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Connection problems in mountains and monotonic
allocation schemes1

Stefano Moretti2, Henk Norde3,4, Kim Hang Pham Do3, and Stef
Tijs3

February 14, 2001

Abstract: Directed minimum cost spanning tree problems of a special kind
are studied, namely those which show up in considering the problem of con-
necting units (houses) in mountains with a purifier. For such problems an
easy method is described to obtain a minimum cost spanning tree. The
related cost sharing problem is tackled by considering the corresponding
cooperative cost game with the units as players and also the related con-
nection games, for each unit one. The cores of the connection games have
a simple structure and each core element can be extended to a population
monotonic allocation scheme (pmas) and also to a bi-monotonic allocation
scheme. These pmas-es for the connection games result in pmas-es for the
cost game.

1 Introduction

Consider a group of persons whose homes in the mountains are not yet
connected to a drainage where one has to empty their sewage. Obviously
sewage has to be collected downhill in a water purifier where it has to be
purified before introduction into the environment.

One solution for the houses is to get rid of the waste water immediately,
so each one wants to connect his house with a drain pipe to the water puri-
fier. However, it is possible but not necessary for everyone to be connected

1We thank Fioravante Patrone for valuable comments.
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3CentER and Department of Econometrics and Operations Research, Tilburg Univer-
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4Corresponding author. E-mail address: h.norde@kub.nl
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directly with the water purifier, being connected via others is sufficient.
Assuming that pipes are large enough one pipe can serve more than one
person.

On the other hand, employing pumps to send sewage from houses at
lower heights to houses at upper heights could be too expensive. Also prac-
tical reasons due to the inhomogeneous consistency of the waste water could
suggest not to employ pumps. Therefore, exploiting gravity, only connec-
tions from houses to strictly lower ones are allowed (connections between
houses at the same height are not allowed in order to avoid dangerous stag-
nation). A possible situation is sketched in figure 1. The network drawn
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Figure 1: a possible mountain situation

in the picture is a directed weighted graph, whose vertices are the houses,
whose root is the water purifier and whose edges are the drain pipes which
are allowed to be built. The numbers indicate the cost of building the cor-
responding pipe. Sometimes connection from higher houses to lower houses
is impossible (e.g. because of a natural reef between the two houses), as for
example the connection from house 3 to house 2 in figure 1. However, it is
always possible to connect a house directly with the root.

A mountain situation as described above leads to a connection problem of
a directed graph without cycles and with some other properties. In section 2
we consider such connection problems in detail and describe a simple method
to find a spanning tree with minimum costs. Section 3 tackles the cost
sharing problem by introducing the cooperative cost game to a mountain
situation. Interesting core elements of this cost game can be obtained by
decomposing the cost game into connection games. These connection games
have a zero- or one-dimensional core, for which the elements have a nice
economic interpretation. Section 4 deals with a subset of the core of the
cost game for which each element is extendable to a population monotonic
allocation scheme or shortly a pmas (cf. Sprumont (1990), Thomson (1995)).
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In section 5 it is shown that each core element of a connection game is
extendable to a bi-monotonic allocation scheme. Section 6 deals with cost
monotonic allocation rules (cf. Kent and Skorin-Kapov (1997)). The Bird
allocation rule (cf. Bird (1976)) plays here a special role.

2 Connection problems on directed graphs with-
out cycles

Consider a tuple given by < N, {0}, A, w >, where N = {1, 2, . . . , n},
< N ∪ {0}, A > is a rooted directed graph with N ∪ {0} as set of points
(vertices), A ⊂ N × (N ∪ {0}) as set of arcs and where 0 is the root. We
assume also that the following conditions M.1 and M.2 hold.

M.1 (Direct connection possibility) For each k ∈ N , (k, 0) ∈ A.

M.2 (No cycles) For each s ∈ IN and v1, v2, . . . , vs ∈ N ∪ {0} such that
(v1, v2) ∈ A, (v2, v3) ∈ A, . . ., (vs−1, vs) ∈ A we have (vs, v1) /∈ A.

Further, w : A→ IR+ is a non-negative function on the set of arcs. We call
such a tuple < N, {0}, A, w > with the properties M.1 and M.2 a mountain
situation because of the following two reasons.

(i) Each mountain problem as described in section 1 leads to a moun-
tain situation, where N corresponds to the set of agents (houses) in
the mountain, 0 to the purifier, A to the set of allowed connections
determined by the gravity condition

(2.1) (i, j) ∈ A⇒ h(i) > h(j)

(where h(i) is the height of house i) and by reefs etc. Further w(i, j)
describes the cost of connecting i with j via a pipe line. M.1 is de-
manded and M.2 follows from (2.1).

(ii) On the other hand, given a mountain situation < N, {0}, A, w > with
the properties M.1 and M.2, there exists an intrinsic height function
h0 : N ∪ {0} → IN ∪ {0} such that (i, j) ∈ A implies h0(i) > h0(j).
One defines h0 as follows: for i ∈ N ∪ {0}, h0(i) is the length of a
longest path from i to 0.

The interesting problems related to such a mountain situation are
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Q.1 How to find a 0-connecting subtree < N ∪{0}, T > of < N ∪{0}, A >,
i.e. a subtree connecting each i ∈ N with 0, with minimum cost?

Q.2 How to allocate the connection costs in such a tree among the agents?

In this section we will solve Q.1 and the next sections deal with Q.2.
To avoid too many technicalities we will assume in the following that

< N, {0}, A, w > does not only satisfy M.1 and M.2, but also M.3:

M.3 (Genericity condition) For each k ∈ N and all i, j ∈ N ∪ {0}, i 	= j:
(k, i) ∈ A, (k, j) ∈ A⇒ w(k, i) 	= w(k, j).

We invite the reader to adjust our results for situations where M.3 does not
hold. M.3 gives us the possibility to speak of the best connection b(k) of
k ∈ N . Here

b(k) = argmin
i∈N∪{0}:(k,i)∈A

w(k, i).

Given a mountain situation< N, {0}, A, w > (with property M.3!), the next
theorem shows that there is a unique optimal tree (with minimum costs),
connecting all players in N with the root 0. This tree corresponds to the
situation where each agent k ∈ N connects himself with his best connection
point b(k) ∈ N ∪ {0}.

Theorem 2.1 Let < N, {0}, A, w > be a mountain situation (satisfying,
beside M.1 and M.2, also M.3). Let T = {(k, b(k)) | k ∈ N}. Then

(i) < N ∪ {0}, T > is a 0-connecting subtree of < N ∪ {0}, A >.

(ii) The tree < N ∪ {0}, T > is the unique 0-connecting subtree with min-
imum cost.

Proof (i) Since T ⊂ A, clearly T does not contain cycles. That T is a
tree connecting each point i ∈ N via a path with 0 follows from the claim
that for each s ∈ {1, . . . , L}, where L = max{h0(i) | i ∈ N ∪ {0}}, the next
property P (s) holds:

P (s): for each k ∈ N with h0(k) = s there is a t(k) ∈ IN and
a sequence v0, v1, . . . , vt(k) such that v0 = k, vr+1 = b(vr) for
r = 0, 1, . . . , t(k)− 1, and vt(k) = 0.

We prove the claim by induction to s. P (1) holds because for each k ∈ N
with h0(k) = 1 we take t(k) = 1, v0 = k and v1 = 0. Suppose now that
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P (s) holds for each s < m with m ∈ {2, . . . , L}. Let k ∈ N be such that
h0(k) = m. Then h0(b(k)) < m. If h0(b(k)) = 0, then b(k) = 0 and we take
t(k) = 1, v0 = k, v1 = 0. Suppose h0(b(k)) 	= 0. Then, by the induction
hypothesis, there is a t(b(k)) and a sequence v0, v1, . . . , vt(b(k)) determining
a path in A from b(k) to 0 with vr+1 = b(vr) for r ∈ {0, 1, . . . , t(b(k))− 1}.
Then w0, w1, . . . , wt(k) is a desired path for k, where t(k) = t(b(k)) + 1,
w0 = k, wi = vi−1 for i ∈ {1, . . . , t(k)}. So P (m) holds.
(ii) Let < N ∪ {0}, G > be a 0-connecting tree unequal to < N ∪ {0}, T >.
Then for each point k ∈ N , there is a π(k) ∈ N∪{0} such that (k, π(k)) ∈ G.
Moreover, since G 	= T we can choose π : N → N ∪ {0} such that there is
a k∗ ∈ N with π(k∗) 	= b(k∗), implying w(k∗, π(k∗)) > w(k∗, b(k∗)) by M.3.
Then ∑

(i,j)∈G

w(i, j)≥
∑
k∈N

w(k, π(k))>
∑
k∈N

w(k, b(k)).

So < N ∪ {0}, G > is not optimal.

Example 2.1 Figure 2.1 corresponds to a mountain situation < N, {0}, A,
w >, where N = {1, 2, 3}, A = {(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2)} and
w(i, j) = 10i − 5j for each (i, j) ∈ A. Then the intrinsic height function
h0 is described by h0(i) = i for each i ∈ N . Since b(1) = 0, b(2) = 1,
b(3) = 2, the tree < N ∪ {0}, T > with T = {(1, 0), (2, 1), (3, 2)} is an
optimal 0-connecting tree with costs 10 + 15 + 20 = 45. The payoff vector
B(N, {0}, A, w) = (10, 15, 20) corresponding to the situation where each
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Figure 2: the mountain situation of example 2.1.

player i pays w(i, b(i)) will be called the Bird allocation (cf. Bird (1976)).
In the next section we will see that the Bird allocation is a special core
element of the cost game corresponding to the mountain situation.
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3 Mountain situations and cooperative cost games

Recall that a cooperative cost game is an ordered pair < N, c >, where
N = {1, 2, . . . , n} is the set of players and c : 2N → IR is the characteristic
function, which assigns to each coalition S ∈ 2N a real number c(S), and
where c(∅) = 0. The subgame of < N, c > with player set T ∈ 2N\{∅} is
the cooperative cost game < T, c >, where c : 2T → IR is the restriction of
c : 2N → IR. A core allocation of < N, c > is a vector x ∈ IRN satisfying

(3.1) efficiency:
∑n
i=1 xi = c(N),

(3.2) stability:
∑
i∈S xi ≤ c(S) for each S ∈ 2

N .

The core of < N, c > (cf. Gillies (1953)) is denoted by Core(N, c) and
consists of all core allocations.

Sprumont (1990) introduced population monotonic allocation schemes
(see also Thomson (1995)). A population monotonic allocation scheme
(pmas) for a cost game < N, c > is a scheme [aS,i]S∈2N\{∅},i∈S, where

(aS,i)i∈S ∈ Core(S, c) for each S ∈ 2
N\{∅} and where the followingmonotonic-

ity condition holds:

(3.3) aS,i ≥ aT,i for all S, T ∈ 2
N and i ∈ N with i ∈ S ⊂ T .

For further use we recall bounds for core elements:

(3.4) Mi(N, c) ≤ xi ≤ c({i}) for all x ∈ Core(N, c) and all i ∈ N .

Here Mi(N, c) = c(N)− c(N\{i}), the marginal contribution to the costs of
N by player i ∈ N . Note that the second inequality in (3.4) is one of the
stability inequalities in (3.2). For the first inequality in (3.4) note that

xi =
n∑
k=1

xk −
∑

k∈N\{i}

xk = c(N)−
∑

k∈N\{i}

xk ≥ c(N)− c(N\{i}) =Mi(N, c)

where the second equality follows from (3.1) and the inequality from (3.2)
withN\{i} in the role of S. In general the core and the pmas-set PMAS(N, c)
may be empty. For the games to be introduced for mountain situations these
sets will be non-empty as we will see.

Let < N, {0}, A, w > be a mountain situation. Then the corresponding
cooperative cost game < N, c > is given by c(∅) = 0 and for T ∈ 2N\{∅}
the cost c(T ) of coalition T is the cost of the optimal 0-connecting tree in
the mountain problem < T, {0}, A(T ), wT >, where A(T ) = {(i, j) ∈ A | i ∈
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T, j ∈ T ∪ {0}}, and wT : A(T )→ IR+ is the restriction of w : A → IR+ to
A(T ). Note that for each T ∈ 2N\{∅},

c(T ) =
∑
k∈T

w(k, bT (k)),

where
bT (k) = argmin

l∈T∪{0}:(k,l)∈A
w(k, l),

the cheapest connection point of k in T ∪ {0}. The introduced number
b(k) in section 2 is equal to bN(k). It is easy to describe one core element
of < N, c >. Take the Bird allocation (cf. Bird (1976)) B ∈ IRN with
Bk = w(k, bN(k)). Then B is a core element of < N, c >, since c(N) =∑
k∈N w(k, bN(k)) =

∑
k∈N Bk by theorem 2.1. Further

c(T ) =
∑
k∈T

w(k, bT (k)) ≥
∑
k∈T

w(k, bN(k)) =
∑
k∈T

Bk

for each T ∈ 2N\{∅}. This core element corresponds to the situation where
the player bN(k) to which k connects himself does not ask a compensation
for this service to k. But there are interesting other core allocations in
general, corresponding to situations where compensation plays a role. In
the description of these core elements the second cheapest connection point
of k in T ∪ {0},

sT (k) =




argmin
l∈(T∪{0})\{bT(k)}:(k,l)∈A

w(k, l) if bT (k) 	= 0

0 if bT (k) = 0,

plays a role.
Suppose player k wants to connect to bN(k) 	= 0 and player bN(k) wants

to ask a price pk ≥ 0 from k for connecting k. Which price can bN(k)
ask for his service to k such that k connects with bN(k) and does not go
e.g. to the second best connection point sN(k) for a connection? The price
should be an element of the closed interval [0, w(k, sN(k)) − w(k, bN(k))].
A price pk larger than w(k, sN(k)) − w(k, bN(k)) can lead to a connection
to sN (k) and if sN (k) 	= 0 even to a positive compensation for sN (k), e.g.
1
2(pk − w(k, sN(k)) + w(k, bN(k))) and then both players k and sN (k) are
better off. The allocations (x1, . . . , xn) corresponding to such competitive
prices in the given closed interval turn out to be just the core allocations of
the k-connection game < N, ck > to be introduced now.
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The k-connection game < N, ck > is the cooperative cost game with
ck(S) = 0 if k /∈ S and ck(S) = w(k, bS(k)) otherwise. Note that, if
bN(k) 	= 0, then MbN (k)(N, ck) = ck(N)− ck(N\{bN(k)}) = w(k, bN(k)) −
w(k, sN(k)).

Theorem 3.1 Let < N, c1 >, . . . , < N, cn > be the connection games cor-
responding to the mountain situation < N, {0}, A,w > and < N, c > the
corresponding cost game. Then

(i) c =
∑n
k=1 ck

(ii) Core(N, c) ⊃ P (N, c) where P (N, c) =
∑n
k=1 Core(N, ck)

(iii) for every T ∈ 2N\{∅} we have Core(T, ck) = {0} if k /∈ T ,

Core(T, ck) =

{w(k, bT(k))e
k − p(ebT (k) − ek) | 0≤ p ≤ w(k, sT (k))−w(k, bT (k))}

if k ∈ T, bT(k) 	= 0, and Core(T, ck) = {w(k, 0)ek} if k ∈ T, bT(k) = 0.
[Here ek ∈ IRT is the k-th standard basis vector with k-th coordinate 1
and the other coordinates 0.]

Proof (i) is a direct consequence of the definitions of c, c1, . . . , cn.
(ii) follows from (i) because Core(N, ·) is a superadditive correspondence.
(iii) Note that if k /∈ T then< T, ck > is the zero game and hence Core(T, ck)=
{0}. If k ∈ T and bT (k) 	= 0 then Mi(T, ck) = ck(i) = 0 if i ∈ T\{k, bT(k)}.
For x ∈ Core(T, ck) we have, by (3.4), xi = 0 for each i ∈ T\{k, bT (k)}. Fur-
ther, by (3.1), xk+xbT (k) = ck(T ) = w(k, bT(k)), and, by (3.4), w(k, bT (k))−
w(k, sT (k)) =MbT (k)(T, ck) ≤ xbT (k) ≤ 0. This implies that

Core(T, ck) ⊂
{w(k, bT(k))e

k − p(ebT (k) − ek) | 0≤ p ≤ w(k, sT (k))−w(k, bT (k))}.

For the reverse inclusion, note that for xp = w(k, bT(k))e
k − p(ebT (k) − ek)

with 0 ≤ p ≤ w(k, sT (k)) − w(k, bT (k)) we have xp(T ) =
∑
i∈T x

p
i =
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w(k, bT (k)) = ck(T ) and for S ⊂ T :

xp(S) = w(k, bT (k))
= ck(S) if {k, bT (k)} ⊂ S

xp(S) = 0
= ck(S) if {k, bT (k)} ∩ S = ∅

xp(S) = w(k, bT (k)) + p
≤ w(k, sT (k))
≤ ck(S) if k ∈ S, bT (k) /∈ S, and

xp(S) = −p
≤ 0
= ck(S) if k /∈ S, bT (k) ∈ S.

So xp ∈ Core(T, ck).
If k ∈ T and bT (k) = 0 the statement can be proved in a similar way.

The subset P (N, c) of Core(N, c) is the set of price supported core ele-
ments. In the next section we will show that elements x of P (N, c) are
pmas-extendable i.e. there exists a population monotonic allocation scheme
[aT,i]T∈2N\{∅},i∈T such that aN,i = xi for each i ∈ N .

Example 3.1 Consider again the mountain situation of example 2.1. The
cost game < N, c > corresponding to this situation and the k-connection
games are given in the next table:

S = (1) (2) (3) (1, 2) (1, 3) (2, 3) (1, 2, 3)

c(S) = 10 20 30 25 35 40 45
c1(S) = 10 0 0 10 10 0 10
c2(S) = 0 20 0 15 0 20 15
c3(S) = 0 0 30 0 25 20 20

Note that c = c1 + c2 + c3, Core(N, c1) = {(10, 0, 0)}, Core(N, c2) =
conv{(0, 15, 0), (−5, 20, 0)}, and Core(N, c3) = conv{(0, 0, 20), (0,−5, 25)}.

4 Population monotonic cost allocation schemes

In mountain situations the set of agents involved in cooperation can vary.
One can think of unoccupied houses, agents who want to stay alone, etc.
Therefore it is interesting to know how to solve for each population T ⊂ N
the optimization problem and to have available a cost distribution vector
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for each < T, c >. The optimization problems are simple. In problem
< T, {0}, A(T ), wT > each player i ∈ T connects to bT (i), the element in
T ∪{0} with the lowest connection cost. This leads to a cheapest connection
of all members of T to the root 0.

For the cost problems stable allocation schemes A = [aT,i]T∈2N\{∅},i∈T
are interesting, where ‘row’ (aT,i)i∈T ∈ Core(T, c). We are especially in-
terested in population monotonic allocation schemes (pmas), that is in sta-
ble allocation schemes with the monotonicity condition (3.3). If such a
pmas is used larger coalitions are more interesting than smaller coalitions
for everybody. The Bird allocation scheme A0 = [w(i, bT(i))]T∈2N\{∅},i∈T
is an example of a pmas. To find other pmas-es it is interesting to note
that

∑n
k=1 PMAS(N, ck) ⊂ PMAS(N, c), i.e. if Ak ∈ PMAS(N, ck) for each

k ∈ N , then
∑n
k=1 A

k ∈ PMAS(N, c). This motivates us to concentrate on
PMAS(N, ck).

If k /∈ T then < T, ck > is the zero game and hence Core(T, ck) = {0}.
If k ∈ T then it follows from theorem 3.1 (iii) that

Core(T, ck) = {x
α
T ∈ IR

T |α ∈ [0, 1]},

where

xαT = w(k, bT (k))e
k + α(w(k, bT(k))−w(k, sT (k)))(e

bT (k) − ek)

if bT (k) 	= 0, and xαT = w(k, 0)ek if bT (k) = 0. Note that the core has a
unique element if bT (k) = 0. The next theorem 4.1 shows that each core
element xαN of < N, ck > can be extended to a pmas, namely Aα. Here Aα =
[aαT,i]T∈2N\{∅},i∈T is the allocation scheme, where, for every T ∈ 2N\{∅},

(aαT,i)i∈T =




0 if k /∈ T ;
(xαN)i∈T if k ∈ T and bN(k) ∈ T ;
x0T if k ∈ T and bN(k) /∈ T.

This cost allocation scheme corresponds to the situation where k ∈ T pays
his connection cost w(k, bT (k)) and also as compensation α times the mar-
ginal contribution of bN (k) in T to bN (k) if bN(k) ∈ T , and no compensation
if bN(k) /∈ T . Note that ‘column’ k of A0 equals ‘column’ k of the Bird allo-
cation scheme. Note that in the rows T with k /∈ T we have a core element
since 0 is the unique core element of < T, ck >. Note moreover that in the
rows T with k ∈ T and bN(k) /∈ T we also have core elements. It follows
from the following lemma that also the rows with k ∈ T and bN(k) ∈ T
contain core elements. So Aα is a stable monotonic allocation scheme.
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Lemma 4.1 Let T ∈ 2N be such that k ∈ T and bN(k) ∈ T . Then
(aαT,i)i∈T = (xαN)i∈T ∈ Core(T, ck).

Proof The only thing to show is that −α(w(k, bN(k)) − w(k, sN(k))) ∈
[0, w(k, sT(k))− w(k, bT(k))]. Note that

0 ≤ −α(w(k, bN(k))− w(k, sN(k)))
= α(w(k, sN(k))−w(k, bN(k)))
≤ w(k, sN(k))−w(k, bN(k))
= w(k, sN(k))−w(k, bT (k))
≤ w(k, sT (k))−w(k, bT (k)).

At the last equality we used the fact that bN(k) = bT (k) and at the last
inequality that

w(k, sN(k)) = min{w(k, i) | i ∈ (N ∪ {0})\{bN(k)}, (k, i) ∈ A}
≤ min{w(k, i) | i ∈ (T ∪ {0})\{bT(k)}, (k, i) ∈ A}
= w(k, sT (k)).

Theorem 4.1 For each α ∈ [0, 1], Aα is a pmas for < N, ck >.

Proof We noted above already that Aα is a stable allocation scheme. So,
we only have to prove (3.3). Take i ∈ N , S, T ∈ 2N such that i ∈ S ⊂ T .
We consider 3 cases.
(i) Suppose that i ∈ S\{k, bN(k)}. Then aαS,i = 0 ≥ 0 = aαT,i since the
column (aU,i)U∈2N\{∅}:i∈U is a zero column.
(ii) Suppose that i = bN (k) ∈ S ⊂ T . Then a

α
S,bN (k)

= aαT,bN(k) = α(w(k, bN(k))−

w(k, sN(k))) if k ∈ S, aαS,bN (k) = a
α
T,bN(k)

= 0 if k /∈ T . If k /∈ S and k ∈ T

then aαS,bN (k) = 0 ≥ aαT,bN(k) = α(w(k, bN(k))−w(k, sN(k))).

(iii) Suppose that i = k ∈ S ⊂ T . Then aαS,k = a
α
T,k = (xαN )k if bN(k) ∈ S,

and aαS,k = w(k, bS(k)) ≥ w(k, bT (k)) = a
α
T,k if bN(k) /∈ T . If bN(k) /∈ S and

bN(k) ∈ T then aαS,k = w(k, bS(k)) ≥ w(k, sN(k)) ≥ (1 − α)w(k, bN(k)) +
αw(k, sN(k)) = (xαN )k = a

α
T,k.

Theorem 4.2 Each core element x ∈ P (N, c) can be extended to a pmas of
< N, c >.

Proof Since P (N, c) =
∑n
k=1 Core(N, ck) in view of theorem 3.1 one can

find α1, α2, . . . , αn ∈ [0, 1] such that x =
∑n
k=1 x

k,αk
N with xk,αkN ∈ Core(N, ck)

for every k ∈ {1, . . . , n}. Each xk,αkN has a pmas extension Ak,αk by theorem
4.1. Then A =

∑n
k=1 A

k,αk ∈ PMAS(N, c).
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Example 4.1 Reconsider the situation of example 3.1. Then (10, 0, 0) is the
unique core element of (N, c1), the core element (−2

1
2 , 17

1
2 , 0) in (N, c2) is the

midpoint of the core of (N, c2), and (0,−2
1
2 , 22

1
2) is the midpoint of the core

of (N, c3). So x = (712 , 15, 22
1
2) = (10, 0, 0)+(−212, 17

1
2, 0)+(0,−212, 22

1
2) ∈

P (N, c). Then A1,
1
2 +A2,

1
2 +A3,

1
2 is a pmas extending x. In matrix notation

A1,
1
2 + A2,

1
2 +A3,

1
2 =

1 2 3
N 10 0 0
(12) 10 0 ∗
(13) 10 ∗ 0
(23) ∗ 0 0
(1) 10 ∗ ∗
(2) ∗ 0 ∗
(3) ∗ ∗ 0

+

1 2 3

−212 1712 0
−212 1712 ∗
0 ∗ 0
∗ 20 0
0 ∗ ∗
∗ 20 ∗
∗ ∗ 0

+

1 2 3

0 −212 2212
0 0 ∗
0 ∗ 25
∗ −212 2212
0 ∗ ∗
∗ 0 ∗
∗ ∗ 30

=

1 2 3

712 15 2212
712 1712 ∗
10 ∗ 25
∗ 1712 2212
10 ∗ ∗
∗ 20 ∗
∗ ∗ 30

,

a pmas extension of (712 , 15, 22
1
2).

5 Bi-monotonic allocation schemes for connection
games

A connection game (N, ck) has the property that k is a veto player because
ck(S) = 0 for all S not containing k. For such games bi-monotonic allocation
schemes (bi-mas) are introduced in Brânzei et al. (2000) (see also Voorneveld
et al. (2000)). A bi-mas for such a game with a veto player is a stable
allocation scheme with the property that the veto player is weakly better
off and the other players weakly worse off in larger coalitions. Let us be
more specific. An allocation scheme B = [bT,i]T∈2N\{∅},i∈T is a bi-monotonic
allocation scheme for (N, ck) if

(5.1) each row (bT,i)i∈T ∈ Core(T, ck),

and for all S, T ∈ 2N with k ∈ S ⊂ T

(5.2) bT,k ≤ bS,k

(5.3) bT,i ≥ bS,i for all i ∈ S\{k}.

It turns out that for connection games bi-monotonic allocation schemes ex-
ist. Moreover, each core element of (N, ck) can be extended to a bi-mas,
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as theorem 5.1 shows. For α ∈ [0, 1], let Bα = [bαT,i]T∈2N\{∅},i∈T be the
allocation scheme with

(bαT,i)i∈T =

{
xαT if k ∈ T,
0 if k /∈ T.

Theorem 5.1 For every α ∈ [0, 1], Bα is a bi-mas extending xαN .

Proof (i) In view of theorem 3.1 row T in Bα is a core element for each
T ⊂ N and row N equals xαN . So (5.1) holds.
(ii) To prove (5.2) note that for S ⊂ T and k ∈ S we have

(5.4) w(k, bS(k)) ≥ w(k, bT (k)),

(5.5) w(k, sS(k)) ≥ w(k, sT (k)).

Using (5.4) and (5.5) we obtain (5.2) as follows:

bαT,k = (1− α)w(k, bT(k)) + αw(k, sT (k))
≤ (1− α)w(k, bS(k)) + αw(k, sS(k))
= bαS,k.

(iii) To prove (5.3) for S, T with i, k ∈ S ⊂ T , i 	= k, we consider 3 cases:
i 	= bS(k); i = bT (k); i = bS(k) and i 	= bT (k).
If i 	= bS(k), then i 	= bT (k), so bαS,i = b

α
T,i = 0.

If i = bT (k), then i = bS(k) and then

bαT,i = α(w(k, i)−w(k, sT (k)))
≥ α(w(k, i)−w(k, sS(k)))
= bαS,i,

where the inequality follows from (5.5).
If i = bS(k) and i 	= bT (k), then b

α
S,i = α(w(k, bS(k))− w(k, sS(k))) ≤ 0 =

bαT,i.

Example 5.1 Take the game of example 3.1. Then for k = 3 the bi-mas,
corresponding to α = 1

2 , is given by

1 2 3
(123) 0 −212 2212
(12) 0 0 ∗
(13) −212 ∗ 2712
(23) ∗ −5 25
(1) 0 ∗ ∗
(2) ∗ 0 ∗
(3) ∗ ∗ 30
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6 Cost monotonicity

The Bird rule, which assigns to each mountain situation the correspond-
ing Bird allocation, has an interesting monotonicity property, called cost
monotonicity (cf. Kent and Skorin-Kapov (1997)). Here a cost allocation
rule is called cost monotonic if the decrease (or increase) in the cost of
any arc does not increase (or decrease) the cost of any player. Suppose a
mountain situation < N, {0}, A, w > changes to < N, {0}, A, w′ >, where
w′(i, j) = w(i, j) for all (i, j) ∈ A\{(k, l)} and w′(k, l) > w(k, l). Suppose
that B and B′ are the corresponding Bird allocations. Then, obviously,
Bi = B

′
i for all i ∈ N\{k}, and Bk = w(k, b(k)) = B′k if b(k) 	= l, while

B′k > Bk if b(k) = l. So the Bird rule is cost monotonic. Allocation
rules, where compensations for connections play a role do not have this
cost monotonicity property. The reason is that if an arc increases so much
in costs that there is a change of best connection points, the new connection
point profits from the compensation and is better off.

Example 6.1 Consider again the mountain situation of example 2.1. Con-
sider the Bird rule B and the rule E, where compensations of half of the
marginal contribution take place. The Bird rule assigns to the mountain sit-
uation (10, 15, 20) and E assigns the allocation (712 , 15, 22

1
2). If we change

the mountain situation such that the cost of (3, 2) raises to 40 then we obtain
as allocations for B and E respectively (10, 15, 25) and (5, 1712, 27

1
2). In the

rule E player 1 is better off in the second situation because of compensations
from 2 players now.

7 Concluding remarks

We studied optimal connection problems and related cost sharing problems
for mountain situations with the properties M.1, M.2 and M.3. Interest-
ing results were that finding optimal connections was easy as well as giving
one core element, the Bird allocation. Insight in core elements with com-
pensations was obtained and also stable allocation schemes were given for
situations where the involved houses vary.

If we drop M.3, then it is still easy to find an optimal 0-connecting tree,
but in these situations there may be more. Again population monotonic
allocations exist. If we consider mountain situations with more purifiers,
then we get special minimum cost 0-connecting forest problems, where all
houses are connected with at least one purifier, with properties M.1’, M.2,
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and M.3. Here M.1’ tells that each house can be connected directly with at
least one purifier. Roughly speaking the obtained results can be extended
to the forest situation.

Finally, we want to note that for general directed connection problems we
cannot expect that a pmas exists. In fact in Norde et al. (2001) a 6-person
directed connection situation is given without a pmas. So we were lucky to
find a class of directed connection problems for which pmas-es exist. For
undirected connection problems pmas-es exist (cf. Kent and Skorin-Kapov
(1997) and Norde et al. (2001)).
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