does not depend on β. In the restricted model the range of β-values has to satisfy $C \beta=0$ for some given $C \in \mathbb{R}^{p \times k}$; we write $\beta \in K_{0}=\mathcal{N}(C)$. Such models arise in a natural way in experimental design. Restrictions can become quite complicated in designs with unbalanced data.

We are interested in statistical conclusions about identifiable $D \beta$ based on statistics obtained from LS (Least Squares). There is a huge literature available on this old problem. For an overview we refer to the textbooks Rao (1973), 4a and 4i and, more recently, Searle (1987), 5.6. Formulae for LS-statistics in terms of X, C, D are mostly generated by formal matrix manupulations involving generalized inverses. For more numerical aspects we refer to Björck (1996), 5.1.

In this paper we derive alternatives based on clear geometric interpretations. This becomes possible by using a canonical partition of the rows of C. This concept was introduced in Van Der Genugten (1997) in the restrictive context of testing $H_{0}: D \beta=0$. However, its application is far more general as will be shown below.

We give an outline of the paper. Section 2 is preliminary and treats the equivalence between identifiability, estimability and LS-uniqueness. Section 3 introduces the concept of a canonical partition and shows its relation with identifiability. Section 4 treats the LS-estimation of $D \beta$ and section 5 the usual F-test based on LS for $H_{0}: D \beta=0$. Finally, in section 6 we make a comparison with some results of Rao and Searle.

For conclusions about distributional properties of estimators and tests we need further assumptions about $\mathcal{L}(\varepsilon)$ in (1) like $\operatorname{Cov}(\varepsilon)=\sigma^{2} I_{n}$ or even $\varepsilon \sim N_{n}\left(0, \sigma^{2} I_{n}\right)$.

2 Identifiability

From an inferential point of view we should refuse estimates of non-identifiable functions of the unknown parameter. Within the context of the linear model $D \beta, \beta \in K_{0}$ is identifiable if (by definition) different values of $D \beta$ correspond to different sample distributions $\mathcal{L}(y)$. Due to the fact that β does not depend on $\mathcal{L}(\varepsilon)$ we have (see e.g. Van Der Genugten (1977) or Prakaso Rao (1992), 7.2):

Identifiability: $D \beta, \beta \in K_{0}$ is identifiable iff there exists a (necessarily linear) function $\nu: X\left(K_{0}\right) \rightarrow D\left(K_{0}\right)$ with $\nu(X \beta)=D \beta, \beta \in K_{0}$.

Roughly spoken, $D \beta$ is identifiable iff it is a function of $\mu=X \beta$.
Let $z_{0}=P_{0} y$ with P_{0} the orthogonal projection matrix with respect to $X\left(K_{0}\right)$. Then z_{0} is an unbiased estimator for $\mu \in X\left(K_{0}\right)$. From this it easily follows that $D \beta, \beta \in K_{0}$ is identifiable iff it can be estimated unbiasedly.

Let $b_{0}=b_{0}(y)$ be LS-estimator of $\beta \in K_{0}$, i.e. minimizes $|y-X \beta|^{2}$ under $\beta \in K_{0}$. We call $D b_{0}$ LS-estimator of $D \beta, \beta \in K_{0}$. We say that $D b_{0}$ is unique if $D b_{0}$ does not depend on the choice of b_{0} (for all $y \in \mathbb{R}^{n}$). In particular, $z_{0}=X b_{0}=P_{0} y$ is the unique LS-estimator of $\mu=X \beta, \beta \in K_{0}$. From this it easily follows that $D \beta, \beta \in K_{0}$ is identifiable iff its LS-estimator $D b_{0}$ is unique.

Note that the equivalence between identifiability, estimability and LSuniqueness can be derived just by considering linear spaces and functions. No matrix calculations are needed at all.

A simple necessary and sufficient condition for identifiability of $D \beta, \beta \in$ K_{0} directly in terms of X and C is given by (see e.g. Rao (1973), 4i. 2 (iii), p. 297):

$$
\begin{equation*}
\mathcal{R}\left(D^{\prime}\right) \subseteq \mathcal{R}\left(X^{\prime} \quad C^{\prime}\right) \tag{2}
\end{equation*}
$$

The relation (2) simply means that the rows of D are linear combinations of
the rows of X and C.
Often rows of C do not contribute to identification. We formulate this trivial extension in the following way. Let C_{0} be a submatrix of rows of C with

$$
\begin{equation*}
\mathcal{R}\left(X^{\prime} \quad C_{0}\right)=\mathcal{R}\left(X^{\prime} C^{\prime}\right) \tag{3}
\end{equation*}
$$

Then $D \beta, \beta \in K_{0}$ is identifiable iff

$$
\begin{equation*}
\mathcal{R}\left(D^{\prime}\right) \subseteq \mathcal{R}\left(X^{\prime} \quad C_{0}^{\prime}\right) \tag{4}
\end{equation*}
$$

We need (3) and (4) for further reference.
The condition (2) or its generalization (4) cannot be verified straightforward in a numeric way. For this we use a g-inverse.

In general, for any $A \in \mathbb{R}^{n \times m}$ we call $A^{-} \in \mathbb{R}^{m \times n} g$-inverse of A if $A A^{-} A=A$. Such a matrix acts as an inverse for appropriate matrices: $B A^{-} A=B$ iff $\mathcal{R}\left(B^{\prime}\right) \subseteq \mathcal{R}\left(A^{\prime}\right)$. Note that $\mathcal{R}\left(A^{\prime}\right)=\mathcal{R}\left(\left(A^{-} A\right)^{\prime}\right)$.

In particular, set

$$
\left[X ; C_{0}\right]^{-}=\left[\begin{array}{ll}
H_{0} & G_{0} \tag{5}
\end{array}\right] .
$$

Here and in the following we write $\left[X ; C_{0}\right]=\left[\begin{array}{ll}X^{\prime} & \left.C_{0}^{\prime}\right]^{\prime} \text { for column partition. }\end{array}\right.$ Let

$$
\begin{equation*}
J_{0}=\left[X ; C_{0}\right]^{-}\left[X ; C_{0}\right]=H_{0} X+G_{0} C_{0} \tag{6}
\end{equation*}
$$

Clearly, (4) is fulfilled iff

$$
\begin{equation*}
D\left(I_{k}-J_{0}\right)=0 \tag{7}
\end{equation*}
$$

This condition can be verified easily in a numeric way.
Note that (7) holds for $D=J_{0}$. So $J_{0} \beta, \beta \in K_{0}$ generates the class of all identifiable linear combinations of $\beta \in K_{0}$ by premultiplication of matrices.

Furthermore, note that for identifiable $D \beta, \beta \in K_{0}$ a matrix representation of the linear function ν is given by $D H_{0}$ since

$$
\begin{equation*}
D \beta=D J_{0} \beta=D H_{0} X \beta+G_{0} C_{0} \beta=D H_{0} \mu \tag{8}
\end{equation*}
$$

Finally, note that other candidates for generating all identifiable linear functions can be found as well. For example, since $\mathcal{R}\left(X^{\prime} X\right)=\mathcal{R}\left(X^{\prime}\right)$ we may replace X by $X^{\prime} X$ in the definition of J_{0}. The same can be done with C_{0} and $C_{0}^{\prime} C_{0}$.

3 Canonical partitions

The concept of canonical partitions was introduced in Van Der Genugten (1997) in the restricted context of testing.

We write $L_{0}=X\left(K_{0}\right)=X(\mathcal{N}(C)) \subseteq L=X\left(\mathbb{R}^{k}\right)=\mathcal{R}(X)$. So L is the range of μ-values in the unrestricted model.

Let C^{*} be any submatrix of rows from C. Then (see e.g. Rao (1973), 1b. 6 (iii), p. 28):

$$
\begin{aligned}
\operatorname{dim} L=r(X) & \geq \operatorname{dim} X\left(\mathcal{N}\left(C^{*}\right)\right)=r\left(X ; C^{*}\right)-r\left(C^{*}\right) \\
& \geq \operatorname{dim} L_{0}=r(X ; C)-r(C)
\end{aligned}
$$

Hence, there exists an (in general not uniquely determined) submatrix C_{0} with a maximum number of rows from C such that

$$
\begin{equation*}
\operatorname{dim} L=r(X)=\operatorname{dim} X\left(\mathcal{N}\left(C_{0}\right)\right)=r\left(X ; C_{0}\right)-r\left(C_{0}\right) \tag{9}
\end{equation*}
$$

or, equivalently, $L=X\left(\mathcal{N}\left(C_{0}\right)\right)$.
Given such C_{0} we denote the submatrix of remaining rows by C_{1}. By reordering we may write $C=\left[C_{0} ; C_{1}\right]$ without loss of generality. We call this a canonical partition of C. (It is possible that C_{0} or C_{1} is empty; we proceed with the general case that C_{0} and C_{1} are not empty.) The construction of C_{0} is quite easy by inspecting the rows of C subsequently and adding a
row to the already obtained rows if the rank condition (9) still holds for the augmented set.

Since (9) is equivalent to $\mathcal{R}\left(X^{\prime}\right) \cap \mathcal{R}\left(C_{0}^{\prime}\right)=\{0\}$ and since the number of rows in C_{0} is maximal, it follows that the rows of C_{1} belong to $\mathcal{R}\left(X^{\prime} C_{0}^{\prime}\right)$ or

$$
\begin{equation*}
\mathcal{R}\left(C_{1}^{\prime}\right) \subseteq \mathcal{R}\left(X^{\prime} \quad C_{0}^{\prime}\right) \tag{10}
\end{equation*}
$$

This implies that (3) holds for the part C_{0} of the canonical partition. We use (4)-(7) for this choice of C_{0}. In particular, it follows from (4), (10) and (7) that

$$
\begin{equation*}
C_{1} J_{0}=C_{1} \tag{11}
\end{equation*}
$$

Roughly spoken, the rows of C_{0} help with identification and given C_{0} the rows of C_{1} generate the real restrictions.

The key of the canonical partition $\left[C_{0} ; C_{1}\right]$ of C is that it admits a simple form of linear subspaces related with L_{0} and L.

Theorem. Let L_{1} be the orthogonal complement of L_{0} with respect to L. Then

$$
\begin{equation*}
L_{1}=\mathcal{R}\left(X H_{0}^{\prime} C_{1}^{\prime}\right) \tag{12}
\end{equation*}
$$

Proof. With (11) and (6) we get

$$
\begin{aligned}
L_{0} & =X(\mathcal{N}(C))=X\left(\mathcal{N}\left(C_{0} ; C_{1}\right)\right)=X\left(\mathcal{N}\left(C_{0} ; C_{1} J_{0}\right)\right)= \\
& \left.=X\left(\mathcal{N}\left(C_{0} ; C_{1} H_{0} X^{\prime} X+C_{1} G_{0} C_{0}\right)\right)=X\left(\mathcal{N}\left(C_{0}\right) ; C_{1} H_{0} X^{\prime} X\right)\right)= \\
& =\left\{\mu \in X\left(\mathcal{N}\left(C_{0}\right): C_{1} H_{0} X^{\prime} \mu=0\right\}=\right. \\
& =\left\{\mu \in L: C_{1} H_{0} X^{\prime} \mu=0\right\}=X\left(\mathcal{N}\left(C_{1} H_{0} X^{\prime} X\right)\right)
\end{aligned}
$$

or

$$
L_{1}=\mathcal{R}\left(\left(C_{1} H_{0} X^{\prime}\right)^{\prime}\right)=\mathcal{R}\left(X H_{0}^{\prime} C_{1}^{\prime}\right) . \square
$$

The dimensions of the linear spaces involved follow immediately from (3):

$$
\left.\begin{array}{rl}
\operatorname{dim} L_{0} & =r(X ; C)-r(C)=r\left(X ; C_{0}\right)-r(C) \tag{13}\\
\operatorname{dim} L & =r(X)=r\left(X ; C_{0}\right)-r\left(C_{0}\right) \\
\operatorname{dim} L_{1} & =r(C)-r\left(C_{0}\right)
\end{array}\right\}
$$

We use the results in the following sections for obtaining expressions for LS-statistics related to estimation and testing.

4 Estimation

Let P, P_{0}, P_{1} denote the orthogonal projection matrices belonging to $L=$ $\mathcal{R}(X), L_{0}=X(\mathcal{N}(C))$ and the orthogonal complement L_{1} of L_{0} with respect to L, respectively. Clearly,

$$
\begin{equation*}
P=X\left(X^{\prime} X\right)^{-} X^{\prime} \tag{14}
\end{equation*}
$$

With (12) this implies

$$
\begin{equation*}
P_{1}=X H_{0}^{\prime} C_{1}^{\prime}\left(C_{1} H_{0} X^{\prime} X H_{0}^{\prime} C_{1}^{\prime}\right)^{-} C_{1} H_{0} X^{\prime} \tag{15}
\end{equation*}
$$

From the definition of P_{0} we have

$$
\begin{equation*}
P_{0}=P-P_{1} . \tag{16}
\end{equation*}
$$

From (14)-(16) explicit expressions for the LS-estimator $D b_{0}$ for identifiable $D \beta, \beta \in K_{0}$ are easily derived. With (8) we get $D b_{0}=D H_{0} z_{0}=$ $D H_{0} P_{0} y$ and so

$$
\begin{equation*}
D b_{0}=D M_{0} y \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
M_{0}=H_{0} P_{0} . \tag{18}
\end{equation*}
$$

We can apply (17) for $D=X$ and $D=C$. This gives $X b_{0}=P_{0} y$ and $C b_{0}=0$. So, if we define

$$
\begin{equation*}
b_{0}=M_{0} y, \tag{19}
\end{equation*}
$$

then b_{0} is a LS-solution of $\beta \in K_{0}$.
Under the assumption $V(\varepsilon)=\sigma^{2} I_{n}$ we get from (19) and (18)

$$
\begin{equation*}
\operatorname{Cov}\left(b_{0}\right)=\sigma^{2} M_{0} M_{0}^{\prime}=\sigma^{2} H_{0} P_{0} H_{0}^{\prime} . \tag{20}
\end{equation*}
$$

The error variance σ^{2} is estimated unbiasedly by

$$
\begin{equation*}
\hat{\sigma}^{2}=\left|e_{0}\right|^{2} / \operatorname{dim} L_{0}^{\perp}, \tag{21}
\end{equation*}
$$

where $e_{0}=y-z_{0}=\left(I_{n}-P_{0}\right) y$ stands for the LS-residual. Note that $\operatorname{dim} L_{0}^{\perp}=n-\operatorname{dim} L_{0}$ and

$$
\begin{equation*}
\left|e_{0}\right|^{2}=|y|^{2}-\left|z_{0}\right|^{2}=y^{\prime} y-y^{\prime} P_{0} y \tag{22}
\end{equation*}
$$

5 Testing

Assume that $\varepsilon \sim N_{n}\left(0, \sigma^{2} I_{n}\right)$.
The usual F-statistic for $H_{0}: D \beta=0$ against $H_{1}: D \beta \neq 0$ for identifiable $D \beta, \beta \in K_{0}$, is given by

$$
\begin{equation*}
F=\frac{\left|z_{01}\right|^{2} / \operatorname{dim} L_{01}}{\left|e_{0}\right|^{2} / \operatorname{dim} L_{0}^{\perp}} \sim F_{\operatorname{dim} L_{0}^{\perp}}^{\operatorname{dim} L_{01}}\left(\left|\mu_{01}\right|^{2} / \sigma^{2}\right) . \tag{23}
\end{equation*}
$$

Here $z_{01}=P_{01} y, \mu_{01}=P_{01} \mu$ with P_{01} the orthogonal projection matrix of L_{01}, by definition the orthogonal complement of $L_{00}=X(\mathcal{N}(C ; D))$ with
respect to $L_{0}=X(\mathcal{N}(C))$. We derive expressions for $P_{01},\left|z_{01}\right|^{2}$ and $\operatorname{dim} L_{01}$ appearing in (23).

From (4) it follows that $\left[C_{0} ; D_{1}\right]$ with $D_{1}=\left[C_{1} ; D\right]$ is a canonical partition of $[C ; D]$. So we can apply (12) to the orthogonal complement $L_{11}=L_{01}+L_{1}$ of L_{00} with respect to L :

$$
\begin{equation*}
L_{11}=\mathcal{R}\left(X H_{0}^{\prime} D_{1}^{\prime}\right) \tag{24}
\end{equation*}
$$

Let P_{11} be the orthogonal projection matrix with respect to L_{11}. Then from (14) we get

$$
\begin{equation*}
P_{11}=\left(X H_{0}^{\prime} D_{1}^{\prime}\right)\left(D_{1} H_{0} X^{\prime} X H_{0}^{\prime} D_{1}\right)^{-} D_{1} H_{0} X^{\prime} \tag{25}
\end{equation*}
$$

Since $L_{01} \perp L_{1}$ this implies

$$
\begin{align*}
& P_{01}=P_{11}-P_{1} \tag{26}\\
& \left|z_{01}\right|^{2}=y^{\prime} P_{01} y=y^{\prime} P_{11} y-y^{\prime} P_{1} y \tag{27}
\end{align*}
$$

Furthermore, with (13) we get $\operatorname{dim} L_{11}=r(C ; D)-r\left(C_{0}\right)$ and so

$$
\begin{equation*}
\operatorname{dim} L_{01}=r(C ; D)-r(C) \tag{28}
\end{equation*}
$$

In Van Der Genugten (1977) a slight simplification for (26) is given.

6 A comparison

In Searle (1987), 5.6 two seperate cases are distinguished:
a) Restrictions involving estimable functions. This refers to the condition $\mathcal{R}\left(C^{\prime}\right) \subseteq \mathcal{R}\left(X^{\prime}\right)$. So in this case the part C_{0} of the canonical partition of C is empty.
b) Restrictions involving non-estimable functions. This refers to the condition that $L_{0}=L$. So in this case the part C_{1} of the canonical partition of C is empty.

In fact, section 4 treats the general case without imposing any rank conditions on C.

The classic approach of Rao (1973), 4i. 1 gives an alternative for (19). It can be given a nice geometric interpretation as well in the following way.

The vector $b_{0} \in K_{0}$ is LS-estimator iff the corresponding LS-residual $e_{0}=y-X b_{0}$ is orthogonal to $L_{0}=X(\mathcal{N}(C))$ or, equivalently,

$$
\begin{equation*}
X^{\prime} e_{0} \in \mathcal{N}(C)^{\perp}=\mathcal{R}\left(C^{\prime}\right) \tag{29}
\end{equation*}
$$

Note that (29) is equivalent to

$$
C b_{0}=0 \text { and } X^{\prime} y-X^{\prime} X b_{0}=-C^{\prime} d_{0} \text { for some } d_{0}
$$

or

$$
\left[\begin{array}{lll}
X^{\prime} X & C^{\prime} ; & C
\end{array} 0\right]\left(b_{0} ; d_{0}\right)=\left(X^{\prime} y ; 0\right) \text { for some } d_{0} .
$$

Hence,

$$
b_{0}=M_{0}^{*} y
$$

with M_{0}^{*} the $(1,1)$-part of $\left[\begin{array}{lll}X^{\prime} X & C^{\prime} ; C & 0\end{array}\right]^{-}$. This gives the alternative expression $P_{0}=X M_{0}^{*} X^{\prime}$ for (16).

This approach lacks the nice interpretation (12) and gives no easy condition for identifiability of $D \beta, \beta \in K_{0}$ like (7). An alternative would be to use in (29) the fact that $\mathcal{R}\left(C^{\prime}\right)=\mathcal{R}\left(C^{\prime} C\right)$ and that $C b_{0}=0$ iff $C^{\prime} C b_{0}=0$, leading to

$$
\left(\begin{array}{cc}
X^{\prime} X+C^{\prime} C & C^{\prime} C \\
C^{\prime} C & 0
\end{array}\right)\binom{b_{0}}{d_{0}}=\binom{X^{\prime} y}{0} \text { for some } d_{0}
$$

or

$$
b_{0}=M_{0}^{* *} y
$$

with $M_{0}^{* *}$ the (1,1)-part of $\left[X^{\prime} X+C^{\prime} C \quad C^{\prime} C ; C^{\prime} C \quad 0\right]^{-}$. Then the expression for $X^{\prime} X+C^{\prime} C$ can also be used for the identifiability condition (7) (with $\left.C_{0}=C\right)$. We simply take

$$
[X ; C]^{-}=\left([X ; C]^{\prime}[X ; C]\right)^{-}[X ; C]^{\prime}=\left(X^{\prime} X+C^{\prime} C\right)^{-}\left[X^{\prime} C^{\prime}\right]
$$

leading to

$$
J_{0}^{*}=[X ; C]^{-}[X ; C]=\left(X^{\prime} X+C^{\prime} C\right)^{-}\left(X^{\prime} X+C^{\prime} C\right) .
$$

So, in (7) J_{0} may be replaced by J_{0}^{*}.
For other alternatives for J_{0} using the fact that $\mathcal{R}\left(X^{\prime}\right)=\mathcal{R}\left(X^{\prime} X\right)$ we refer to Van Der Genugten (1997). See also Van Der Genugten (1993) for a more elaborate discussion.

References

Björck, Å. (1996) - Numerical methods for least squares problems - Siam, Philadelphia.

Prakaso Rao, B.L.S. (1992) - Identifiability in Stochastic Distributions Academic, New York.

Rao, C.R. (1973) - Linear Statistical Inference and Its Applications, $2^{\text {nd }}$ edit. - Wiley, New York.

Searle, S.R. (1987) - Linear Models for Unbalanced Data - Wiley, New York.

Van Der Genugten, B.B. (1977) - Identification in statistical inference Statist. Neerlandica 31, p. 69-89.

Van Der Genugten, B.B. (1993) - Identification, estimating and testing in the restricted linear model - Research Memorandum FEW 632, Tilburg University.

Van Der Genugten, B.B. (1997) - Testing in the restricted linear model using canonical partitions - Linear Algebra and Its Applications (to appear).

