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Abstract

In the linear model y = Xβ + ε under the restriction Cβ = 0 a

canonical partition C = [C0;C1] of the rows of C admits a simple

representation of linear subspaces of values µ = Xβ. Its use is shown

for the identification, estimating and testing of linear combinations

Dβ. Results are derived without imposing any rank conditions on

X,C and D. Applications are in the field of experimental design with

unbalanced data.
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1 Introduction

Consider the linear model

y = µ+ ε, µ = Xβ, E(ε) = 0 (1)

with y ∈ IRn, deterministic X ∈ IRn×k, β ∈ IRk, ε ∈ IRn, where L(ε) does not

depend on β. In the restricted model the range of β-values has to satisfy

Cβ = 0 for some given C ∈ IRp×k; we write β ∈ K0 = N (C). Such models

arise in a natural way in experimental design. Restrictions can become quite

complicated in designs with unbalanced data.

We are interested in statistical conclusions about identifiable Dβ based

on statistics obtained from LS (Least Squares). There is a huge literature

available on this old problem. For an overview we refer to the textbooks

Rao (1973), 4a and 4i and, more recently, Searle (1987), 5.6. Formulae

for LS-statistics in terms of X,C,D are mostly generated by formal matrix

manupulations involving generalized inverses. For more numerical aspects

we refer to Björck (1996), 5.1.

In this paper we derive alternatives based on clear geometric interpreta-

tions. This becomes possible by using a canonical partition of the rows of C.

This concept was introduced in Van Der Genugten (1997) in the restrictive

context of testing H0 : Dβ = 0. However, its application is far more general

as will be shown below.

We give an outline of the paper. Section 2 is preliminary and treats the

equivalence between identifiability, estimability and LS-uniqueness. Section

3 introduces the concept of a canonical partition and shows its relation with

identifiability. Section 4 treats the LS-estimation of Dβ and section 5 the

usual F-test based on LS for H0 : Dβ = 0. Finally, in section 6 we make a

comparison with some results of Rao and Searle.

For conclusions about distributional properties of estimators and tests we

need further assumptions about L(ε) in (1) like Cov(ε) = σ2In or even

ε ∼ Nn(0, σ2In).
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2 Identifiability

From an inferential point of view we should refuse estimates of non-identifiable

functions of the unknown parameter. Within the context of the linear model

Dβ, β ∈ K0 is identifiable if (by definition) different values of Dβ correspond

to different sample distributions L(y). Due to the fact that β does not de-

pend on L(ε) we have (see e.g. Van Der Genugten (1977) or Prakaso Rao

(1992), 7.2):

Identifiability: Dβ, β ∈ K0 is identifiable iff there exists a (necessarily lin-

ear) function ν : X(K0)→ D(K0) with ν(Xβ) = Dβ, β ∈ K0.

Roughly spoken, Dβ is identifiable iff it is a function of µ = Xβ.

Let z0 = P0y with P0 the orthogonal projection matrix with respect to

X(K0). Then z0 is an unbiased estimator for µ ∈ X(K0). From this it easily

follows that Dβ, β ∈ K0 is identifiable iff it can be estimated unbiasedly.

Let b0 = b0(y) be LS-estimator of β ∈ K0, i.e. minimizes |y−Xβ|2 under

β ∈ K0. We call Db0 LS-estimator of Dβ, β ∈ K0. We say that Db0 is unique

if Db0 does not depend on the choice of b0 (for all y ∈ IRn). In particular,

z0 = Xb0 = P0y is the unique LS-estimator of µ = Xβ, β ∈ K0. From this

it easily follows that Dβ, β ∈ K0 is identifiable iff its LS-estimator Db0 is

unique.

Note that the equivalence between identifiability, estimability and LS-

uniqueness can be derived just by considering linear spaces and functions.

No matrix calculations are needed at all.

A simple necessary and sufficient condition for identifiability of Dβ, β ∈

K0 directly in terms of X and C is given by (see e.g. Rao (1973), 4i.2 (iii),

p. 297):

R(D′) ⊆ R(X ′ C ′). (2)

The relation (2) simply means that the rows of D are linear combinations of
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the rows of X and C.

Often rows of C do not contribute to identification. We formulate this

trivial extension in the following way. Let C0 be a submatrix of rows of C

with

R(X ′ C0) = R(X ′ C ′). (3)

Then Dβ, β ∈ K0 is identifiable iff

R(D′) ⊆ R(X ′ C ′0). (4)

We need (3) and (4) for further reference.

The condition (2) or its generalization (4) cannot be verified straightfor-

ward in a numeric way. For this we use a g-inverse.

In general, for any A ∈ IRn×m we call A− ∈ IRm×n g-inverse of A if

AA−A = A. Such a matrix acts as an inverse for appropriate matrices:

BA−A = B iff R(B′) ⊆ R(A′). Note that R(A′) = R((A−A)′).

In particular, set

[X;C0]
− = [H0 G0]. (5)

Here and in the following we write [X;C0] = [X ′ C ′0]
′ for column partition.

Let

J0 = [X;C0]
−[X;C0] = H0X +G0C0. (6)

Clearly, (4) is fulfilled iff

D(Ik − J0) = 0. (7)

This condition can be verified easily in a numeric way.

Note that (7) holds for D = J0. So J0β, β ∈ K0 generates the class of all

identifiable linear combinations of β ∈ K0 by premultiplication of matrices.
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Furthermore, note that for identifiable Dβ, β ∈ K0 a matrix representa-

tion of the linear function ν is given by DH0 since

Dβ = DJ0β = DH0Xβ +G0C0β = DH0µ. (8)

Finally, note that other candidates for generating all identifiable linear

functions can be found as well. For example, since R(X ′X) = R(X ′) we

may replace X by X ′X in the definition of J0. The same can be done with

C0 and C ′0C0.

3 Canonical partitions

The concept of canonical partitions was introduced in Van Der Genugten

(1997) in the restricted context of testing.

We write L0 = X(K0) = X(N (C)) ⊆ L = X(IRk) = R(X). So L is the

range of µ-values in the unrestricted model.

Let C∗ be any submatrix of rows from C. Then (see e.g. Rao (1973),

1b.6 (iii), p. 28):

dimL = r(X) ≥ dimX(N (C∗)) = r(X;C∗)− r(C∗)

≥ dimL0 = r(X;C)− r(C).

Hence, there exists an ( in general not uniquely determined) submatrix C0

with a maximum number of rows from C such that

dimL = r(X) = dimX(N (C0)) = r(X;C0)− r(C0). (9)

or, equivalently, L = X(N (C0)).

Given such C0 we denote the submatrix of remaining rows by C1. By

reordering we may write C = [C0;C1] without loss of generality. We call this

a canonical partition of C. (It is possible that C0 or C1 is empty; we proceed

with the general case that C0 and C1 are not empty.) The construction

of C0 is quite easy by inspecting the rows of C subsequently and adding a
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row to the already obtained rows if the rank condition (9) still holds for the

augmented set.

Since (9) is equivalent to R(X ′) ∩ R(C ′0) = {0} and since the number of

rows in C0 is maximal, it follows that the rows of C1 belong to R(X ′ C ′0) or

R(C ′1) ⊆ R(X ′ C ′0). (10)

This implies that (3) holds for the part C0 of the canonical partition. We

use (4)−(7) for this choice of C0. In particular, it follows from (4), (10) and

(7) that

C1J0 = C1. (11)

Roughly spoken, the rows of C0 help with identification and given C0 the

rows of C1 generate the real restrictions.

The key of the canonical partition [C0;C1] of C is that it admits a simple

form of linear subspaces related with L0 and L.

Theorem. Let L1 be the orthogonal complement of L0 with respect to L.

Then

L1 = R(XH ′0C
′
1). (12)

Proof. With (11) and (6) we get

L0 = X(N (C)) = X(N (C0;C1)) = X(N (C0;C1J0)) =

= X(N (C0;C1H0X
′X + C1G0C0)) = X(N (C0);C1H0X

′X)) =

= {µ ∈ X(N (C0) : C1H0X
′µ = 0} =

= {µ ∈ L : C1H0X
′µ = 0} = X(N (C1H0X

′X))

or

L1 = R((C1H0X
′)′) = R(XH ′0C

′
1).2
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The dimensions of the linear spaces involved follow immediately from (3):

dimL0 = r(X;C)− r(C) = r(X;C0)− r(C)

dimL = r(X) = r(X;C0) − r(C0)

dimL1 = r(C)− r(C0).

 (13)

We use the results in the following sections for obtaining expressions for

LS-statistics related to estimation and testing.

4 Estimation

Let P, P0, P1 denote the orthogonal projection matrices belonging to L =

R(X), L0 = X(N (C)) and the orthogonal complement L1 of L0 with respect

to L, respectively. Clearly,

P = X(X ′X)−X ′. (14)

With (12) this implies

P1 = XH ′0C
′
1(C1H0X

′XH ′0C
′
1)
−C1H0X

′. (15)

From the definition of P0 we have

P0 = P − P1. (16)

From (14)−(16) explicit expressions for the LS-estimator Db0 for iden-

tifiable Dβ, β ∈ K0 are easily derived. With (8) we get Db0 = DH0z0 =

DH0P0y and so

Db0 = DM0y (17)

with
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M0 = H0P0. (18)

We can apply (17) for D = X and D = C. This gives Xb0 = P0y and

Cb0 = 0. So, if we define

b0 = M0y, (19)

then b0 is a LS-solution of β ∈ K0.

Under the assumption V (ε) = σ2In we get from (19) and (18)

Cov(b0) = σ2M0M
′
0 = σ2H0P0H

′
0. (20)

The error variance σ2 is estimated unbiasedly by

σ̂2 = |e0|
2/dimL⊥0 , (21)

where e0 = y − z0 = (In − P0)y stands for the LS-residual. Note that

dimL⊥0 = n− dimL0 and

|e0|
2 = |y|2 − |z0|

2 = y′y − y′P0y (22)

5 Testing

Assume that ε ∼ Nn(0, σ2In).

The usual F -statistic forH0 : Dβ = 0 against H1 : Dβ 6= 0 for identifiable

Dβ, β ∈ K0, is given by

F =
|z01|2/dimL01

|e0|2/dimL⊥0
∼ F dimL01

dimL⊥0
(|µ01|

2/σ2). (23)

Here z01 = P01y, µ01 = P01µ with P01 the orthogonal projection matrix of

L01, by definition the orthogonal complement of L00 = X(N (C;D)) with
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respect to L0 = X(N (C)). We derive expressions for P01, |z01|2 and dimL01

appearing in (23).

From (4) it follows that [C0;D1] withD1 = [C1;D] is a canonical partition

of [C;D]. So we can apply (12) to the orthogonal complement L11 = L01+L1

of L00 with respect to L:

L11 = R(XH ′0D
′
1). (24)

Let P11 be the orthogonal projection matrix with respect to L11. Then from

(14) we get

P11 = (XH ′0D
′
1)(D1H0X

′XH ′0D1)
−D1H0X

′. (25)

Since L01⊥L1 this implies

P01 = P11 − P1 (26)

|z01|
2 = y′P01y = y′P11y − y

′P1y. (27)

Furthermore, with (13) we get dimL11 = r(C;D)− r(C0) and so

dimL01 = r(C;D)− r(C) (28)

In Van Der Genugten (1977) a slight simplification for (26) is given.

6 A comparison

In Searle (1987), 5.6 two seperate cases are distinguished:

a) Restrictions involving estimable functions. This refers to the condition

R(C ′) ⊆ R(X ′). So in this case the part C0 of the canonical partition

of C is empty.
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b) Restrictions involving non-estimable functions. This refers to the con-

dition that L0 = L. So in this case the part C1 of the canonical partition

of C is empty.

In fact, section 4 treats the general case without imposing any rank conditions

on C.

The classic approach of Rao (1973), 4i.1 gives an alternative for (19). It

can be given a nice geometric interpretation as well in the following way.

The vector b0 ∈ K0 is LS-estimator iff the corresponding LS-residual

e0 = y −Xb0 is orthogonal to L0 = X(N (C)) or, equivalently,

X ′e0 ∈ N (C)⊥ = R(C ′). (29)

Note that (29) is equivalent to

Cb0 = 0 and X ′y −X ′Xb0 = −C ′d0 for some d0

or

[X ′X C ′;C 0](b0; d0) = (X ′y; 0) for some d0.

Hence,

b0 = M∗0 y

with M∗0 the (1,1)-part of [X ′X C ′;C 0]−. This gives the alternative

expression P0 = XM∗0X
′ for (16).

This approach lacks the nice interpretation (12) and gives no easy con-

dition for identifiability of Dβ, β ∈ K0 like (7). An alternative would be to

use in (29) the fact that R(C ′) = R(C ′C) and that Cb0 = 0 iff C ′Cb0 = 0,

leading to X ′X + C ′C C ′C

C ′C 0

 b0

d0

 =

 X ′y

0

 for some d0
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or

b0 = M∗∗0 y

with M∗∗0 the (1,1)-part of [X ′X +C ′C C ′C;C ′C 0]−. Then the expression

for X ′X + C ′C can also be used for the identifiability condition (7) (with

C0 = C). We simply take

[X;C]− = ([X;C]′[X;C])−[X;C]′ = (X ′X + C ′C)−[X ′ C ′]

leading to

J∗0 = [X;C]−[X;C] = (X ′X + C ′C)−(X ′X + C ′C).

So, in (7) J0 may be replaced by J∗0 .

For other alternatives for J0 using the fact that R(X ′) = R(X ′X) we

refer to Van Der Genugten (1997). See also Van Der Genugten (1993) for a

more elaborate discussion.
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