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Abstract

In this paper we study inheritance properties of average convexity in commu-

nication situations. We show that the underlying graph ensures that the graph-

restricted game originating from an average convex game is average convex if and

only if every subgraph associated with a component of the underlying graph is the

complete graph or a star graph. Furthermore, we study inheritance of (average)

convexity of the associated potential games.

Journal of Economic Literature classification numbers: C71.

1 Introduction

A communication situation is a cooperative game with communication restrictions. The

communication possibilities are modelled by means of an undirected (communication)

graph. Myerson (1977) was the first to study these communication situations. He

introduced the graph-restricted game and he provided an axiomatization of the Shapley

value of these games. This value is usually referred to as the Myerson value.

Posterior papers have analyzed properties of graph-restricted games. Owen (1986)

shows that superadditivity of a game implies superadditivity of the graph-restricted

game. Nouweland and Borm (1991) show that if the communication graph is cycle-

complete and the cooperative game convex, then the graph-restricted game is convex.1

aThe author thanks Henk Norde, Anne van den Nouweland, and Stef Tijs for useful suggestions and
comments.

bDepartment of Econometrics and CentER, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,
The Netherlands. E-mail: M.Slikker@kub.nl

1Nouweland and Borm (1991) refer to the graph-restricted game as the point game.
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Furthermore, they show that if the communication graph is not cycle-complete then there

exists a convex cooperative game such that the graph-restricted game is not convex. In

this paper we will study the class of graphs which ensure that if the underlying game is

average convex then the graph-restricted game is average convex.

Average convexity was introduced by Iñarra and Usategui (1993). They study the

necessary and sufficient conditions for the Shapley value of a game in characteristic

function form to lie in the core. As a by-product, they introduce the class of average

convex games and show that the Shapley value of an average convex game lies in the

core. Since a subgame of an average convex game is average convex as well, it holds that

the Shapley value of a subgame belongs to the core of this subgame. Sprumont (1990)

showed that the extended Shapley value of an average convex game is a population

monotonic allocation scheme (PMAS).2

Maŕın-Solano and Rafels (1996) study connections between convex and average convex

games. They show that the Shapley values for a game and all its subgames lie in the

corresponding cores if and only if the associated potential game (cf. Hart and Mas-Colell

(1989)) is average convex. Furthermore, they show that the extended Shapley value is a

population monotonic allocation scheme if and only if the associated potential game is

convex.

In this paper we show that inheritance of average convexity of a game by the graph-

restricted game is guaranteed if and only if every subgraph associated with a component

of the underlying graph is the complete graph or a star graph. Furthermore, we study

the relation between (average) convexity of an associated potential game and (average)

convexity of the potential game associated with the graph-restricted game. We find that

except the complete graphs, there is essentially no graph that ensures inheritance of

convexity of the potential game associated with a cooperative game by the potential game

associated with the graph-restricted game. Finally, we find with respect to potential

games that inheritance of average convexity is ensured for the same class of graphs

that ensure inheritance of average convexity of the underlying cooperative game by the

graph-restricted game.

The plan of this paper is as follows. Section 2 provides some notations and defini-

tions. Section 3 deals with the inheritance of average convexity of a game by the graph-

restricted game. Inheritance of convexity and average convexity of the corresponding

potential games is studied in section 4. In section 5 we conclude with a remark.

2Sprumont (1990) refers to an average convex game as a quasi-convex game.
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2 Notation

A cooperative game is a pair (N, v), where N = {1, . . . , n} denotes the set of players

and v : 2N → IR the characteristic function. If no confusion can arise we sometimes refer

to a game by its characteristic function. A cooperative game (N, v) is convex if for all

i ∈ N and all T1 ⊆ T2 ⊆ N with i ∈ T1 it holds that3

v(T1)− v(T1\{i}) ≤ v(T2)− v(T2\{i}).

So, a game is convex if the marginal contribution of a player to any coaltion is less than

his marginal contribution to a larger coalition.

Iñarra and Usategui (1993) introduced the class of average convex games. A game

(N, v) is average convex if for all T1 ⊆ T2 ⊆ N it holds that

∑
i∈T1

[v(T1)− v(T1\{i})] ≤
∑
i∈T1

[v(T2)− v(T2\{i})] .

So, a game is average convex if for any coalition the sum (average) of marginal con-

tributions for the players in this coalition is less than the sum (average) of marginal

contributions for the same players in a larger coalition. Note that convexity implies

average convexity. Maŕın-Solano and Rafels (1996) remark that average convex games

are superadditive.

A communication graph is a pair (N,L) where the set of vertices N represents the

set of players and the set of edges L represents the set of bilateral (communication)

links. Two players i and j are directly connected iff {i, j} ∈ L. Two players i and j

are connected (directly or indirectly) iff i = j or there exists a path between players i

and j. The notion of connectedness induces a partition of the player set into commu-

nication components, where two players are in the same communication component if

and only if they are connected. The set of communication components will be denoted

by N/L. The component C ∈ N/L containing player i ∈ N will be denoted by Ci(L).

Furthermore, denote the subgraph on the vertices in coalition S ⊆ N by (S, L(S)), where

L(S) = {{i, j} ∈ L | {i, j} ⊆ S}, and the partition of S into communication components

according to graph (S, L(S)) by S/L.

Myerson (1977) studied communication situations (N, v, L) where (N, v) is a cooper-

ative game and (N,L) a communication graph. He introduced the graph-restricted game

(N, vL), where

vL(S) =
∑

C∈S/L

v(C) , for all S ⊆ N.

3S ⊆ N denotes that S is a subset of N, S ⊂ N denotes that S is a strict subset of N .
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So, a coalition is split into communication components and the value of this coalition in

the graph-restricted game is then defined as the sum of the values of the communication

components in the original game. The Shapley value of the game (N, vL) is usually

referred to as the Myerson value of communication situation (N, v, L). The Myerson

value will be denoted by µ(N, v, L).

3 Average convexity

In this section we describe the class of communication graphs for which average convexity

of the original game implies average convexity of the graph-restricted game.

First consider the class of communication graphs for which convexity of the original

game is inherited by the graph-restricted game (see Nouweland and Borm (1991)).

Definition 3.1 A graph (N,L) is cycle-complete if the following holds: if

(x1, x2, . . . , xk, x1) is a cycle in the graph then {xi, xj} ∈ L for all i, j ∈ {1, . . . , k}

with i 6= j.

So, for every cycle the complete graph on the vertices forming this cycle is a subgraph

of (N,L). Note that all cycle-free graphs and the complete graph are cycle-complete.

The following theorem follows straightforward from example 3 of Nouweland and

Borm (1991). They construct for each communication graph that is not cycle-complete

a convex game such that the corresponding graph-restricted game is not convex. We will

show that these graph-restricted games are not even average convex.

Theorem 3.1 Let (N,L) be a communication graph that is not cycle-complete. Then

there exists a convex game (N, v) such that the graph-restricted game is not average

convex.

Proof: Since (N,L) is not cycle-complete, there is a cycle (x1, . . . , xk, x1) in (N,L) and

i, j ∈ {1, . . . , k} with i < j−1, {xi, xj} 6∈ L and {xm, xj} ∈ L for all m ∈ {i+1, . . . , j−1}.

Consider the convex game (N, v) where v(S) = |S| − 1 for all S ⊆ N , S 6= ∅. Define

T1 = {xi, xi+1, xj} and T2 := {x1, . . . , xk}. Then,

∑
l∈T1

[
vL(T1)− v

L(T1\{l})
]

= 1 + 1 + 2 > 1 + 1 + 1 =
∑
l∈T1

[
vL(T2)− v

L(T2\{l})
]
.

Hence, the game (N, vL) is not average convex. 2

Now, the following result follows directly from theorem 3.1.
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Corollary 3.1 Let (N,L) be a communication graph. Then the following two state-

ments are equivalent:

(i) The graph (N,L) is cycle-complete.

(ii) For all convex (N, v) the graph-restricted game (N, vL) is average convex.

Proof: Follows directly from theorem 3.1 above and theorem 1 of Nouweland and Borm

(1991), which states that if (N,L) is cycle-complete and (N, v) convex, then (N, vL) is

convex and hence average convex. 2

The corollary above states that cycle-completeness of the underlying graph is neces-

sary for convexity of the cooperative game to guarantee average convexity of the graph-

restricted game. Hence, cycle-completeness is a necessary condition on the underlying

graph to guarantee that average convexity of the cooperative game is inherited by the

graph-restricted game. The following example shows that this condition is not sufficient.

Example 3.1 Consider the following communication situation: N = {1, 2, 3, 4}, L =

{{1, 2}, {2, 3}, {3, 4}, {4, 2}} (see figure 1) and v such that

v(S) =



0 , |S| = 1 or S ∈ {{1, 2}, {1, 3}, {2, 4}}

6 , S ∈ {{1, 4}, {3, 4}, {2, 3}}

9 , |S| = 3

16 , S = N

.

1

2

3 4

Figure 1: The graph (N,L).

Note that the communication graph (N,L) is cycle-complete. It can be checked that

the game (N, v) is average convex. Note that (N, v) is not convex since

v({2, 3})− v({3}) = 6 > 3 = v({2, 3, 4})− v({3, 4}).
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The characteristic function of the graph-restricted game is given by

vL(S) =



0 , |S| = 1 or S ∈ {{1, 2}, {1, 3}, {1, 4}, {2, 4}}

6 , S ∈ {{3, 4}, {2, 3}, {1, 3, 4}}

9 , S ∈ {{1, 2, 3}, {1, 2, 4}, {2, 3, 4}}

16 , S = N

.

Let T1 = {1, 2, 4} and T2 = N then

∑
i∈T1

[
vL(T1)− v

L(T1\{i})
]

= 9 + 9 + 9 = 27

> 24 = 7 + 10 + 7 =
∑
i∈T1

[
vL(T2) − v

L(T2\{i})
]
.

Hence, (N, vL) is not average convex.

The example above shows that we can find cycle-complete graphs for which average

convexity of a game need not be inherited by the associated graph-restricted game. The

graph in the example above contains a cycle. Hence, we wonder whether cycle-freeness

might be sufficient to guarantee inheritance of average convexity. The following example

shows cycle-freeness is not sufficient either.

Example 3.2 Consider the following communication situation: N = {1, 2, 3, 4}, L =

{{1, 2}, {2, 3}, {3, 4}} (see figure 2) and v such that

v(S) =



0 , |S| = 1 or S ∈ {{1, 3}, {1, 4}, {2, 3}}

8 , S ∈ {{1, 2}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}}

14 , S ∈ {{1, 2, 4}, {2, 3, 4}}

19 , S = N

.

1 2 3 4

Figure 2: The graph (N,L).

It can be checked that (N, v) is average convex. However, since

v({1, 2, 3})− v({2, 3}) = 8 > 5 = v(N)− v({2, 3, 4})

the game (N, v) is not convex.
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The characteristic function of the graph-restricted game is given by

vL(S) =



0 , |S| = 1 or S ∈ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}

8 , S ∈ {{1, 2}, {3, 4}, {1, 2, 3}, {1, 3, 4}, {1, 2, 4}}

14 , S ∈ {{2, 3, 4}}

19 , S = N

.

With T1 = {2, 3, 4} and T2 = N , we find∑
i∈T1

[
vL(T1)− v

L(T1\{i})
]

= 6 + 14 + 14 = 34

> 33 = 11 + 11 + 11 =
∑
i∈T1

[
vL(T2)− v

L(T2\{i})
]
.

Hence, (N, vL) is not average convex.

The examples above indicate that the set of graphs that ensure that for an average

convex game the corresponding graph-restricted game is also average convex is restricted.

However, the following set of graphs ensure inheritance of average convexity.

Definition 3.2 A graph (N,L) is a star graph if there exists i ∈ N such that L =

{{i, j} | j ∈ N\{i}}.

In a star graph there is one central player who is directly connected with all other

players and there are no links in which this player is not involved. The following theorem

shows that for a star graph the average convexity of a game implies average convexity

of the corresponding graph-restricted game.

Theorem 3.2 Let (N, v, L) be a communication situation where the underlying game

(N, v) is average convex and the underlying communication graph (N,L) a star graph.

Then the graph-restricted game (N, vL) is also average convex.

Proof: Without loss of generality assume that player 1 is the central player in the star

graph. Let T1 ⊆ T2 ⊆ N . If 1 6∈ T1 it is obvious that T1/L = {{j} | j ∈ T1}, and for all

i ∈ T1, (T1\{i})/L = {{j} | j ∈ T1\{i}}. If additionally, 1 6∈ T2, we have

∑
i∈T1

[
vL(T1)− v

L(T1\{i})
]

=
∑
i∈T1

∑
j∈T1

v({j})−
∑

j∈T1\{i}

v({j})


=

∑
i∈T1

v({i})

=
∑
i∈T1

∑
j∈T2

v({j})−
∑

j∈T2\{i}

v({j})


=

∑
i∈T1

[
vL(T2)− v

L(T2\{i})
]
.
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If 1 ∈ T2, we have

∑
i∈T1

[
vL(T1)− v

L(T1\{i})
]

=
∑
i∈T1

∑
j∈T1

v({j})−
∑

j∈T1\{i}

v({j})


=

∑
i∈T1

v({i})

≤
∑
i∈T1

[v(T2)− v(T2\{i})]

=
∑
i∈T1

[
vL(T2)− vL(T2\{i})

]
,

where, the inequality follows from superadditivity of (N, v).4

Now assume that 1 ∈ T1. This implies that T1/L = {T1} and (T1\{i})/L = {T1\{i}}

for all i 6= 1, and (T1\{1})/L = {{j} | j ∈ T1\{1}}. Hence,∑
i∈T1

[
vL(T1)− vL(T1\{i})

]
=

∑
i∈T1

[
v(T1) − v

L(T1\{i})
]

=
∑

i∈T1\{1}

[v(T1)− v(T1\{i})] + v(T1)− v
L(T1\{1})

=
∑
i∈T1

[v(T1)− v(T1\{i})] + v(T1\{1})−
∑

j∈T1\{1}

v({j}). (1)

Analogously, we obtain∑
i∈T1

[
vL(T2)− v

L(T2\{i})
]

=
∑
i∈T1

[v(T2)− v(T2\{i})] + v(T2\{1})−
∑

j∈T2\{1}

v({j}) (2)

By average convexity of (N, v) we have∑
i∈T1

[v(T1)− v(T1\{i})] ≤
∑
i∈T1

[v(T2)− v(T2\{i})] . (3)

Furthermore,

v(T1\{1})−
∑

j∈T1\{1}

v({j}) =

v(T1\{1}) +
∑

j∈T2\T1

v({j})

− ∑
j∈T2\{1}

v({j})

≤ v(T2\{1})−
∑

j∈T2\{1}

v({j}), (4)

where the inequality follows from superadditivity of (N, v).

Combining equations (1), (2), (3), and (4) we have∑
i∈T1

[
vL(T1)− v

L(T1\{i})
]
≤
∑
i∈T1

[
vL(T2)− v

L(T2\{i})
]
.

4We remind the reader that average convexity implies superadditivity.
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We conclude that (N, vL) is average convex. 2

The main theorem of this section gives necessary and sufficient conditions on the

communication graph to ensure that the graph-restricted game corresponding to an

average convex game is average convex. Before we can prove this theorem we need some

lemmas. The following lemma states that if a connected graph is cycle-complete, not

cycle-free, and not complete, then we can find a subgraph which is similar to the graph

of example 3.1.

Lemma 3.1 Let (N,L) be a connected graph that is (i) cycle-complete, (ii) not com-

plete, and (iii) not cycle-free. Then there exist x1, x2, x3, x4 ∈ N such that

L({x1, x2, x3, x4}) =
{
{x1, x2}, {x2, x3}, {x3, x4}, {x4, x2}

}
.

Moreover, for such x1, x2, x3, x4 and for all (N, v) with v(S) = v(S ∩ {x1, x2, x3, x4}) for

all S ⊆ N it holds that vL(S) = vL(S ∩ {x1, x2, x3, x4}) for all S ⊆ N .

Proof: A set S ⊆ N is called a clique in (N,L) if {i, j} ∈ L for all {i, j} ⊆ S. A clique

S ⊆ N is called a maximal clique in (N,L) it there is no clique T with T ⊃ S.

Since (N,L) is not cycle-free it contains at least one cycle, and hence, |N | ≥ 3. By

cycle-completeness we then know that there is a clique containing at least three vertices.

Let T be a maximal clique in (N,L) containing at least three vertices. Since (N,L) is

not complete we have T ⊂ N . Because (N,L) is a connected graph there exist i ∈ T ,

j ∈ N\T with {i, j} ∈ L. T is a maximal clique, so there exists k ∈ T with {k, j} 6∈ L.

Cycle-completeness of (N,L) then implies that i must be the unique vertex in T directly

connected with j. Define x1 = j, x2 = i, and let x3, x4 ∈ T\{i} with x3 6= x4. Then

L({x1, x2, x3, x4}) =
{
{x1, x2}, {x2, x3}, {x3, x4}, {x4, x2}

}
.

Let (N, v) be a cooperative game with v(S) = v(S ∩ {x1, x2, x3, x4}) for all S ⊆ N

and let T ⊆ N . Then,

vL(T ) =
∑

C∈T/L

v(C) =
∑

C∈T/L

v(C ∩ {x1, x2, x3, x4}). (5)

Let xi, xj ∈ C ∈ T/L with {i, j} ⊆ {1, 2, 3, 4}. Then xi and xj are connect-

ed directly or {xi, xj} ∈ {{x1, x3}, {x1, x4}}. If {xi, xj} ∈ {{x1, x3}, {x1, x4}} then

{{xi, x2}, {x2, xj}} ⊆ L. Since {xi, xj} 6∈ L it follows by cycle-completeness that every

path between xi and xj is via x2. Since xi and xj both belong to component C this

implies that x2 ∈ C as well. We conclude that for all xi, xj ∈ C ∈ T/L there exists

D ∈ (T ∩ {x1, x2, x3, x4})/L with xi, xj ∈ D.
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Obviously, if xi, xj are connected via links in L(T ∩ {x1, x2, x3, x4}) then they are

connected in (T, L(T )). Hence {C∩{x1, x2, x3, x4} | C ∈ T/L} = (T∩{x1, x2, x3, x4})/L,

which implies

∑
C∈T/L

v(C ∩ {x1, x2, x3, x4}) =
∑

D∈(T∩{x1,x2,x3,x4})/L

v(D) = vL(T ∩ {x1, x2, x3, x4}). (6)

Combining equations (5) and (6) gives the desired result. 2

The following lemma shows that if a connected graph is cycle-free, but not a star-

graph, then it contains a subgraph similar to the graph in example 3.2.

Lemma 3.2 Let (N,L) be a connected graph that is (i) not a star graph and (ii) cycle-

free. Then there exist x1, x2, x3, x4 ∈ N such that

L({x1, x2, x3, x4}) =
{
{x1, x2}, {x2, x3}, {x3, x4}

}
.

Moreover, for such x1, x2, x3, x4 and for all (N, v) with v(S) = v(S ∩ {x1, x2, x3, x4}) for

all S ⊆ N it holds that vL(S) = vL(S ∩ {x1, x2, x3, x4}) for all S ⊆ N .

Proof: Since (N,L) is connected, cycle-free, and not a star graph it follows immediately

that |N | ≥ 4. Furthermore, since (N,L) is cycle-free we just have to show that there

exist two vertices for which the shortest path connecting them consists of three links.

Since (N,L) is connected and cycle-free (a tree) we have |L| = |N | − 1. If we denote

the degree of i by ρ(i) = |{j | {i, j} ∈ L}|, then we have
∑
i∈N ρ(i) = 2|N | − 2. Since

(N,L) is not a star graph but cycle-free we have for all i ∈ N that ρ(i) ≤ |N | − 2. Then

it readily follows that there exist i, j ∈ N , i 6= j, with ρ(i) ≥ 2 and ρ(j) ≥ 2.

Since (N,L) is a tree there exists a unique path between two players, which is conse-

quently the shortest path between them. The path between i and j consists of at least

one link. Since the degree of both i and j is at least 2, we can find a vertex k directly

connected to i and a vertex l directly connected to j both not on the (shortest) path

between i and j. Since (N,L) is cycle-free, the (shortest) path between l and k is via

i and j and hence, we found a pair of vertices with the shortest path between them

consisting of at least three links. Denote this path by (x1, . . . , xm). Then obviously,

since m ≥ 4, L({x1, x2, x3, x4}) =
{
{x1, x2}, {x2, x3}, {x3, x4}

}
.

Cycle-freeness implies that (x1, x2, x3, x4) is the unique path from player x1 to player

x4. Let T ⊆ N and xi, xj ∈ {x1, x2, x3, x4} ∩ T . Obviously, there exists C ∈ T/L

with xi, xj ∈ C if and only if there exists D ∈ (T ∩ {x1, x2, x3, x4})/L with xi, xj ∈ D.
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Hence, {C ∩ {x1, x2, x3, x4} | C ∈ T/L} = (T ∩ {x1, x2, x3, x4})/L. If (N, v) satisfies

v(S) = v(S ∩ {x1, x2, x3, x4}) for all S ⊆ N , then for all S ⊆ N

vL(T ) =
∑

C∈T/L

v(C) =
∑

C∈T/L

v(C ∩ {x1, x2, x3, x4})

=
∑

D∈(T∩{x1,x2,x3,x4})/L

v(D) = vL(T ∩ {x1, x2, x3, x4}).

This completes the proof. 2

The following theorem deals with average convexity inheritance in case the underlying

graph is connected.

Theorem 3.3 Let (N,L) be a communication graph with N the unique component.

Then the following two statements are equivalent:

(i) The communication graph (N,L) is a complete graph or a star graph.

(ii) For all average convex games (N, v) the graph-restricted game (N, vL) is average

convex.

Proof:

(i)⇒(ii) Let (N, v) be an average convex game. If (N,L) is complete then vL = v and

hence (N, vL) is average convex. If (N,L) is a star graph it follows from theorem 3.2

that (N, vL) is average convex.

(ii)⇒(i) Assume (ii) holds. Since every convex game is average convex, we have that for

all convex games (N, v) the graph-restricted game is average convex. Then by corollary

3.1 we know that (N,L) is cycle-complete. Now suppose that (N,L) is not complete and

not a star graph. We will show that then condition (ii) is violated. We will distinguish

between two cases, (N,L) is not cycle-free and (N,L) is cycle-free.

First suppose that (N,L) is not cycle-free. From lemma 3.1 it follows that there ex-

ists {x1, x2, x3, x4} ⊆ N with L({x1, x2, x3, x4}) = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x2}}.

Without loss of generality assume xi = i for all i ∈ {1, 2, 3, 4}. Now construct the game

(N,w) as follows: w(S) = v(S ∩ {1, 2, 3, 4}) for all S ⊆ N , where v is the characteristic

function of the game in example 3.1. From lemma 3.1 it follows for all S ⊆ N that

wL(S) = wL(S ∩ {1, 2, 3, 4}) = vL
1
(S ∩ {1, 2, 3, 4}), where L1 denotes the graph of ex-

ample 3.1. Using example 3.1 it is obvious that (N,w) is average convex but (N,wL) is

not.

Secondly suppose that (N,L) is cycle-free. From lemma 3.2 it follows that there exists

{x1, x2, x3, x4} ⊆ N with L({x1, x2, x3, x4}) = {{x1, x2}, {x2, x3}, {x3, x4}}. Without

loss of generality assume xi = i for all i ∈ {1, 2, 3, 4}. Now construct the game (N, z) as
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follows: z(S) = v(S ∩ {1, 2, 3, 4}) for all S ⊆ N , where v is the characteristic function

of the game in example 3.2. From lemma 3.2 it follows for all S ⊆ N that zL(S) =

zL(S ∩ {1, 2, 3, 4}) = vL
2
(S ∩ {1, 2, 3, 4}), where L2 denotes the graph of example 3.2.

Using example 3.2 it is obvious that (N, z) is average convex but (N, zL) is not. 2

We will extend theorem 3.3 to graphs with more than one component. To do so, we

need two more lemmas.

The following lemma deals with the component additivity of graph-restricted games.

It states that average convexity of a graph-restricted game is equivalent to average con-

vexity of all the subgames associated with the components of the graph. The charac-

teristic function vL restricted to the subcoalitions of a coalition C will be denoted by

(vL)|C .

Lemma 3.3 Let (N, v, L) be a communication situation. The graph-restricted game

(N, vL) is average convex if and only if for all C ∈ N/L the game (C, (vL)|C) is average

convex.

Proof: The only-if-part follows directly from the fact that for all C ∈ N/L and all

T ⊆ C we have vL(T ) = (vL)|C(T ).

It remains to prove the if-part. Assume that the game (C, (vL)|C) is average convex

for all for all C ∈ N/L. Let T1 ⊆ T2 ⊆ N . Then we have,∑
i∈T1

[
vL(T1) − v

L(T1\{i})
]

=
∑
i∈T1

∑
C∈N/L

[
vL(T1 ∩ C)− vL((T1\{i})∩ C)

]
=

∑
C∈N/L

∑
i∈T1

[
vL(T1 ∩ C)− vL((T1\{i})∩ C)

]
=

∑
C∈N/L

∑
i∈C∩T1

[
vL(C ∩ T1)− v

L((C ∩ T1)\{i})
]

≤
∑

C∈N/L

∑
i∈C∩T1

[
vL(C ∩ T2)− v

L((C ∩ T2)\{i})
]

=
∑
i∈T1

[
vL(T2)− vL(T2\{i})

]
.

The first equality follows from the additive definition of the graph-restricted game, which

implies that for all S ⊆ N , vL(S) =
∑
C∈N/L v

L(S ∩ C). The third equality follows

since vL(T1 ∩ C) − vL((T1\{i}) ∩ C) = 0 if i ∈ T1\C. The inequality follows from the

average convexity of the subgames (C, (vL)|C) and the notion that for all T ⊆ C we have

vL(T ) = (vL)|C(T ). The last equality follows similar to the first three equalities. 2

The following lemma gives a relation between average convexity inheritance for all

games with a fixed player set and average convexity inheritance for a subset of this player

set.
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Lemma 3.4 Let (N,L) be a communication graph that ensures that for every average

convex game (N, v) the graph-restricted game (N, vL) is average convex as well. Let

C ∈ N/L. If (C,w) is average convex then (C,wL(C)) is average convex.

Proof: Let (C,w) be an average convex game. Define the game (N, v) by v(S) :=

w(S ∩C) for all S ⊆ N . Hence, all players in N\C are zero players. Obviously, (N, v) is

average convex, which implies that (N, vL) is average convex. Since the subgame of an

average convex game is average convex and (vL)|C = wL(C) we conclude that (C,wL(C))

is average convex. 2

Using the lemmas above we can prove the main theorem of this section.

Theorem 3.4 Let (N,L) be a communication graph. Then the following two statements

are equivalent:

(i) For all C ∈ N/L it holds that (C,L(C)) is a complete graph or a star graph.

(ii) For all average convex games (N, v) the graph-restricted game (N, vL) is average

convex.

Proof: Suppose (i) holds. Let (N, v) be an average convex game. Then, since a subgame

of an average convex is average convex, it holds that for all C ∈ N/L, (C, v|C) is average

convex as well. Since (C,L(C)) is a complete graph or a star graph for all C ∈ N/L,

it follows by theorem 3.3 that for all C ∈ N/L, (C, (v|C)L(C)) is average convex. Since

(v|C)L(C) = (vL)|C it follows by lemma 3.3 that (N, vL) is average convex. So, (ii) holds.

Suppose (ii) holds. Let C ∈ N/L. By lemma 3.4 we have that for all average convex

(C,w) it holds that (C,wL(C)) is average convex as well. By theorem 3.3, this implies

that (C,L(C)) is a complete graph or a star graph and hence (i) holds.

This completes the proof. 2

4 Potential games

In this section we will study inheritance of (average) convexity of the potential game as-

sociated with a specific game by the potential game associated with the graph-restricted

game.

Potential games associated with cooperative games, were first introduced by Hart

and Mas-Colell (1989). They define for every game (N, v) an associated potential game

(N,Pv) defined by Pv =
∑
R⊆N

λR
|R|uR, where v =

∑
R⊆N λRuR is the unique linear de-

compostion of (N, v) into unanimity games.5 Note that a cooperative game completely

5uR(S) = 1 if R ⊆ S and uR(S) = 0 otherwise. See Shapley (1953).
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determines its associated potential game and vice versa. For convenience we will some-

times refer to an associated potential game instead of to a potential game associated

with some underlying cooperative game.

In Maŕın-Solano and Rafels (1996) it is shown that the associated potential game is

average convex if and only if the Shapley values of the original game and all related

subgames are in the corresponding cores. Furthermore, they showed that the extended

Shapley value (Φi(S, v|S))S⊆N, i∈S is a population monotonic allocation scheme (PMAS)

if and only if the associated potential game is convex.6

So, it is interesting to see whether (average) convexity of the potential game as-

sociated with a specific game is inherited by the potential game associated with the

graph-restricted game. First we will focus on convexity. It follows from Nouweland and

Borm (1991) that if (N,L) is cycle-complete and (N,Pv) convex, then (N, (Pv)L) is

convex. The following example shows that this does not imply that (N,P (vL)) is convex

as well.

Example 4.1 Consider the communication situation (N, v, L) with N = {1, 2, 3},

v = 2u{1,2} + 2u{1,3} + 2u{2,3}− 3uN ,

and L = {{1, 2}, {2, 3}}. Then we have

Pv = u{1,2} + u{1,3}+ u{2,3}− uN .

So, (N,Pv) is convex. Since (N,L) is cycle-complete (in fact the graph is cycle-free, or

even stronger, a star graph) we wonder whether (N,P (vL)) is also convex. Note that

we already know that (N, (Pv)L) is convex since (N,L) is cycle-complete and (N,Pv)

convex.

Some calculations result in

vL = 2u{1,2} + 2u{2,3}− uN .

Hence, we find that

P (vL) = u{1,2} + u{2,3}−
1

3
uN .

Since

P (vL)({1, 2}) − P (vL)({2}) = 1 >
2

3
= P (vL)({1, 2, 3}) − P (vL)({2, 3})

it follows that (N,P (vL)) is not convex.

6A vector (xi,S)S⊆N, i∈S is a PMAS of (N, v) if and only if for all S ⊆ N it holds that (i)
∑
i∈S xi,S =

v(S) and (ii) for all T with S ⊆ T ⊆ N and all i ∈ S, xi,S ≤ xi,T .
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This example can easily be extended to show that for all graphs with at least one non-

complete component, convexity of (N,Pv) need not be inherited by (N,P (vL)). So, the

example above shows that besides the complete graphs we cannot find connected graphs

that ensure inheritance of convexity of the associated potential game in a communication

situation. Since inheritance of average convexity of a cooperative game by the graph-

restricted game is ensured for a subclass of the class of graphs that ensure inheritance

of convexity, one could think that it will not be possible to find an interesting class of

graphs that ensures inheritance of average convexity of the associated potential game.

Surprisingly, inheritance of average convexity of the associated potential game is ensured

for exactly the same class of graphs for which inheritance of average convexity of the

underlying game is ensured.

We will use the following result of Maŕın-Solano and Rafels (1996).

Theorem 4.1 A cooperative game (N, v) is an average convex game if and only if its

unanimity coordinates (λR)R⊆N satisfy

∑
R⊆T, R∩Sc 6=∅

|S ∩R|λR ≥ 0 , for any S ⊆ T ⊆ N (7)

where Sc = N\S.

Using this we prove the following lemma.

Lemma 4.1 Let (N, v) be an average convex and zero-normalized cooperative game

with v =
∑
R⊆N λRuR. Then for i ∈ N :

∑
R⊆N : i∈R, |R|≥2

λR

|R|+ 1
≥ 0.

Proof: Define the cooperative game (N ∪ {d}, z) by adding a dummy player d 6∈ N to

the game (N, v), i.e. z(S) = v(S ∩N) for all S ⊆ N ∪ {d}. Average convexity of (N, v)

implies average convexity of (N ∪ {d}, z).Consider the star graph (N ∪ {d}, L) with d

the central player, L = {{j, d} | j ∈ N}. By theorem 3.3 it follows that (N ∪ {d}, zL) is

average convex.

Denote the unanimity coordinates of (N ∪ {d}, zL) by (µR)R⊆N∪{d}. The potential

game corresponding to an average convex game is average convex.7 Since the unanimity

7Average convexity implies that the Shapley values of the game and all its subgames belong to the

respective cores. This holds if and only if the associated potential game is average convex.
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coordinates of (N ∪ {d}, P (zL)) are (µR
|R|

)R⊆N∪{d} it follows by theorem 4.1 with S = {i}

and T = N ∪ {d} that ∑
R:i∈R, R⊆N∪{d},|R|≥2

µR

|R|
≥ 0.

Since µR = 0, if d 6∈ R or R ∈ {{j, d} | j ∈ N} (by zero-normalization of (N,w)) and

µR = λR\{d}, otherwise, we conclude
∑
R⊆N : i∈R, |R|≥2

λR
|R|+1

≥ 0. 2

Using the lemma above we can prove that if the underlying communication graph is

a star graph, then average convexity of the potential game associated with a cooperative

game implies average convexity of the potential game associated with the graph-restricted

game.

Theorem 4.2 Let (N, v, L) be a communication situation where the associated poten-

tial game (N,Pv) is average convex and the communication graph (N,L) a star graph.

Then the potential game (N,P (vL)) corresponding to the graph-restricted game (N, vL)

is average convex.

Proof: First recall that (N,Pw) is average convex if and only if Φ(w|T ) ∈ C(w|T) for

all T ⊆ N . Hence, it suffices to show Φ((vL)|T ) ∈ C((vL)|T ) for all T ⊆ N .

Without loss of generality assume player 1 is the central player in the star graph. Let

T ⊆ N . We will distinguish between two cases: (i) 1 6∈ T and (ii) 1 ∈ T .

(i) 1 6∈ T . For all S ⊆ T , vL(S) =
∑
i∈S v({i}) and Φi((vL)|T ) = v({i}) for all i ∈ T so,

Φ((vL)|T ) ∈ C((vL)|T ).

(ii) 1 ∈ T . We will show that
∑
i∈S Φi((vL)|T ) ≥ (vL)|T (S) for all S ⊆ T . Let S ⊆ T .

We will distinguish between two cases again: (ii-a) 1 6∈ S and (ii-b) 1 ∈ S.

(ii-a) 1 6∈ S. Hence, vL(S) =
∑
i∈S v({i}). Let i ∈ S. Consider R ⊆ T with i ∈ R. Since

Φ(v|R) ∈ C(v|R) it holds that Φi(v|R) ≥ v({i}) and
∑
j∈R\{i}Φj(v|R) ≥ v(R\{i}). Hence,

v(R) =
∑
j∈R

Φj(v|R) ≥ v(R\{i}) + v({i}). (8)

Φi((vL)|T ) is a convex combination of {vL(R) − vL(R\{i})}R⊆T : i∈R. Since

vL(R)− vL(R\{i}) =

 v(R)− v(R\{i}) , if 1 ∈ R

v({i})− v(∅) , if 1 6∈ R
,

it follows that Φi((vL)|T ) is a convex combination of {v(R) − v(R\{i})}R⊆T : i∈R. Using

(8) we conclude Φi((vL)|T ) ≥ v({i}). Hence,
∑
i∈S Φi((vL)|T ) ≥

∑
i∈S v({i}) = (vL)|T (S).
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(ii-b) 1 ∈ S. Since (N,Pv) is average convex, we have Φ(v|T ) ∈ C(T, v|T), implying∑
i∈S Φi(v|T ) ≥ v(S) = vL(S). Since the Shapley value is efficient, it suffices to show

that Φi((vL)|T ) ≤ Φi(v|T ) for all i ∈ T\S, since in that case∑
i∈S

Φi((v
L)|T ) = v(T )−

∑
i∈T \S

Φi((v
L)|T ) ≥ v(T )−

∑
i∈T \S

Φi(v|T ) =
∑
i∈S

Φi(v|T ).

So, it remains to show that Φi((vL)|T ) ≤ Φi(v|T ) for all i ∈ T\S. Denote the unanimity

coordinates of (N, v) by (λR)R⊆N and the unanimity coordinates of (N, vL) by (µR)R⊆N .

Then8

µR =


0 , if 1 6∈ R and |R| ≥ 2

λR , if |R| = 1 or |R| = 2 and 1 ∈ R

λR + λR\{1} , |R| ≥ 3 and 1 ∈ R

.

Let i ∈ T\S, so i 6= 1. Then

Φi(v|T )−Φi((v
L)|T )

=
∑

R⊆T : i∈R

λR

|R|
−

∑
R⊆T : i∈R

µR

|R|

=
∑

R⊆T : i∈R

λR

|R|
− λ{i} −

λ{i,1}

2
−

∑
R⊆T \{1}: i∈R, |R|≥2

λR + λR∪{1}

|R|+ 1

=
∑

R⊆T : i∈R

λR

|R|
− λ{i} −

∑
R⊆T : {i,1}⊆R

λR

|R|
−

∑
R⊆T \{1}: i∈R, |R|≥2

λR

|R|+ 1

=
∑

R⊆T \{1}: i∈R, |R|≥2

(
λR

|R|
−

λR

|R|+ 1

)

=
∑

R⊆T \{1}: i∈R, |R|≥2

λR
|R|(|R|+ 1)

. (9)

Theorem 4.1 implies that a game (N,w), where w =
∑
R⊆N νRuR is average con-

vex if and only if the the zero-normalization of this game (N,w∗), where w∗ =∑
R⊆N,|R|≥2 νRuR, is average convex, since the unanimity coordinates of one-person coali-

tions appear with coefficient 0 in condition (7). Consider the game (T\{1}, w) with

w =
∑
R⊆T \{1},|R|≥2

λR
|R|uR. This game is the zero-normalization of the average convex

potential game (T\{1}, P (v|T \{1})), so (T\{1}, w) is average convex as well. Applying

lemma 4.1 to (T\{1}, w) implies ∑
R⊆T \{1}: i∈R, |R|≥2

λR/|R|

|R| + 1
≥ 0.

Hence expression (9) is non-negative. This completes the proof. 2

8See Owen (1986) for relations between unanimity coordinates of (N, v) and unanimity coordinates

of (N, vL).
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Remark 4.1 Let (N, v) be a cooperative game with an average convex associated po-

tential game. Let S ⊆ N and T ⊆ N\S. Then

v(S ∪ T ) =
∑

i∈S∪T

Φi(v|S∪T ) =
∑
i∈S

Φi(v|S∪T ) +
∑
i∈T

Φi(v|S∪T ) ≥ v(S) + v(T ),

where the inequality follows since Φ(v|S∪T ) ∈ C(S ∪ T, v|S∪T). So, average convexity of

the potential game implies superadditivity of the underlying cooperative game.

In the remainder of this section we will show that the class of graphs that guarantee

inheritance of average convexity of the associated potential game coincides with the class

of graphs that guarantee inheritance of average convexity of the original game by the

graph-restricted game.

The following lemma shows that for every graph that is not cycle-complete we can

find a game with an average convex associated potential game, while the potential game

corresponding to the graph-restricted game is not average convex.

Lemma 4.2 Let (N,L) be a communication graph that is not cycle-complete. Then

there exists a game (N, v) with an average convex associated potential game such that

the potential game associated with the graph-restricted game (N, vL) is not average

convex.

Proof: Since (N,L) is not cycle-complete there exists a cycle (x1, . . . , xk, x1) and i, j ∈

{1, . . . , k}, i < j − 1, with {xi, xj} 6∈ L. Define v = u{xi,xj}. Hence, Pv = 1
2
u{xi,xj} is

average convex, Pv is even convex. Since {xi, xj} 6∈ L it holds that vL({xi, xj}) = 0.

The graph-restricted game (N, vL) is determined by a set W, where S ∈ W if and

only if there exists C ∈ S/L : {xi, xj} ⊆ C. Note that if T ⊇ S and S ∈ W then

T ∈ W. Since vL(S) = 1, if S ∈ W, and vL(S) = 0, otherwise, this implies that (N, vL)

is monotonic.

Let Π be the set of all orders of N. Then the Shapley value of a player is the average

over all orders in Π of the marginal contribution of this player to the set of players

who precede him. Note that by monotonicity every marginal contribution of a player is

non-negative and hence, every player receives a non-negative payoff. Since vL(N) = 1 it

follows that players xi and xj together receive at most one according to a specific order.

Since they both receive zero if these two players are first and second in an order, we find

Φxi(v
L) + Φxj(v

L) < 1.

By non-negativity of the payoffs and the efficiency of the Shapley value we have∑k
l=1 Φxl(v

L) ≤ 1, so
∑k
l=1 Φxl(v

L) + Φxi(v
L) + Φxj (v

L) < 2. This last expression implies

j∑
l=i

Φxl(v
L) < 1
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or
k∑
l=j

Φxl(v
L) +

i∑
l=1

Φxl(v
L) < 1.

Since vL({xi, xi+1, . . . , xj}) = vL({xj, . . . , xk, x1, . . . , xi}) = 1 we find that Φ(vL) 6∈

C(vL) and thus (N,P (vL)) is not average convex. 2

The following two examples are based on examples 3.1 and 3.2.

Example 4.2 Let (N,w) be the 4-person game with

w = 12u{1,4} + 12u{2,3} + 12u{3,4} + 9u{1,2,3} + 9u{1,2,4}− 9u{1,3,4}− 9u{2,3,4} − 8uN .

Then (N,Pw) coincides with the game of example 3.1. Furthermore, let L =

{{1, 2}, {2, 3}, {3, 4}, {4, 2}}. Hence (N,L) is the graph of example 3.1. Some straight-

forward calculations show that (N,P (wL)) is not average convex.

Example 4.3 Let (N,w) be the 4-person game with

w = 16u{1,2} + 16u{2,4} + 16u{3,4} − 6u{1,2,4}− 6u{2,3,4}− 4uN .

Then (N,Pw) coincides with the game of example 3.2. Furthermore, let L =

{{1, 2}, {2, 3}, {3, 4}}. So, (N,L) corresponds to the graph of example 3.2. Some

straightforward calculations show that (N,P (wL)) is not average convex.

Examples 4.2 and 4.3 will be used to show that every cycle-complete connected graph

that is not a star graph nor the complete graph does not guarantee inheritance of average

convexity of the potential game by the potential game corresponding to the graph-

restricted game. Finally, we need the following lemmas.

Lemma 4.3 Let (N, v, L) be a communication situation. The game (N,P (vL)) is aver-

age convex if and only if for all C ∈ N/L the game (C, (P (vL))|C) is average convex.

Proof: Denote the unanimity coordinates of (N, vL) by (µR)R⊆N . Then

(P (vL))(S) =
∑
R⊆S

µR
|R|

=
∑

C∈N/L

∑
R⊆C∩S

λR
|R|

=
∑

C∈N/L

(P (vL)|C)(C ∩ S)

for all S ⊆ N ,where the second equality holds since µR = 0 if R is not contained in a

component C ∈ N/L. Now, the proof goes along the same lines as the proof of lemma

3.3 2
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Lemma 4.4 Let (N,L) be a communication graph such that for every (N, v) with aver-

age convex (N,Pv) it holds that (N,P (vL)) is average convex. Let C ∈ N/L. If (C,w)

has an average convex associated potential game (C, Pw) then (C, P (wL(C))) is average

convex.

Proof: Along the same lines as the proof of lemma 3.4. 2

We can now prove the following theorem.

Theorem 4.3 Let (N,L) be a communication graph. Then the following two statements

are equivalent:

(i) For all C ∈ N/L it holds that (C,L(C)) is a complete graph or a star graph.

(ii) For all games (N, v) with an average convex associated potential game the graph-

restricted game (N, vL) has an average convex associated potential game.

Proof: The proof goes along the same lines as the proofs of theorems 3.3 and 3.4 using

lemmas 3.1, 3.2, 4.2, 4.3, 4.4, theorem 4.2, and examples 4.2 and 4.3. 2

5 Remark

Borm, Owen and Tijs (1992) define the link game (L, r) corresponding to a commu-

nication situation (N, v, L) where r(A) = vA(N) for all A ⊆ L.9 The position value

π(N, v, L) is then obtained using the Shapley value of the link game in the following

way:

πi(N, v, L) =
∑
l∈Li

1

2
Φl(L, r),

where Φ denotes the Shapley value and Li = {{i, j} ∈ L | j ∈ N}.

Nouweland and Borm (1991) find that the link game (L, r) corresponding to com-

munication situation (N, v, L) is convex if (N, v) is convex and (N,L) cycle free. The

following example shows that we cannot find a similar result for average convex games.

Example 5.1 Consider the communication situation (N, v, L) with N = {1, 2, 3}, v the

characteristic function with v({1, 2}) = v({2, 3}) = 2, v(N) = 3, v(S) = 0 otherwise,

and L = {{1, 2}, {2, 3}}. Denote a = {1, 2} and b = {2, 3}. Then we have r({a}) =

r({b}) = 2 and r({a, b}) = 3. So, (L, r) is not average convex, although (N, v) is average

convex and (N,L) is cycle-free. Note that in fact (N,L) is a star graph. Furthermore,

note that adding the link {1, 3} to the set L will also result in a link game that is not

average convex.

9In Borm, Owen and Tijs (1992) (L, r) is referred to as the arc game.
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The example above can easily be extended to show that there exists no graph (N,L)

with at least one component containing at least two links which guarantees that average

convexity of (N, v) is inherited by (L, r).
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