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Value at risk for a mixture
of normal distributions:
The use of quasi-Bayesian
estimation techniques

Subu Venkataraman

Rapid globalization, innova-
tions in the design of deriva-
tive securities, and examples
of spectacular losses associat-
ed with derivatives over the

past decade have made firms recognize the
growing importance of risk management. This
increased focus on risk management has led to
the development of various methods and tools
to measure the risks firms face.

One popular risk-measurement tool is
value at risk (VaR), which is defined as the
minimum loss expected on a portfolio of assets
over a certain holding period at a given confi-
dence level (probability). For example, consider
a trader who is concerned about the risk, over
the next ten days, associated with holding a
specific portfolio of assets. A statement that, at
the 95 percent confidence level, the VaR of this
portfolio is $100,000 implies that 95 percent of
the time, losses over the 10-day holding period
should not exceed $100,000 (or losses should
exceed $100,000 only 5 percent of the time).

The use of value at risk techniques in risk
management has exploded over the last few
years. Financial institutions now routinely use
VaR techniques in managing their trading risk
and nonfinancial firms have started adopting the
technology for their risk-management purposes
as well. In addition, regulators are beginning to
design new regulations around it. Examples of
these regulations include the determination of
bank capital standards for market risk and the
reporting requirements for the risks associated
with derivatives used by corporations.

Proponents of VaR argue that the ability to
quantify risk exposure into a single number
represents the single most powerful advantage
of the technique.1 Despite its simplicity, how-
ever, the technique is only as good as the in-
puts into the VaR model.2 Many implementa-
tions of VaR assume that asset returns are
normally distributed. This assumption simpli-
fies the computation of VaR considerably.
However, it is inconsistent with the empirical
evidence of asset returns, which finds that asset
returns are fat tailed. This implies that extreme
events are much more likely to occur in prac-
tice than would be predicted based on the
assumption of normality. Take, for example,
the stock market crash of October 1987. The
assumption of normality would imply that such
an extreme market movement should occur
only once in approximately 5,900 years. As we
know, however, there have been worse stock
crashes than that of October 1987 even in this
century. This suggests that the normality as-
sumption can produce VaR numbers that are
inappropriate measures of the true risk faced
by the firm.

While alternative return distributions have
been proposed that better reflect the empirical
evidence, any replacement for the normality
assumption must confront the issue of the sim-
plicity of computations, which is one of the
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primary benefits of VaR. In this article, I exam-
ine one such alternative assumption that simul-
taneously allows for asset returns that are fat
tailed and for tractable estimations of VaR.
This distribution, based on a mixture of normal
densities, has also been proposed by Zangari
(1996). First, I relate the mixture of distribu-
tions approach to alternatives that have been
presented in the academic literature on the
stochastic processes governing asset returns.
Second, I use an estimation technique for the
parameters of the mixture of distributions that
is computationally simpler than the techniques
suggested by Zangari—the quasi-Bayesian
maximum likelihood estimation (QB-MLE)
approach (first suggested by Hamilton, 1991).3

Third, using simulated data, I show that the
QB-MLE combined with the mixture of nor-
mals assumption provides better measures of
value at risk for fat-tailed distributions (like the
Student’s t) than the traditional normality as-
sumption. I then establish that the technique
does not suffer from the problems associated
with the traditional maximum likelihood ap-
proach and that it is effective in recovering the
parameters from simulated data.

Finally, this methodology is applied to
foreign exchange data for eight currencies from
1978 to 1996. It is well known that returns in
the foreign exchange market show dramatic
violations of the assumption of normality by
exhibiting fat tails (Jorion, 1995). I compute
VaR estimates under both the assumption of
normality and the mixture of normals approach
for each of the eight currencies. I show that the
mixture of normals assumption combined with
QB-MLE outperforms the traditional normality
assumption. First, the traditional normality
assumption leads to a significantly larger
number of violations of VaR than the mixture
of normals. Moreover, the number of viola-
tions of VaR observed over the sample period
under the QB-MLE is consistent with the
stated goals of VaR.

To evaluate the performance of portfolio
VaRs (as in Hendricks, 1996), I examine how
information on the parameters governing indi-
vidual currencies can be aggregated in the con-
text of portfolios of these currencies. In con-
trast to the normality assumption, however, the
use of the mixture of normals complicates this
aggregation considerably. I propose a specific
algorithm for computing portfolio statistics

from the individual components that keeps the
analysis computationally simple. The effective-
ness of the approximations underlying this
algorithm is judged by examining the magni-
tude of violations from simulated portfolios of
currencies. Again, I compare the results under
the QB-MLE approach with the normality-
based results and the expected outcomes. I find
that, despite the simplifying aggregation assump-
tions, the QB-MLE technique again outper-
forms the normality-based approach and provides
VaR estimates consistent with what one would
expect. These results suggest that combining
the mixture of normals approach and the QB-
MLE estimation technique allows us to capture
fat-tailed distributions, while maintaining a
computationally tractable approach to VaR
computations.

VaR estimation under normality
Below, I review the concept of VaR under the
assumption of normality and how this assump-
tion simplifies the computation of VaR consid-
erably. Suppose that the return for any asset, i,
(i=1 to N) at a given point in time, t, is normal-
ly distributed, that is, R
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the returns can be written as the weighted aver-
age of the returns on the individual assets, that
is, R
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 and variance σ2

p
 = ω∑ωT. This represents

the first major advantage of assuming normali-
ty. If individual asset returns are normally
distributed, then the returns on any portfolio of
these assets has a normal distribution as well.
At a critical probability of α, the VaR is the
solution to
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where ƒ(.) is the normal density for portfolio
returns. Typical values of α range from 1 per-
cent to 10 percent. The second advantage of
the normality assumption is that the compu-
tation of VaRs at different critical values

VaRα
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(that is, solving equation 1) is relatively
straightforward.

However, these simplifying assumptions
have two drawbacks. First, many derivative
securities have payoffs that are nonlinear func-
tions of the underlying assets. The fact that the
asset satisfies the normality assumption does
not imply that the derivative has a normal
distribution. This raises questions about whether
this version of VaR analysis can be applied
universally. This has been the focus of much
concern (Beder, 1995) and several variants
have been proposed to alleviate the problem
(Fallon, 1996).4 Second, there is considerable
evidence in the academic literature to suggest
that security returns are non-normal, typically
exhibiting fat tails and volatility clustering
(Kim and Kon, 1994, and the references cited
therein).

Several alternatives to normality have
been proposed in the literature. For example,
in their comprehensive survey of alternative
definitions for the stochastic process for stock
returns, Kim and Kon classify the return pro-
cesses as time-dependent and time-independent
models of conditional heteroscedasticity (that
is, of changes in the volatility of asset returns).5

While the time-dependent models are more
successful as models of asset returns, they are
also considerably more complicated. Moreover,
when firms are attempting to forecast the risk
of losses over short holding periods (ranging
from one day to two weeks), simpler models
might be adequate. This seems to have been the
justification behind the RiskMetricsTM frame-
work developed by JP Morgan, as well as the
variant proposed by Zangari (1996), which
uses a simple version of the mixture of normals
approach.6 Clearly, the trade-off between hav-
ing a procedure that accurately reflects the risk
of the portfolio and one that is not too compu-
tationally intensive for the end user needs to
be considered. Below, I discuss this mixture of
distributions approach, relate it to the existing
academic findings, and discuss problems with
conventional estimation techniques. I then
describe the alternative approach that over-
comes these problems—the QB-MLE tech-
nique (Hamilton, 1991).

VaR estimation for a discrete
mixture of normals
Empirical evidence suggests that the assump-
tion that asset returns are normally distributed

is inappropriate and that returns are actually fat
tailed. One way to model such a distribution is
to assume that returns are generated from a
mixture of normal distributions. Specifically,
suppose the stochastic process for the returns
for security i is defined by

2) R
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takes on a value of 1 with probability p, being
equal to zero otherwise. The three random
variables {Rn

it
, Rß

it
, λ

it
} are assumed to be uncor-

related with each other and over time.7

Intuitively, the return on an asset at any
given time can be drawn from one of two nor-
mal distributions, with the outcome, λ, deter-
mining which distribution is chosen. For exam-
ple, most of the time (with probability p) the
returns might be from the first distribution, that
is, λ = 1. Occasionally (with probability 1 – p),
something unusual might happen (like the stock
market crash of October 1987) that significantly
increases volatility. This would be reflected
in equation 2 by returns generated from the
second (potentially higher variance) distribu-
tion, that is, λ = 0. The benefit of such a spec-
ification is that it allows for the possibility
that occasionally the return is generated from
a distribution with a higher variance, while
simultaneously maintaining the structure of
normal densities, conditional on the realiza-
tion of λ (a jump from one distribution to
another).8

The first issue of concern, then, is the
estimation of the parameters {p, µ

n
, σ

n
, σ

ß
}

for individual assets (since the realization of
λ is not typically observed by the research-
er). I discuss three alternative methodologies
for estimating {p,µ

n
,σ

n
,σ

ß
}.  First, I consider

traditional maximum likelihood. It turns out
that there are problems associated with this
approach in the context of mixtures. These
problems motivate the next approach, which
is the QB-MLE technique. I discuss alterna-
tive interpretations of the approach, and assess
its effectiveness estimating parameters in
simulated data. For completeness, I briefly
compare the QB-MLE approach to the Baye-
sian (Gibbs-sampling based) approach pro-
posed by Zangari (1996).
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σ2
β

Traditional maximum likelihood approach
This approach would require the research-

er to select the parameters that maximize the
following log-likelihood function (dropping
subscript i for convenience) for the mixture of
normal densities
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Unfortunately, as pointed out by Hamilton
(1991), a global maximum does not exist for
this function.9 Consequently, attempting to
use this approach to parameter estimation leads
to instability, local solutions, and nonconver-
gence problems.

Quasi-Bayesian maximum likelihood estimation
Hamilton (1991) points out that the esti-

mation problem would have been simplified
considerably if the researcher had observations
on the realization of λ available directly. More-
over, even if one had some observations, or
some priors, this estimate could be improved.
Second, while technical restrictions get around
the problem of the failure of the existence of a
global maximum, this still leaves the question
how to deal with these problems in the small
sample case. The method suggested by Hamil-
ton is to maximize the following variant to the
likelihood function:
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where �R(.) is the likelihood function defined
in equation 3 and {a

n
, b
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n
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(nonnegative) constants that reflect one’s prior
beliefs about the parameters that are being
estimated.10 Hamilton presents four alternative
interpretations for the functional form that he
has suggested and the manner in which the
constants reflect the researcher’s prior beliefs
about the parameters.11 Under three of these
four approaches, the estimator can be interpreted
as being based on Bayesian updating of the
researcher’s prior beliefs.

Zangari’s methodology is based on the
Bayesian updating of the densities for the rele-
vant parameters using the observed return
series. Since the computation of this posterior
distribution is difficult in practice, Zangari
suggests the use of the Gibbs sampler instead.12

This procedure is time consuming; consequent-
ly, Zangari proposes that the mixture-related
parameters be reestimated only once a month.
Moreover, as pointed out earlier, the QB-MLE
technique also has several Bayesian interpreta-
tions and the method is relatively straightfor-
ward to implement.

A direct comparison of the QB-MLE
with the Bayesian estimation technique is
beyond the scope of this article. Instead, the
analysis focuses on how well the mixture of
normals assumption combined with QB-MLE
does relative to the traditional normality
assumption.

Results based on simulated data
To examine both the effectiveness of the

estimation technique and the ability of the
mixture of normals to capture fat tails, I pro-
vide two sets of results. First, I examine how
well the QB-MLE performs in estimating the
parameters in simulated data generated from
a mixture of normals data-generating process.
Then, I compare the implications of assuming
normality with those of the mixture of normals
when the underlying density has a fat-tailed
distribution.

Returns generated from a mixture of normals
To examine the robustness of the QB-

MLE technique, I generate a variety of samples
and examine the ability of the algorithm to
estimate the parameters. Specifically, I consid-
er mixtures drawn from two normals with zero
means, variances σ

n
 = 2, σ

ß
 = 10, and p rang-

ing from 0.10 to 0.90. For each set of parame-
ter inputs, I generate 100 samples of size 1,000
and estimate the parameters for each subsample.
The results of this process, the mean and the
standard deviation of the parameter estimates,
are presented in table 1. The estimation rou-
tines are stable and do a good job in estimating
the underlying parameters. The next step is to
evaluate the effectiveness of this technique
when the return-generating process exhibits fat
tails (without necessarily being drawn from a
mixture of normal distributions).

σ 2
n

σ 2
n

σ2
β 2σ 2

n

2
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Returns generated from a
Student’s t distribution

A distribution that exhibits the typical
property of fat tails seen in asset returns is the
Student’s t distribution, which is characterized
by its degrees of freedom. Fat-tailed behavior
is more pronounced at lower degrees of free-
dom, with the distribution resembling a normal
density at higher degrees of freedom. I generate
simulated data from Student’s t distributions
with 2, 4, 10, and 100 degrees of freedom. For
each of these, I generate a sample of size 10,000.
The VaR for each simulation is computed in
two ways. The theoretical VaR is computed
based on the parameters used in the simulation.
The sample VaR is based on the appropriate
percentile from the sample itself.

Then, I estimate parameters under the
assumption of normality as well as the assump-
tion that the data have been generated from a
mixture of normals. Based on these parameters,
I compute the VaRs at different probability
levels for the normal and mixture of normals
approach and compare them to the theoretical
and sample VaRs.

Table 2 illustrates that the
mixture of normals has smaller
errors than the normal approach
at higher percentile levels. More-
over, when it has higher absolute
errors than the normal approach,
it errs toward conservative (high)
VaR estimates. This is in contrast to
the normal approach, which tends to
generate low VaR estimates. Look-
ing first at the columns labeled
error relative to theoretical, we
see that both the normal and the
mixture of normals approach do
a better job of measuring VaR at
higher degrees of freedom. This
is not a surprise, since the distri-
bution begins to more closely
resemble a normal density. More-
over, the normal approach under-
states (in absolute terms) the VaR
relative to the true value at very
high levels of confidence and
overstates it at lower levels. In
contrast, the mixture of normals
approach reflects the opposite
behavior, understating VaRs only
under very low levels of confi-
dence. While the percentage error

under the mixture can be quite high (as much as
36.10 percent), it is generally biased toward
being higher than the normals when a high level
VaR is required. This represents a desirable
characteristic of such a risk measure. Contrary
to conventional wisdom, assuming normality
when the distribution is fat tailed need not result
in VaRs that are consistently understated. Simi-
lar patterns are also observed if one compares
the computed VaRs to the sample VaR, which
is defined as the critical return, in the simulated
sample, such that µ percent of the returns lie
below this threshold.

Estimation results for foreign
exchange data

To assess the ability of the mixture of normals
and the QB-MLE technique to estimate parame-
ters and measure VaR more accurately than the
normal distribution, I examine how well it does
with a sample of daily foreign exchange returns
for eight currencies—the Canadian dollar, French
franc, German mark, Italian lira, Japanese yen,
Swiss franc, British pound, and Dutch guilder.
Returns are measured from January 1, 1978, to
August 26, 1996.13

FIGURE 1

Estimates from simulated data
TABLE 1

Probability (p) Estimates

 p̂ σσσσσ̂
n

 σσσσσ̂βββββ

0.10 0.10741 1.95615 10.02450

(0.03919)) (0.62693) (0.32751)

0.20 0.20857 1.99397 10.01270

(0.03249) (0.30232) (0.32215)

0.30 0.29628 1.98501 10.02834

(0.02919) (0.21278) (0.31111)

0.40 0.39521 1.98489 9.93684

(0.02837) (0.15897) (0.40044)

0.50 0.50197 1.99356 10.02182

(0.02800) (0.10294) (0.39484)

0.60 0.60376 2.00225 9.98221

(0.02981) (0.11112) (0.39651)

0.70 0.70108 1.99523 9.95835

(0.02322) (0.08838) (0.48623)

0.80 0.80018 1.99578 10.05155

(0.021877) (0.07755) (0.64645)

0.90 0.89690 1.99648 9.87647

(0.01380) (0.05238) (0.90500)

Notes: The maximum likelihood estimates are based on equation 4,

with a
i
 = b

i
 = 0.20, c

i
 = 0.10, m

i
 = 0, for i = n,β (as in Hamilton, 1991).

Averages for 100 samples (of size 1,000) drawn from a mixture of normals

distribution with σ
n
=2, σβ =10, and p varying from 0.10 to 0.90 across the runs.

Standard deviations of the estimates are in parentheses.
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 Summary statistics for the currency re-
turns are provided in table 3. The hypothesis
that these returns are drawn from a normal
distribution is strongly rejected.14

First, I evaluate the difference between
VaR measures based on the normal versus the
mixture of normals for each currency. I com-
pute VaRs for each currency on a daily basis

Simulation results comparing VaR estimates for Student’s t distributions
TABLE 2

Error Error Error Error

relative to relative to relative to relative to

t dist t dist Mixture of theoretical theoretical sample sample

Percentile (theoretical) (actual) Normal normals (normal) (mixture) (normal) (mixture)

Student’s t with 2 degrees of freedom

0.5 –9.9248 –9.6126 –6.7562 –11.8241 –31.93% 19.14% –29.72% 23.01%

1.0 –6.9646 –6.7726 –6.1018 –9.4787 –12.39% 36.10% –9.90% 39.96%

2.5 –4.3027 –4.3153 –5.1408 –5.6513 19.48% 31.34% 19.13% 30.96%

5.0 –2.9200 –2.9249 –4.3143 –2.7758 47.74% –4.94% 47.50% –5.10%

Student’s t with 4 degrees of freedom

0.5 –4.6041 –4.4062 –3.5883 –4.9642 –22.06% 7.82% –18.56% 12.66%

1.0 –3.7469 –3.5614 –3.2407 –4.0344 –13.51% 7.67% –9.00% 13.28%

2.5 –2.7764 –2.6265 –2.7303 –2.7487 –1.66% –1.00% 3.95% 4.65%

5.0 –2.1318 –2.0445 –2.2914 –2.0543 7.49% –3.64% 12.08% 0.48%

Student’s t with 10 degrees of freedom

0.5 –3.1693 –3.1248 –2.8916 –3.2123 –8.76% 1.36% –7.46% 2.80%

1.0 –2.7638 –2.7663 –2.6115 –2.7647 –5.51% 0.03% –5.60% –0.06%

2.5 –2.2281 –2.2517 –2.2002 –2.2112 –1.25% –0.76% –2.29% –1.80%

5.0 –1.8125 –1.8064 –1.8465 –1.8038 1.88% –0.48% 2.22% –0.14%

Student’s t with 100 degrees of freedom

0.5 –2.6259 –2.6388 –2.6105 –2.6368 –0.59% 0.42% –1.07% –0.08%

1.0 –2.3642 –2.3869 –2.3576 –2.3777 –0.28% 0.57% –1.23% –0.39%

2.5 –1.984 –2.0292 –1.9863 –1.9970 0.12% 0.66% –2.11% –1.59%

5.0 –1.6602 –1.6896 –1.6670 –1.6700 0.41% 0.59% –1.34% –1.16%

Notes: Errors are computed based on the (percent) difference between the VaR based on either the normal or the mixture

of normals assumption and a benchmark VaR.  This benchmark is computed using the known degrees of freedom

for the t distribution (theoretical VaR) as well as the appropriate percentile in the sample (sample VaR).

Sample statistics
Daily foreign exchange returns

TABLE 3

Canadian French German Italian Japanese Swiss British Dutch

Mean dollar franc mark lira yen franc pound guilder

(X 10^5) 3.37 –7.63 .807 10.2 –16.0 –7.03 –11.0 –3.99

Median 0 0 0 0 0 0 0 0.000123

Maximum 0.01728 0.058678 0.058746 0.066893 0.035571 0.063879 0.103479 0.045885

Minimum –0.01864 –0.04141 –0.03876 –0.03672 –0.05155 –0.03985 –0.09723 –0.03843

Std. deviation 0.002621 0.006929 0.006784 0.006542 0.006621 0.006884 0.008205 0.006643

Skewness 0.11387 0.035704 0.173338 0.531506 –0.39195 0.0313 0.097693 –0.08654

Kurtosis 6.62272 6.29632 7.666992 10.25995 6.501476 6.82522 15.23094 6.239683

Jarque-Bera

statistic 2,471.592 2,039.186 4,108.262 10,098.9 2,415.103 2,745.512 28,068.85 1,974.41

Probability 0 0 0 0 0 0 0 0

Number of

observations 4,502 4,502 4,502 4,502 4,502 4,502 4,502 4,502

Notes: The sample consists of daily returns from January 1, 1978, to August 26, 1996.  A normal distribution should have a skewness (S) of 0 and

kurtosis (K) of 3. The Jarque-Bera statistic is

T

6
[S

2
 + 

1

4
 (K–3)2], where T is the number of observations.  The test statistic has a χ 2 distribution with 2 degrees of freedom.
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and examine the frequency and the magnitude
of the violations that occur. These are com-
pared to what one would have expected if the
VaRs had been correctly computed.

I use a 250-day estimation window and
compute VaRs based on a one-day holding
period, at the 97.5 percent confidence level,
based on a recent survey of typical assumptions
underlying VaR models used by firms.15  The
survey found that the confidence interval used
by firms ranges from 95 percent to 99 percent,
the one-day holding period VaR is typically
computed, an observation period of one year
(250 trading days) is used, and the historical
data are equally weighted. The original sample
consists of 4,502 daily (log) return observa-
tions. The initial estimation window and the
need to compare VaRs with the next day’s
outcome reduce the VaR comparison to 4,251
observations. On any given day, t, I use the
return series {R

t–i
} i=250 to compute the parame-

ters and, therefore, VaR
t
. This is compared with

R
t
 and a violation is said to occur whenever

|R
t
| > |VAR

t
|.16 If the VaR is computed correct-

ly, the expected number of violations is 0.05
times the number of observations, implying

212.5 violations. I examine the implications of
both the assumption of normality and the mix-
ture of normals approach. Figure 1 shows the
time variation in the parameter estimates over
the sample period for the German mark.17

There is considerable time variation in the
volatility measures (panels A, C, and D) under
both approaches. Interestingly, there is also
considerable variation over time in the estimate
of p, the probability that returns are drawn from
one distribution in the mixture.

The results from comparing VaR estimates
for the eight currencies with the actual number
of violations are summarized in table 4. In a
sample size of 4,251, one would expect 212.5
violations. The number of violations that occur
under the assumption of normality is signifi-
cantly higher than one would expect and a
likelihood ratio test rejects the hypothesis that
the true underlying probability of a violation is
5 percent. In contrast, the number of violations
of the VaR estimated under the mixture of
normals is much lower than under the normal.
In addition, one cannot reject the hypothesis
that the model has a probability of violations
equal to 5 percent.

Violations of VaR under alternative methodologies
TABLE 4

Average size of Expected size of

Number of violations violations (percent) violations (percent)

Currency Normal Mixture Normal Mixture Normal Mixture

Canadian dollar 256 233 0.7113 0.7421 0.0428 0.0407

(8.801)** (2.011)

French franc 245 227 1.7722 1.7975 0.1021 0.0960

(4.981)* (1.012)

German mark 263 224 1.7481 1.7463 0.1082 0.0920

(11.757)** (0.639)

Italian lira 251 223 1.6692 1.7694 0.0986 0.0928

(6.938)** (0.533)

Japanese yen 251 215 1.4333 1.4052 0.0846 0.0711

(6.938)** (0.030)

Swiss franc 248 222 1.8809 1.8906 0.1097 0.0987

(5.921)* (0.436)

British pound 279 226 1.4411 1.4932 0.0946 0.0794

(19.995)** (0.879)

Dutch guilder 261 237 1.7545 1.7319 0.1077 0.0966

(10.873)** (2.859)

*Significant at the 5 percent level.

**Significant at the 1 percent level.

Notes: The log-likelihood test statistic (reported in parentheses) is LR = 2[1n[(α*)x(1 – α*)T – x] – 1n[αx(1 – α)T – x]], T = sample size (4,251), x =

number of violations, α = 0.05, and α* = x/T is the sample fraction of violations. The test statistic has an asymptotic χ2 distribution with 1 degree

of freedom. The critical values are 6.6349 and 3.841 at the 99 percent and 95 percent confidence levels, which translates into violations of 250

and 241, respectively.

i=1
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Table 4 also shows the average size of a
violation and the expected size of a violation
(defined as the average size times the frequency
of a violation). The average size of the viola-
tion is larger under the mixture than under the
pure normal assumption. While this might
seem surprising, recall (from the results of
table 2) that the rank ordering of the VaRs
under the normal versus mixture of normals
depends critically on the level of confidence
as well as the shape of the distribution, and
this could explain the results in table 4.

The expected size of the violations is
uniformly smaller under the mixture (the last
two columns of table 4). This suggests that for
individual assets, the mixture of normals pro-
vides superior VaR estimates than the conven-
tional normality assumption because both the
number and expected size of violations are
lower under the mixture of normals approach.
Next, I examine how well this process works in
the context of portfolios.

Portfolio results
As mentioned earlier, the two benefits of

the normality assumption are that it is relative-
ly simple to calculate the VaRs associated with
different confidence levels and to aggregate
individual parameters to develop the parame-
ters of a portfolio. The mixture of normals
shares the first property. But how would one
aggregate these parameters in the context of a
portfolio? I assume that the covariance across

assets is independent of λ
i
. This implies that

there are only two covariance matrices that
could be generating the returns. The off-diagonal
terms of these matrices are independent of λ
realizations, while the diagonals are either σ 2

i ,n

or σ 2
i,  ß

 depending on the realization of λ
i
. The

second issue is whether these realizations are
independent across assets. The assumption of
independence would be consistent with the
large literature on jump diffusion models,
which typically assumes that the jump risk is
fully diversifiable (Merton, 1976). However, it
is not immediately clear that this assumption is
reasonable in the context of the risk-manage-
ment activities of a bank, since the prospect of
bankruptcy could make the bank worry about
risk that might seem diversifiable in an asset
pricing context. Moreover, this assumption
complicates the mapping between confidence
levels and VaRs considerably. For example,
with eight assets, one would have to consider
28 = 256 possibilities for the realizations of λ

i
,

with the process quickly becoming intractable.
The assumption of perfect correlation is

not valid either, since one would then expect
identical values of p for all eight currencies.
Here, I adopt a computationally simpler alter-
native and test to see whether the approxima-
tion works. For a portfolio ω, I use as inputs
p

p
 = ∑

 
 

i
ω

i
 p

i 
and the two covariance matrices, ∑

n

and ∑
ß
, which are identical along the off-diag-

onals and contain the relevant variances on the
diagonals. These assumptions approximate the

distribution of portfolio returns
by a mixture of normals distri-
bution. To assess how good an
approximation this represents, I
form 30 random portfolios of
the eight currencies and evaluate
how well the portfolio VaR
estimates do relative to the prof-
its and losses on the portfolio.

In figure 2, I plot the num-
ber of violations (the simulation
is for 4,251 daily returns for 30
different portfolios) under the
mixture of normals approach
relative to the conventional nor-
mality assumption. The portfoli-
os have been sorted based on
their VaR estimates under the
assumption of normality. Again,
the fraction of violations under
the mix is much lower than under

190
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260

0 5 10 15 20 25 30

portfolio VaRs, number of violations

portfolio number

Normal

Mixture

FIGURE 2

Violations for foreign currencies portfolios

Source: Author’s calculations from data provided by the

Federal Reserve Bank of New York.
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NOTES

the normality assumption. Moreover, the critical
number of violations to reject the hypothesis
that the VaR is consistent with a 2.5 percent
confidence level is 250 (at the 1 percent level)
or 241 (at the 5 percent level). For the normal
density, the hypothesis can be rejected in 26 of
the 30 portfolios at the 5 percent level and in
13 of the portfolios at the 1 percent level. One
cannot reject the mixture-based VaRs in any of
the portfolios.

Table 5 indicates that, similar to the find-
ings for individual currencies, the magnitude of

VaR violations for portfolios of currencies
TABLE 5

Mixture of
Normal normals

Number of violations 249 217.4

(5.5460) (7.7442)

Proportions of violations 0.0586 0.0511

(0.013) (0.0018)

Magnitude of violations 1.0970 1.1293

(0.1766) (0.1845)

Average violations 0.0643 0.0580

(0.0109) (0.0109)

Notes: The statistics are based on 30 random portfolios of

currencies constructed over the entire sample period.

Standard deviations are in parentheses.

the violations under the mixture tends to
be larger than the magnitude under pure
normality. However, the expected size of
the violations is smaller under the mixture
of normals approach.18 Thus, in the context
of portfolios as well as individual assets,
the mixture of normals provides superior
VaR estimates relative to the conventional
normality assumptions, because the num-
ber of violations is lower and consistent
with expectations and the ex ante expected
size of violations is smaller.

Conclusion
The analysis in this article highlights

the critical nature of the existing assump-
tions underlying VaR computations and

the complications that result when the method-
ology is used for assets that exhibit fat-tailed
return distributions. The mixture of normals
approach combined with QB-MLE is shown to
perform significantly better, in the context of
both individual assets and portfolios. Further
research is needed on the number of compo-
nents to include in the mixture, more compli-
cated intertemporal dependencies, and the
development of computationally feasible
aggregation algorithms.

1In fact, the concept of VaR was motivated by this ability
to capture risk by one number. Dennis Weatherstone, the
chief executive officer of JP Morgan at the time (and also
the chairman of the influential Group of Thirty study on
derivatives), insisted that such a single measure of the
firm’s exposure be made available to him every morning,
resulting in the development of the underlying quantita-
tive techniques (Financial Engineering, Ltd., Risk, special
supplement, 1996).

2The inputs into the model include 1) assumptions (and
estimation techniques) for the stochastic processes that
determine the returns on individual assets; 2) a methodol-
ogy for mapping the return distributions for individual
assets into the aggregate return distribution for the portfo-
lio (and hence to profits and losses [P&L]); and 3) a
computationally simple process for evaluating VaR at
different probability levels for this aggregate P&L distri-
bution. All these steps obviously also depend on the
relevant holding period over which the analysis is con-
ducted. In this article, my primary focus is not on the
second aspect (refer to JP Morgan’s RiskMetrics™ docu-
ment on position mappings for greater detail). I focus
instead on the estimation of the underlying stochastic
processes and the difficult trade-off between the need for

an approach that is accurate and the need for one that is
easy to implement. I discuss some aggregation issues later
in this article.

3I also briefly review the problems associated with stan-
dard estimation techniques (such as maximum likelihood),
and the Bayesian approach using Gibbs sampling pro-
posed by JP Morgan.

4Most techniques try to approximate these nonlinearities
based on Taylor series expansion, leading to methods
based on the delta and gamma of security-type approach-
es, for example.

5Under the former, they consider ARMA, GARCH, and
EGARCH models (Bollerslev, Engle, and Nelson [1994])
and the Glosten, Jagannathan, and Runkle (1993) specifi-
cations for asset returns. Under the latter, they consider
Student’s t models, generalized mixtures of normals,
Poisson jump models, and stationary normal models.

6See Kon (1984) for a comparison of a general version of
the mixture of normals with the Student’s t density, for
example.
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