In search of arobust inflation forecast

Scott Brave and Jonas D. M. Fisher

The sound conduct of monetary policy is the bedrock
on which awell-functioning economy rests. In the
United States, the conduct of monetary policy is guided
by the goals set out in the 1977 amendment to the
Federal Reserve Act of 1913. According to this amend-
ment, the Federal Reserve System and the Federal Open
Market Committee (FOMC) should conduct mone-
tary policy to promote the goal s of “maximum” em-
ployment and output and to promote “stable” prices.

Of these goals, the primary focus, many econo-
mists believe, should be on achieving price stability.
A stable price level meansthat prices of goods and
services are undistorted by inflationary surprises. This
enhances the role of pricesin providing signalsto en-
sure the efficient all ocation of resources and the maxi-
mum possible sustainable level of employment. Many
also believe that a stable price level encourages sav-
ing and capital accumulation, because it prevents as-
set values from being eroded by unanticipated inflation
or debt being amplified by unanticipated deflation.
This should also contribute to the goals of attaining
maximum employment and output.

For these reasons, monetary policy is heavily in-
fluenced by factors thought to affect the rate of change
of prices, that is, inflation. Until recently, the dominant
concern had been arecurrence of past episodes of high
inflation that have been associated with bad macro-
economic outcomes. | n recent years, however, concern
has shifted to the possibility of deflation. In either case,
given the long lags over which policy actions can take
effect, it is often necessary for the FOMC to take ac-
tion before inflation starts to move in an undesired
direction. The only way to do thiswith some confidence
isto have effective ways of predicting the future course
of inflation. Hence, forecasting inflation is a crucial
ingredient in the formulation of monetary policy.
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This articleis concerned with the ability to fore-
cast inflation. Thisisarelevant issue since recent work
has cast doubt on the rdliability of traditional approaches
toforecasting inflation. Inflation forecasting is usual-
ly conducted with statistical models based on some
version of the Phillips curve, the statistical relationship
between inflation and overall aggregate economic ac-
tivity. Therecent literature suggests that this approach
has not been reliable. In particular, Atkeson and
Ohanian (2001) found that over the period 198599,
one-year-ahead forecasts of inflation based on the
Phillips curve do no better than a“naive’ forecast where
theforecast is set to the inflation rate over the prior year.

Some researchers have come to the defense of
traditional forecasting models, arguing that the fail-
ure pointed out by Atkeson and Ohanian (2001) is
special to the sample period they consider.! Still, itis
difficult to dismiss their finding out of hand. Asis
clear from the work of Stock and Watson (1999,
2002, 2003), the forecasting failure in the post-1985
period reflects a more fundamental problem. While
particular inflation forecasting models may do well
in some periods, more often than not these models
perform poorly at other times. It is not enough for a
forecasting model to do well in just the recent period,
becauseit is also important to guard against the pos-
sibility of structural change. Forecasters need to
know that their forecasting strategy is robust to
changes in the economic environment that are not
noticed until well after they have occurred.

Thisarticle, therefore, addresses the question:
Isit possible to build arobust inflation forecasting
framework that does well in the recent period as well
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as earlier periods? Wefind that the answer to our ques-
tionis“yes,” athough the gains compared with models
based only on past inflation are at times quite modest.
However, around periods in which inflation begins to
pick up, the best models we consider show clear ad-
vantages over inflation-only models.

We address our question by considering the out-
of -sampl e forecasting performance of alarge set of
models. We study forecast errors for the one-year and
two-year forecasting horizons and at the monthly and
quarterly frequencies. Our notion of robustnessisthat
the model consistently lies near the top of performance
lists of alternative models and is consistently more
successful than models based only on past inflation,
such as Atkeson and Ohanian’s naive model.

Our main findings are as follows. First, consistent
with previous studies, we show that different inflation
indicators do well at forecasting inflation at different
times. This makes the basic point that one should not
rely on the “indicator du jour” when assessing thein-
flation outlook and that forecasters should be looking
at many different indicators.

Second, we show that individua forecasting models
that combine datain different ways do not consistently
outperform the naive model (which turns out to be
superior to other inflation-only models) in terms of
mean-squared errors. For example, in some periods
the naive model is better; at other timesthereis at
least one model that does better than the naive model,
but it is never the same one. Thisistrue at both the
one-year and the two-year horizon and with monthly
and quarterly data. These findings are consistent with
those reported by Fisher, Liu, and Zhou (2002).

Third, we show that certain kinds of models based
on weighted averages of forecasts from individual
models consistently outperform the naive model and
other models based only on past inflation. Thisistrue
for both monthly and quarterly data and at both fore-
cast horizons. At the one-year horizon, the best model
involves weights computed using the within-sample
forecasting performance of the individual models. At
the two-year horizon, the best model uses asimple
average of theindividual models. For both forecasting
horizons, the best versions of these models use aroll-
ing window of datafor the forecast, and these models
aretypically superior to the individual models for all
sub-samples considered. These findings lead usto
conclude that the most robust forecasts combine in-
formation from several different forecasting models,
each of which incorporates the information in the
availableinflationindicatorsin different ways.

Another finding is that data available at the quar-
terly frequency that are not available at the monthly
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frequency appear to add little additional information
to our forecasts. Thismight seem surprising, given that
existing theoretical models suggest that data on real
unit labor costs and productivity should be useful for
predicting inflation, and these data are only available
at the quarterly frequency. Still, we find that the addi-
tional data do not improve our forecasts very much,
suggesting that most of the information about future
inflation in the quarterly datais already incorporated
in the monthly series we consider.

Below, we describe the different models we con-
sider. Then, we discuss the methodol ogy for assess-
ing the forecasting performance of these models and
present our findings.

In order to leave no stone unturned in our quest
for arobust framework for forecasting inflation, we
consider alarge number of models. These modelsin-
volve different ways of incorporating the vast amount
of dataavailableto theinflation forecaster. In principle,
almost all the available macroeconomic data contain
some information about future inflation. The challenge
isto find away to incorporate thisinformation into a
forecasting model. There are many ways to do this.
One way would be to summarize the information use-
ful for forecasting inflation beforeit is put into amodel.
Another approach would be to summarize the relevant
information after it has been included in individual
models. We employ each of these methods and also
combine aspects of both. Finally, we combine the
forecasts from several different types of models, each
of which involves a different approach to forecasting.
In the sub-sections that follow, we describe examples
of each of these approaches. Many of these examples
are motivated by the work of Stock and Watson (1999,
2002, 2003). For convenience we focus on the monthly
frequency case. It should be clear how to extend the
models to the quarterly frequency case. Table 1 sum-
marizes the models underlying our analysis.

The basic regression equation
All the models we consider have as their founda-
tion the basic regression equation:

K
) w2 -m’=a+p(L)(m -m )+ Zei (L)X, +€,.,,
J=12, 24 =

This equation relates changesin the 12-month
inflation rate, defined as the 12-month change in the
natural logarithm of the price index p,
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Model

: 12 12 _
Naive T, T =¢,,
t+J

Natural rate

Estimation equation

an - n:tlz =0+ B(L)(‘II, - nt—l) + el(L)Xlt +€4y

an - n:tlz =0+ B(L)(‘II, - nt—l) + el(L)Xlt +&uy

Output gap
Activity ﬂ%fJ - niz = o+ BL)m, -1, ) +0, (L)X, +e,,

) 3
Indicator nifj - Tc:tlz =0+ B(L)(Tct —Teq)+ 21:1 0,(L)x; +¢,,
Combination T, =T = 0+ BT, —m ) + 0, (L)X, +E,,
Diffusion M, —m = o+ B)(m, -, )

K
+20,(0)X, +€,,K=12,..,6
=1

Indicators used

None

Autoregression 2, -my =a+pL)(m, —n, ) +E,, None

Filtered unemployment rate

Filtered real GDP
Index based on indicators
listed in appendix

Change in fed funds rate,
unemployment rate, indicators
listed in appendix

Indicators listed in appendix

Six indexes based on
indicators listed in appendix

Notes: See the text for a description of the notation and terminology. NA denotes not applicable; GDP denotes gross domestic product.

to past values of the one-month inflation rate, 7,

n, = Inp — Inpt_l,
and past values of other variables deemed useful for
forecasting inflation, x,,i =1, 2, ..., K. Inequation 1,
a.isaconstant and B(L) and 6,(L),1=1,2, ..., K,
specify the number of lagsin inflation and other
variablesincluded in the equation. The number of other
variablesincluded is given by K, which is greater than
or equal to zero.2 We estimate equation 1 by ordinary
least squares and use a standard lag selection criteriato
choose the number of lags of inflation and other vari-
ables.® We allow for the possibility that lags could
vary from one month to a year.

For given estimates of the coefficientsin equation 1
at date T,0,;,B; (L), and6,, (L), the date T forecast
of 12-month inflation J periods ahead using the basic
regression equation is*

~ KA
2) @, =n’+0, +B;(L)(m, -7, ) +Z(§)”(L)>§T.
J=12, 24. "
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Models based only on inflation

We consider two models based only on inflation.
Thefirst isthe “naive” model described by Atkeson
and Ohanian (2001). The naive model can be viewed
asaspecial case of equation 1, where o, = 3(L) =
K =0. That is, the naive model equates the date T
forecast of inflation over the next 12 months, 7%,
with its value over the most recent 12-month period,

~l2 12
3 M, =Tr.

Similar to the 12-month forecast, the naive model
equates the date T forecast of 12-month inflation 24
monthsinto the future, 722, ,, with itsmost recent value:

t+24
~12 12
4) 7.':t+24_7.':t'

The other model based only on inflation is called
the autoregression model. This model postulates that
changes in 12-month inflation only depend on recent
changesin one-month inflation, that is, it setsK =0
in equation 1.



Single equation modelswith inflation indicators

We consider three modelsthat involve implement-
ing equation 1 with K = 1. For the natural rate model,
x,, is set equal to the difference between a measure of
the actual unemployment rate and an estimate of the
“natural rate.”® The output-gap model, issimilar. In
particular, x, is set equal to the difference between a
measure of aggregate output and an estimate of “po-
tential” output, where the latter is estimated using the
same approach as with the natural rate.

For the activity model, x,, is the Chicago Fed
National Activity Index (CFNALI). Thisindex isa
weighted average of 85 monthly indicators of real eco-
nomic activity. The CFNAI provides asingle, sum-
mary measure of acommon factor in these national
economic data. As such, historical movementsin the
CFNAI closely track periods of economic expansion
and contraction.®

Multiple equation models with inflation indicators

We also consider models that combine forecasts
from applying versions of equation 1 with different
indicator variables. The diffusion model can be viewed
as ageneralization of the activity model. We use a
small number of indexes that explain the movements
in 145 macroeconomic time series, including data mea-
suring production, labor market status, the strength of
the household sector, inventories, sales, orders, finan-
cial markets, money supply, and price data. The proce-
dure that obtainsthe indexes processestheinformation in
the 145 series, so that each index is aweighted aver-
age of the seriesand each index is statistically inde-
pendent of the others. We consider six indexes computed
inthisway, d,, d,, ..., d,. These are listed in de-
scending order in terms of the amount of information
embedded in them.” The diffusion model involves
first calculating an inflation forecast based upon in-
cluding x,, equal to the index with the most informa-
tion, d,.. We repeat this exercise five times, successively
including one more index in descending order of im-
portance. For instance, the third forecast created in-
cludes the three most important indexes, d,, d,,, and
d,, asx,, X,, and x,.. The forecast from the diffusion
model isthe median of these six forecasts.?

Consider alist of forecasts of 12-month inflation
J periods ahead at date T. Index these forecasts by n
and denote them f__ (n). The combination model is
the median of these forecasts,

5 2, =median{f,,,(n):ne S},
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where the set of forecasts, S isderived from the same
145 variables used to compute the diffusion indexes.
In particular, each forecast f,, (n) isbased on equa-
tion 1 with K =1 and x,, set equal to one of the 145
variables used in the diffusion model.

The indicator model is based on asmaller list of
variables grouped into six categories. economic ac-
tivity, slackness measures, housing and building ac-
tivity, industrial prices, financia markets, and, for the
quarterly case only, productivity and marginal cost.
Within each group, we compute aforecast using equa-
tion Lwith K =3, x,, set equal to the changein the
federal fundsinterest rate, x,, set equal to the unem-
ployment rate, and x,, to one of the variablesin the group
of indicators. We average the forecasts within each
group. Then the indicator model forecast is based on
equation 5 with f_ (n) corresponding to one of the
average forecasts from the five categories and S cor-
responding to the set of five average forecasts.

The combination and indicator models are useful
to consider since they represent two alternatives to
index-based methods for summarizing theinformation
in many variables. The combination model is directly
comparable to the diffusion model in that it involves
the same set of variables. Therefore, it is useful to as-
sess which method is superior for incorporating the
information in alarge number of variables. We work
with the indicator model for two reasons. First, expe-
rience has shown it to be arelatively reliable approach
to forecasting. Second, since it involvesasmall list
of indicators, it represents acompromise between models
that put alot of weight on asingleindicator, such as
the natural rate and output gap models, and models
that take virtually no stand on which indicators are
useful, such as the diffusion and combination models.

Meta models

The preceding discussion introduced six models
in addition to the inflation-only naive and autoregres-
sion models. To summarize, these models are the nat-
ural rate, output gap, activity, diffusion, combination,
and indicator models. As we show below, none of these
models consistently outperformsthe inflation-only
models over the various sub-samples we consider.
However, for most of the sub-samples, at least one of
the models does outperform the inflation-only models.
This raises the question of whether it is possible to
combine the information in these individual models
to arrive at a superior forecast. The final group of
models we study are designed to do just this. We call
them meta models.®
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Consider alist of forecasts of 12-month inflation
J periods ahead at date T generated by the models
listed above. Index these forecasts by n and denote

them f_, (n). The forecast of agiven metamodel is

6) ﬁ;f” = Z W, r frs(n),
rEM

where M isthe set of models from which the meta
model is constructed and w,_ . isthe weight attached
to model n at date T. Equation 6 says that the forecast
is set equal to aweighted average of the forecasts of
the models comprising the meta model.

The meta models we consider differ according to
the set of models from which the forecast is constructed
and the manner in which the weights are computed.
In the equally weighted models, the weights are all
set equal to the inverse of the number of models com-
prising the model. That is, these forecasts are just the
average over the forecasts of the individual models.
The optimally weighted meta models have weights
computed for each forecast date. These weights are
computed as follows. At each forecast date, thereis
aprior history of forecasts and a history of actual in-
flation realizations corresponding to these forecasts.
We reset the weights in equation 6 each forecast date
to equal the coefficients of aregression of realized
inflation on the forecasts using data on these variables
available up to the date of the forecast.

We evaluate the accuracy of the models by com-
paring them with the naive and autoregression models.
A modeling strategy will be deemed to be “robust” if
it lies near the top of performance rankings and out-
performs models based only on past inflation consis-
tently across the various sub-samples we consider.
We assess performance by simulated out-of-sample
forecasting. Thisinvolves constructing inflation fore-
casts that a model would have produced had it been
used historically to generate forecasts of inflation.
We study forecasts of personal consumption deflator
inflation, excluding food and energy, that is, core per-
sonal consumption deflator inflation.

Two drawbacks of this approach are 1) we assume
all the data are available up to the forecasting date,
and 2) we do not use real-time datain our forecasts.™*
On agiven date particular data series may not yet be
published. Also many data series are revised after the
initial release date. In our forecasting exercises, we com-
pute forecasts and cal culate the CFNAI and diffusion
indexes assuming all the series underlying the forecasts
and the indexes are available up to the forecast date.
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In practice thisis never the case. Since we do not
use real-time data, we also abstract from problems
associated with data revisions. We suspect 1) and 2)
lead usto overstate the effectiveness of our models.*?

Root mean-squared error criterion

Our performance measure is the standard root
mean-squared error (RMSE) criterion. The RMSE
for any forecast is the square root of the mean squared
differences between the actua inflation rate and the
predicted inflation rate over the period for which
simulated forecasts are constructed. For J = 12, 24

1 i NE
R L

- t=1

where T — J denotes the number of forecasts made over
the period under consideration.™

An advantage of the RM SE measure of perfor-
mance isthat its units are the same as inflation. This
means, for example, the magnitude of RMSE for a
given model can be directly compared with the average
rate of inflation over the sample period. Another ad-
vantage isthat large forecast errors are given more
weight than small errors. Presumably, we care more
about large mistakes than small mistakes. At the same
time, a potential drawback of the RMSE measure is
that it weights positive and negative errors of the
same size in the same way. If we are more concerned
about inflation increases than decreases, then thisis
definitely a drawback. Recent debates about the pos-
sible perils of deflation suggest that inflation decreases,
at least at low levels of inflation, are certainly a con-
cern of policymakers and so they should not be ignored.
It would be interesting to consider other measures of
forecast performance that weight increases and de-
creasesin inflation differently, depending on the pre-
vailing level of inflation.

Data and sample periods
The datawe use in the analysis are described in

the data appendix. The sample period of our analysis
beginsin 1967. We choose this date because it isthe
beginning date for the data used to construct the CFNAI
and the diffusion indexes. We estimate the forecasting
equations using all the data available at the time of the
forecast and also consider the method of rolling regres-
sions. A rolling regression keeps the number of obser-
vationsin the regression constant acrossforecasts. Since
it excludes observations from the distant past, this ap-
proach can in principle accommodate the possibility that
there has been structural change in the data-generating



A. One-year ahead forecasts

1977-84

ISM: Mfg: Prices Index

Real inventories: Mfg: Durable goods industries
Housing starts: Northeast

ISM: Mfg: Inventories Index

ISM: Mfg: Supplier Delivery Index

1985-92

Housing starts: Midwest
NBER XLI2

Gold prices

Silver prices

CRB Futures Index

1993-2000

Civilians unemployed for 5-14 weeks

Housing starts

3-year/1-year T-bill spread

10-Year Treasury note yield — federal funds rate
Civilians unemployed for 15-26 weeks

2001-03

Civilians unemployed for 27 weeks and over
Average duration of unemployment

Civilians unemployed for 15 weeks and over
Civilians unemployed for 5-14 weeks

10-Year Treasury note yield — federal funds rate

B. Two-year ahead forecasts

1977-84

ISM Mfg: PMI Composite Index
ISM: Mfg: Supplier Delivery Index
ISM: Mfg: Inventories Index

ISM: Mfg: Employment Index
Housing starts: Midwest

1985-92

Housing starts: Midwest

Civilians unemployed for 15-26 weeks
Gold prices

Silver prices

New home sales

1993-2000

Civilians unemployed for 5-14 weeks
Housing starts

Civilians unemployed for 15-26 weeks
Housing starts: South

Building permits

2001-03

Civilians unemployed for 5-14 weeks
Civilian unemployment rate: 16yr+
Employment retail and wholesale trade
Industrial Production Index

Civilians unemployed for 15-26 weeks

process. To implement the rolling regression procedure,
we choose a sample length of 15 years.

Finally, we consider four distinct periods over
which to evaluate the forecasts of the models: 1977—
84, 1985-92, 1993-2000, and 2001-2003. The first
three periods are al 96 months long. We also consider
the 1985-2003 period. The 1977-84 period is a peri-
od of highinflation volatility and general economic
turbulence. The 1985-92 period is generally associated
with anew monetary policy regime. This period also
includes amild recession. The 1993-2000 period wit-
nessed uninterrupted economic expansion, stable
monetary policy, and declining inflation. The 2001—
2003 period isinteresting because it involves recent
forecast performance.

Next, we describe our findings. We focus on the
monthly results and only discuss the findings with
quarterly data at the end.

The best indicator keeps changing

Before evaluating our models, it is useful to con-
sider the forecast performance of individual indica-
tors. Each forecast is based on equation 1 withK =1
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and x,, set equal to one of thelist of indicators that
includes the union of the set of variables used in the
indicators model and the combination (or diffusion)
model. Table 2 shows the top five indicators for the
sample periods 1977-84, 1985-92, 1993-2000, and
2001-03. The key thing to notice from thistable is
that the list keeps changing! In the earliest sub-sam-
ple, indicators of manufacturing activity seem to do
best at both the one-year and two-year horizons. At
other times, employment, housing, or financial indi-
catorsdo well. Overall, variables that do well at the
one-year horizon do not necessarily do well at the
two-year horizon. The lesson to be learned hereis:
beware of the indicator du jour.*

The best model keeps changing, too

Table 3 (p. 19) shows the performance of al the
models (except for the output-gap model, which we only
consider at the quarterly frequency) for the one-year
and two-year forecast horizons, respectively. The meta
models are in bold type. We discuss these modelsin
thefollowing sub-section. Intable 3, welist the models
for the four sub-samples as well as the period 1985—
2003. We also display some useful summary statis-
tics. For each sample period, we show the RM SE of
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the best model, the range of RM SE across forecasting
models, the absolute value of the difference between
the naive model and the best model, and average ac-
tual inflation.

Thefirst thing to notice is that for both forecast
horizons and across al sample periods the naive model
performs better than the autoregression model. That
is, there is no more information about future inflation
in past inflation than that already contained in the
most recent reading of 12-month inflation. This fact
motivates our focus on using the naive model asa
benchmark for comparison.

Now, consider the one-year ahead forecasts. In the
earliest period, 1977-84, the natural rate model per-
formed best. The magnitudes of the errors from this
forecast are about one-sixth of the average inflation
rate in this period. Thisislarge relative to the amount
by which this best model outperforms the naive mod-
el; the difference between the best model and the na-
ive model isonly about one-thirtieth of the average
inflation rate in this period. So, even in this early pe-
riod, the naive model is difficult to beat.

Since 1985, it has been even harder to beat the
naive model. Indeed, over the entire 1985-2003 period
the naive model is the best performer of the individu-
al models. Consistent with the findingsin Fisher, Liu,
and Zhou (2002), the success of the naive model is
concentrated in the 1985-92 period. In the latter part
of the post-1985 sample, there isamodel that beats
the naive model, but this model changes and the ex-
tent of thevictory is quite small. We should not attribute
too much to the differences among the models for
this forecast horizon; the range of root mean-squared
errorsis never that large and in the recent period is
only about two-tenths of a percentage point.

The two-year ahead forecastsin table 3 present a
similar picture. No individual model doeswell across
all the sub-samples, athough the diffusion model does
perform reasonably well. The naive model does sur-
prisingly well after 1985. Indeed, over the entire
19852003 period it is only one-tenth of a percentage
point worse than the best individual model for this
period, the diffusion model. The range of forecast
errorsis, as expected, alittle larger for the two-year
ahead forecasts, but still quite small.

Overall, table 3 indicates that no individual model
consistently beats the naive model, and when one
model does do better, the gains are small. We conclude
that the natural rate, activity, diffusion, combination,
and indicator models are not robust inflation forecast-
ing frameworks.

Finally, it isinteresting to note the relative per-
formance of the combination, diffusion, and indicator

18

models. Recall that these models involve using many
indicatorsto forecast inflation, but do so in different
ways. At the one-year horizon, thereislittle to choose
between the models. Indeed the difference between
the modelsis always |ess than one-tenth of a percent-
age point (not shown). At the two-year horizon, the
diffusion model consistently outperforms the other
two models except for the most recent period. Here
the gains are more substantial (also not shown). For
example, the diffusion model is superior to the indi-
cator model by over 1 percentage point in the pre-
1985 period and superior to the combination model
by eight-tenths of a percentage point. In the post-
1985 period the gains are about two-tenths and one-
tenth of a percentage point, respectively.

The gainsto combining forecasts

We now consider what happens when we com-
bine the information in the forecasts from the various
models. That is, we add to the list of models compared
with the naive model the equally weighted and optimal-
ly weighted metamodels. For good measure, we throw
meta models based on rolling regressionsinto the mix.
These are indicated in the table by the term “rolling.”
The metamodels areindicated by bold typein table 3.
Since the optimally weighted models require a sample
of forecasts to compute the weights, we only include
these modelsin the mix after 1985. The meta models
consist of the naive, natural rate, indicator, activity,
diffusion, and combination models.

Notice that for both forecast horizons, the meta
models generally outperform the individual models.
Moreover, there is always a meta model that outper-
forms the naive model no matter which sub-sample
we consider. Of special noteisthat it is possible to beat
the naive model in the challenging 1985-92 period.
Stll, overal, the gains over the naive model are modest.
Using the rolling regression approach provides some
additional gain. At the one-year horizon, the regression
strategy for computing weights seems to do better
than just averaging the forecasts, but at the two-year
horizon the oppositeistrue.

Isthere evidence of arobust model here? Look-
ing at the different sample periods and forecast hori-
zons, it seemsthat the rolling optimally weighted model
consistently outperforms the naive model and is near
the top of the performance lists for the one-year hori-
zons. Therolling equally weighted model isavery
good performer at the two-year horizon. In both cases,
when the model is not at the top of the performance
list, it iswithin one-tenth of a percentage point of the
top model and usually much less than that. The gains
relative to the naive model are small in the 1985-92
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period, but there are gains. Since 1993, the best meta-
models beat the naive model by about one-tenth of a
percentage point at the one-year horizon and two-and-
a-half-tenths at the two-year horizon. Thislatter ad-
vantage is not insubstantial given that inflation over
this period is on average less than 2 percent.

Since 1985, the most robust models seem to be the
rolling equally weighted and rolling optimally weighted
models. It isinstructive to study these models alittle
more.

Cumulative forecast errors

Figures 1 and 2 display cumulative squared fore-
cast errorsfor the rolling optimally weighted model
and the naive model for the one-year and two-year
horizons. Figures 3 and 4 (p. 22) are similar, but with
the rolling equally weighted and naive models. The
vertical linesin these figuresindicate the boundaries
of the sample periods we consider. To interpret these
figures, note that differencesin performance are indi-
cated by differencesin the dopes of thelines. The model
with the flatter line is performing better than the other
model over the particular period in which thelineis
flatter. When one line is below another at a particular
date, the model associated with that line has performed
better in an RM SE sense up to that date. Note that,
due to the need to have data to compute the weights,
the figures for the rolling optimally weighted model
begin in 1985.

Consider the rolling optimally weighted model
first. For the one-year horizon there islittle to choose
between this model and the naive model in the 1985-92
period. Differences emerge after 1993, but these are
concentrated in 1994 and 1995. Additional gainsrelative
to the naive model appear in 2003, though. For the
two-year horizon the differences are more substantial,
but the overall impression is similar. The location of
when the largest gains appear isinteresting, since these
correspond to periodsin which inflation wasincreasing.

The figuresfor the rolling equally weighted model
present asimilar picture for the post-1985 period. The
pre-1985 observationsare particularly interesting. These
illustrate the fact that most of the gainsrelative to the
naive model are in the period before 1985. We can
see thisin the distance between the two linesin the
figures, which does not get much wider after 1985.

Model weights

Figures 5 and 6 (pp. 23-24) display the evolu-
tion of the weights underlying the rolling optimally
weighted model for the one-year and two-year hori-
zons, respectively. Recall that these weights are

20

based on regressing actual inflation on forecasts from
six models, the naive, activity, natural rate, indicator,
combination, and diffusion models. The individual
models are estimated using rolling regressions, but
the weights are based on forecasts for the entire
available sample.

Figure 5 shows that for much of the sample all
the models get anon-trivial weight for the one-year
horizon. Except for the early part of the sample, the
weights have not changed that much. Still, their time
paths provide some interesting insight into the evolu-
tion of the economy. For example, the natural rate model
has declined in importance over the sample. None-
theless, it still gets alarge weight. The weight on
the naive model has grown over the sample. The ac-
tivity, diffusion, and combination models get negative
weights.*® Figure 6 indicates that forecasting the two-
year horizon involves using the models differently.
The natural rate model gets much less weight, and
for much of the sample the activity and indicator models
get very small weights. Consistent with their individ-
ual performances (see table 3), the naive and diffusion
models get large weights.

Quarterly data

Now, we briefly summarize our findings with
quarterly data. To conserve space we do not display
our findings. Our purpose here is twofold. We want
to know whether averaging the forecasts obtained by
different forecasting procedures also improves fore-
casts at the quarterly frequency. We also want to un-
derstand whether adding quarterly datato the analysis
that are not available at the monthly frequency im-
proves the quality of the forecasts. The new datain-
clude data from the National Income and Product
Accounts, the output gap, and data on productivity and
costs (see the appendix for alist of the specific series).

Regarding the first question, we find that the ba-
sic principle of averaging different forecastsalso yields
forecasting benefits at the quarterly frequency. Indeed
the same meta models that show promise at the month-
ly frequency are also among the most robust at the
quarterly frequency when we include the additional
quarterly data.’® With one exception, these models
improve on the naive forecast over all sub-samples
and both forecast horizons we consider. The excep-
tionisin the 1985-92 period for the one-year hori-
zon, in which no model is superior to the naive model.

Incorporating the additional data leadsto mixed
results. We use the third month in each quarter to com-
pare a given monthly model with its quarterly coun-
terpart. When we do this and compare corresponding
monthly and quarterly models, we find little evidence
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FIGURE 3
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FIGURE 5
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FIGURE 6
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that the additional dataimprovetheforecasts. In partic-
ular, there is not a consistent pattern of improvement
with the quarterly models and when there isimprove-
ment it is typically much |ess than one-tenth of a per-
centage point. Sometimes the quarterly models are
worse. One model does show consistent improvement
at the quarterly frequency—therolling optimally
weighted model. This model doeswell at the two-year
horizon, improving over its monthly counterpart by
about one-tenth of a percentage point in all sub-sam-
ples after 1985.

In a departure from the monthly analysis, a non-
metamodel shows up inthelist of robust models when
we incorporate the additional data. This model isthe
rolling output gap model, which we could not exam-
ine at the monthly frequency because gross domestic
product data are only available quarterly. When the
output gap model is estimated using the rolling pro-
cedure, it isthe best performing model over 1977-84
and 1985-2003 and performs better than the naive
model in al the sub-samples we consider when fore-
casting two years ahead. This model does not do as
well forecasting at the one-year horizon. In particular,
it is outperformed by the rolling optimally weighted
model over all the sub-samples. Still, the fact that
such asimple model does so well at forecasting two
years ahead isinteresting and deserves further study.®

Taking all the evidence into account, it seems rea-
sonable to conclude that the quarterly data do not add
much to forecast performance. Two exceptions are when
the additional data are incorporated into the rolling out-
put gap model and the rolling optimally weighted mod-
el, both of which perform well a the two-year horizon.

We have found that a robust forecast of the mag-
nitude of inflation can be obtained by combining the
forecasts of several models that incorporate the infor-
mation in the available datain different ways. This

Federal Reserve Bank of Chicago

suggests that a useful approach to building areliable
statistical forecasting framework isto be eclectic
with respect to both the data used to formulate a
forecast and the models used to incorporate the data
into aforecast. Relying on a small number of infla-
tion indicators and one forecasting model is not a
good idea.

Having drawn this conclusion, we must note two
caveats.®* The most obvious caveat is that the conclu-
sion we have just stated sows the seeds of future fail-
ure. We have concluded that one must not rely on a
particular model, yet we have essentially described a
particular model. While we redlize the circularity of
our conclusion, we would rather interpret our findings
as suggesting that combining the forecasts from mod-
elsthat include the datain different waysisthe main
lesson to be learned. That is, we do not put alot of
weight on the particular models we worked with. We
also want to emphasize the limitations of the kinds of
forecasting models studied in this article. Clearly, these
models are not structural and, therefore, areinadequate
for assessing the impact of systematic changesin
policy. Thisiswhat fully articulated general equilib-
rium economic models, which account for behavioral
responses to policy changes, are for. However, such
models, while beginning to be used at central banks,
are still inadequate for the everyday needs of policy-
makers. The forecasting models discussed here have
their uses and probably will continue to be popular
for some time to come. Principally, these models are
useful for understanding what current inflation ex-
pectations are. Since the past actions of the Fed are
embedded in the coefficients, the models take into
account “typical” Fed responsesto current conditions.
For these reasons, inflation forecasts serve as a useful
benchmark for policymakers assessing the current
stance of monetary policy. This article has shown that
such forecasts can beimproved reliably by taking into
account information in variables other than inflation.
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NOTES

1See, for example, Sims (2002) and Stock and Watson (2002).
Fisher, Liu, and Zhou (2002) document that the failure of Phillips
curve models after 1985 is essentially due to an especially poor
performance in the 1985-92 period.

20ne might view equation 1 as an odd choice to base inflation
forecasts on since it involves changes of inflation rather than lev-
els of inflation. The reason we use this equation is because it per-
forms better than models based on the level of inflation. This
reflects the fact that 12-month inflation is an extremely persistent
variable, so that its level does not change much over short periods.

3Specifically, we use the Bayes information criterion (BIC) to se-
lect the number of lags. Intuitively, BIC selects the number of lags
to improve the fit of the model without increasing by too much
the sampling error in the lag coefficients.

4Another way to forecast inflation would be to formulate a vector
autoregression in the level or change in one-month inflation and
the indicator variables and project this system forward J periods
from date T. Such aforecast would yield superior results if the
vector autoregression were correctly specified. The conventional
wisdom is that the direct approach taken here isin practice better.
Marcellino, Stock, and Watson (2004) show that for many vari-
ables, but not for inflation, this conventional wisdom is apparently
false. We have explored the “ multi-step iterated forecasts’ described
in Marcellino, Stock, and Watson (2004) and concur with their find-
ing that this approach is a poor forecasting strategy for inflation.

5To estimate the natural rate, we use afilter applied to the time
series of unemployment available at the time of the forecast. The
particular filter we useis called a band-passfilter. Thisis designed
to isolate particular frequencies of the data. We use it to isolate
“long-run” or low frequency fluctuations in the unemployment
rate. Specifically, we focus on fluctuations of period (inversely
related to the frequency) 12 years or greater. The particular imple-
mentation of the band-pass filter we use is the one due to Christiano
and Fitzgerald (1999).

5The index methodology was proposed by Stock and Watson
(1999, 2002). For more details on the CFNAI, see www.chicagofed.org/
economic_research_and_data/cfnai.cfm.

"Technically, we compute the first six principal components of
the 145 variables.

8The median of six forecasts is the average of the third and fourth
ranked forecasts. We explored other ways of choosing among the
six models, including using the mean and using the best out-of-
sampl e forecasting performance (this is described later) up to the
date of the forecast. These other ways of summarizing the forecasts
performed similarly to the approach taken here.

9The word “meta’ is often used to describe an analysis that syn-
thesizes research results obtained using different approachesto a
question. By this definition, the diffusion, combination, and indi-
cator models might also be considered meta models. We prefer
not to use this descriptor to classify these models since they com-
bine the information from forecasts that, except for the indicators
used, are based on the same forecasting strategy.
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1%\We use this measure of inflation since it plays a prominent role
in FOMC discussions.

1Compiling the data that were available at a particular point in
timeis adaunting task. A real-time dataset is available from the
Philadel phia Fed. Unfortunately this dataset has a limited number
of variables and excludes many that might be useful for forecast-
ing inflation.

Datarevisions are aproblem for the naive and autoregression models
sincethe price index we use, the PCE deflator, is subject to revisions.

13Comparisons of models based on RM SE are subject to sampling
variability and consequently subject to error. In principle, we could
use Monte Carlo methods to assess the magnitude of this error.
However, this would require specifying an underlying data-gener-
ating process for al the variables in our analysis (more than 150
of them). This sampling error should be kept in mind when inter-
preting the results. See Clark and McCracken (2001) and the ref-
erencesthey cite for auseful discussion of some of the issuesinvolved
in assessing the statistical difference in the accuracy of forecasts.

1For another discussion of this point, see Cecchetti, Chu, and
Steindel (2000).

In principle there is nothing wrong with a negative weight. Con-
ditional on all the other forecasts, a forecast of an increase in in-
flation from amodel with a negative weight isasignal that the other
models combined are forecasting an increase in inflation that is
too big or adecrease in inflation that is not big enough, relative
to past experience. If the model did not provide information
about inflation, then it would get a zero weight.

16\When computing the weighted forecasts at the quarterly horizon,
we add the forecasts of the output gap model to the list of fore-
casts that are averaged.

"\We also examine the impact of just averaging the monthly data
to convert it to the quarterly frequency. When we do this, we find
little evidence that monthly noise is a significant source of fore-
cast error since there is not a consistent pattern of improvement
in the quarterly models and when there is improvement it is typi-
cally much less than one-tenth of a percentage point.

18Another important caveat involves the use of rolling regressions.
Sargent (1999) argues that the rise of inflation during the 1960s
and 1970s and the subsequent decline can be explained by a pro-
cess of the Fed learning and forgetting about its ability to exploit
a perceived trade-off between inflation and unemployment. This
analysis suggests a potential problem with using the rolling regres-
sion framework, because it may lead to a recurrence of the rise of
inflation in the 1960s and 1970s. However, as Sargent (1999, p. 134)
points out, a credible commitment by the Fed to low inflation should
prevent such arecurrence. Under this view, there is no problem
with using the rolling regression approach to forecasting.

19See Clark and McCracken (2004) for arecent analysis of the
predictive content of the output gap for inflation.
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