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1, INTRODUCTION.

Peter Phillips’ paper [Phillips (1990)} is a provocative criticism on some
Bayesian contributions to the discusslon of testing for unit roots. The work
that Phillips reacts upon is itself a critlcism on classical testing for the
unit root hypothesis.1 We are, therefore, reacting on a criticism of a
criticism. Although our comments are directed at Phillips' paper, in some
cases they should not be regarded as objections to his arguments, but rather
as additional remarks on the work he criticizes.

Phillips' main point concerns the mechanical use of flat priors in a
Bayesian analysis of time seriés models. He aptly demonstrates that flat
priors érer not uninformative but unwittingly introduce a tendency toward
stationary models, and he argues that this might explain the different
conclusions reached in Bayesian and classical analysis of the unit root
hypothesis: “when Bajesian and classical procedures lead to diveééent
conclusions we should seek first to find the answer in the prior rather than
rush out to arnounce the failure of classical methods” (Phillips p.2). In his
paper he refrains from taking sides in the debate about the superiority of
Bayesian or classical methods in general, seeing value in both approaches.
The larger part of ihe _paper (sections 3 and 4) offers an explicit and
interesting Bayesian analysis of stationarity versus nonstationarity. This
part of the paper is also the most provocative, since it contains detailed
prescriptions how Bayesian methods shoul& be properly applied. Our comments
focus on this second part of his paper.

Phillips stresses "the fragility of Bayesian inferences to the
specification of the prior" (Phillips, p.9}. We investigate several aspects

of this sensitivity within an autoregressive model with linear trend.

! 5ims (1988), Sims and Uhlig (1988), DeJong and Whiteman (1989).



Departing from the likelihood function of this model we follow different
routes, that diverge not only in destination but also in the paths through
the jungle of priors and model representations.

As a preliminary we need some technical results on what seem minor
changes 1in the specification of the deterministic components of the model
{sectien 2). Paradoxically, the "ignorance" prier proposed by Phillips
dounwelghté the unit reoot hypothesls relative to a flat prior in a model with -
trend and intercept. Furtherf and contrary to results of DeJong and Whiteman
(1989), a flat prior gives probability one to the unit root in a different
parameterization of this model (section 3). The core of oﬁr comments concerns
the hypothesis of interest (sectién 4) and its consequences for Bayesian
inference. Is the relevant null an exact unit root or nonstationarity in
general? In our view it is the sharp unit root null that matters. Posterior
od@s is the principal Bayesian tool for this problem (section 5). Their
application requires an informative prior (section 6). For the empirical
parts we make use of the Nelson/ Plosser data, see Nelson and Plosser {1982},
extended to include the additional 18 years 1971-1988; see the data appendix.
Finally, section 7 summarizes.

We concentrate on the Bayesian aspects of testing for a unit root within
a univariate autoregressive model. It is beyond the scope of these comments
to explore other models (e.g. ARIMA, fractional integration), and the
sensitivity with respect to the presence of heteroskedasticity and‘fat—tailed
error distributions. Several authors even contend that the unit root
hypothesis is untestable and maybe not important at all (see Christiano and
Eichenbaum (1990), Cochrane {(1991)). Pragmatically, univariate autoregressive
models remain sulted as a preliminary step In constructing multivariate
models relating wvariables with approximately the same type of trend,

deterministic or stochastic.



2. NUISANCE PARAMETERS.
Phillips criticizes the flat prior used by the Bayesian unit rooters because
of the apparent bias these priors introduce toward stationarity. He performs
a simulatlion exercise where repeatly samples of 50 observations are generated
from a pure randoq walk process. Then, in a simple AR(1), ¥,SPY, _1*e, with a
flat prior on p, the rejection frequency E{PF(ptll} is estimated as equal to
0.389. In a model with fitted intercept and trend the blas is even worse,
E{PF(pzll} = 0.0456 (see Phillips (eq. (12) and eq. (24))). Instead of the
flat prior Phillips proposes a Jeffreys priér "which has some desirable
invariance properties and is "ocbjective” or "ignorant" in a certain sense
(see Phillips (p. 11-13)). The same simulation exercise establishes that the
Jeffreys prior attaches appreciably larger probability to nonstationarity.
The rejection frequencies iﬁcrease to E{PJ(pél}} = 0.625 for the simple AR(1)
and E{PJ(pzl)} = 0.2875 for the AR(1) with trend and intercept. These
outcomes shoﬁ that the Jeffreys prior is alsoc subject to bias, and moreover
that the direction and amount of bias depend on nuisance parameters in the
model. The downward bias in the model with intercept and trend occurs even
though the Jeffreys priqr in this model is steeply upward sloping for pz1
(see Phillips (figures 1(1) to 1(iv))).

These differences warrant a closer investigation of the effect of the
intercept and trend. To begin with, the prilor densities plotted by Phillips

are conditional‘priors of p given the nuisance parameters p and 8 in
Yy =@t Bt + PY4_q + €y (1)

Different values of p and 8 produce different curves in the figure. The only
marginal prior demsity of p is the solid line in figure 1{i), which pertains

to the simple AR(1) where there are no trend and intercept.



In order to derive the marginal prior density of p it is convenient to

write the AR(1) as

[}

Yy T + &5t + u,

u, = pu,_, +E, (2)

which has the format of the linear regression model with AR(1) errors. The
parameters in eq. (2) have a well defined meaning: & is the mean growth rate
of {yt}; ¥ denotes the ' intercept of the deterministic linear trend
D, =y + 8t. If thefe is no trend growth (8=0) the parameter y is the
unconditional mean of {yt}. One of the attractive properties of the Jeffreys
prior is its invariance with respect to the parameterization of the mode).
For the Bayesian posterior inference on p we can start either from the
reduced form representation (1) or the "structural® representation (2). It
will become apparent shortly why eq. (2) is more convenient.

To derive the Jeffreyé prior we compute the expected value of the
Hessian of the log-likelihood function: I = -E[éiﬁﬂéﬁgl

iad 86897
have, using similar computations as Phillips (p.18-19}, and letting

]. For model (2) we

9 =(y & p o)

<& o 0
-
1..= 0 I o |, ‘ 3
P op (3)
0 0 gz
2
PR
where:
X = (xl,. ,xT) , with X, = Xy - PX, 4 and X, = (1 : t)’,
2
(y, - 7) 2T
I —&O[P) + 0 2 [1 pz])
PP - 1 - p
1 1 - o7
ao(p) = [T - P ], {compare Phillips {eq. (14), p. 19)).
1 - p° 1 - p°



For the moment we ignore the term due to the initlal condition A by assuming

Yo = 7. Using (3) the Jeffreys prior then becomes

12
-3, 51172 172
n,(p.7,8,0) « [dettleﬂ)] x o |X'X| «,(p)

= o 3(1 - p)zuo(p)1/2 (4)

The last proportionality sign can be verified by direct calculation of the
determinant of the (2x2) matrix X‘%. Eq. (4) has the convenient property that
the priors on all elements.of ¢ are independeﬁt..Note that nj(p,v.a,a) does
not depend on ¥y and &. The implied priors and ¥ and & are flat, while the
prior of p 1s similar but not identical to the J-prior of p in the simple
AR(1} without trend and intercept. It differs by the additional factor
1 - p)a/o'2 in eq. (4).

The nuisance parameters y and & affect fhe shape of the marginal prior
of p. Though the interpretagion of p does not change with the variables that
we include in xt. our prior beliefs about p change according to the
particular deterministic components that we add to the model. The differences
are most pronounced close to the unit root. From eqg. (4) it follows that the
Jeffreys prior for p drops to zero when p»l1. .This follows from representation
{2) of the AR model. In éq, (2) the parameter y vanishes frem the model {y is
not identified under the unit root); hence the likelihood function is flat
and the information métrix I130 has a singularity at p=1. Figure 1 shows the
Jeffreys prior for the simple AR(1), the AR(1) with a constant term, and with
constant and trend. For the latter twe models the Jeffreys prior gives very
low probability to values of p close to unity. This partly explains the
observed bias towards stationarity of PJ(pzl) in models with a fitted
intercept and trend. While the Jeffreys prior is invariant to the parameteri-

zation of the model, it is sensitive to the exact specification of the model.
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3. THE PATHOLOGY OF FLAT PRIORS.

Phillips rightly warns against the mechanical use of a flat prior once we are
out of the textbook linear regression model. His paper leaves the impression,
however, that a flat prior on p strongly favours stationarity. But depending
on the parameterization a flat prior can also have the opposite effect.
éontinuing the example of the AR(1) with trend paraheterlzed as in eq. (2), a
flat prior takes the form nF(p,o,z,al o cfi. Since conditional on p the model
is linear 1in 7 and 3, the standard integratlon steps for the linear mocdel can
be used to cobtain the marginal posterior of p#l1 (see also Zellner and Tiao

(1964) and Zellner (1971)),

PF(p{Y) “ |i,i|-1/2(ﬁ,a)-('r-2)/2’ (5)
where: u = H;y,
M- = I - X(X'07'%,
x .
y = “’1' yT) »and y, =y, - PYy_q-

From eq. (4) we know that {X'¥| « (1-p)*. The data matrices ¥ and % depend on
p, but the projection matrix H; does not. Due to the specific nature of the
deterministic regressors; the space spanned by ¥ is the same space as spanned
by the columns of X, and hence H} = Hx' which does not depend on p. Since §
is linear in p, the “residual sum of squares" u'u is a quadratic function of
p. Despite the singularity of (X’X) at p=1 the "residual sum of squares" is
well behaved as p31. Close to p=1 the posterior pF(p|Y) is dominated by the
factor (1-p)-2. and hence is not integrable. A flat prior with the para-
meterization (2) assigns a posterior probablility of one to the unit root.

The Jeffreys prior safeguards against pathological behavior of the

1.2

posterior. Because it 1is proportional to |X'X|"°, it cancels the non-

integrable factor in pF(p|Y). Applying the Jeffreys prior nJ(p,7,6,¢) in eq.



{(4), the marginal posterior of p becomes

T/72

Y25y TR, (6)

pJ(p[Y) = aO(p)
which is a proper density. It is equal to Phillips’ equation (22) that he
obtained using the Laplace approximation. We could derive the posterior
exactly because we treated the initial observation differently, Yo<¥ instead
of yo=0. The role of the initial conditions will come up again in section 6.
Filgure 2 gives an example of the empirical implications of different
priors for the Nelson / Plosser series "Stock prices" (1871-1988). The figure
shows three different marginal posterior densities of p for an AR(1) with
trend and intercept. The flat prior used by Delong and Whiteman {1989},
labelled DJW, 1is .most to the left and gives lowest probability to
nonstationary alternatives. The Jeffreys prior attaches considerable
probability mass to the nonstationary region. The flat prior of the
'“structural“ model has an asymptote at p=1. Marginal posteriors for the other

Nelson / Plosser series reveal a similar ranking among the posteriors.

4, THE HYPOTHESIS OF INTEREST.

In the emplrical examples it appears that the evidence against stationarity
stems largely from the fact that the “objective" prior assigns enormous
probability mass to highly expleosive models which often results in a bimodal
posterior where one of the modes is in the explosive region of the parameter
space. See figures 4(i) to 4(xiv) of Phillips {1990). In his table 4 Phillips
presents the posterior probability of p>1, and interprets these probabilities
as evidence of stochastic nonstationarity.

Stochastic nonstationarity is, however, not the same thing as a unit
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root. In many applications the economic theory leads to models with a unit
root null hypothesis. Phillips (1990, p.4-5) provides some of the leading
examples: the efficient market hypothesis, or the permanent income model.
Confronted with a posterlor mode' far above one, why should one interpret this
as evldence in favour of a unit root? Why is a sharp mode located arocund some
p>1 more evidence of unit root behaviour than a mode located slightly below
p=1? To illustrate the point, consider the two posteriors in figure 3.2 The .
first, unimodal, posterior U has its mode slightly below one while the second
posterior B is bimodal with the modes rather different from unity. The
sharply peaked posterior has almost all its probability mass below p=1, and
leads to a high probability P{p<1). The bimodal posterior assigns a high
probability to the nonstationary region. Yet an exact unit root is more
probable with posterior U than with posterio} B.

Before going into the details of appropriate priors one should first
state with what purpose 'the analysis is conducted, and state the hypothesis
of interest. It seems that in the literature two cases are not always clearly
distinguished. First there is the unit root hypothesis versus the alternative
of stationarity:

H:p=1 - H : || < 1.
But Phillips (1990, p. 27, table 4) appears to be testing

Hozpzl o H1:p<1.
The relevant pair of hypotheses depends on the question being asked. The
economic examples referred to above deal with the exact unit root hypothesis,

not with the question whether a root is larger or smaller than unity. In time

series modelling one of the first steps consists of transforming the data to

2 The two posteriors in the figure have been obtained from an AR(3) model for
the extended Nelson / Plosser series “GNP deflator” and "Industrial
Production".
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a series that is stationary, usually by taking first differences. To find out
whether this transfermation is required was the primary motivation of Nelson
and Plosser (1982), who attempted to determine whether a series was trend
stationary (TS) or difference stationary (DS). Within an autoregressive
representation the trend and cyclical components of TS and DS lock completely
different., We emphasize these stylized facts in figure 4 for real GNP per
caplita in the U.S. {1909-1988). Figure 4a shows the actual data and the -
deterministic linear trend, estimated with an AR(3) model in levels; figure
4b shows a stochastic trend implied by an 'AR(Z) in first differences.
Empirically a stochastic trend, which is a random walk with drift, can
account for almost all fluctuatiéns in U.S. real GNP. As a result figure 2c¢
suggests that there was no major business cycle in the thirties.> Although
the current decomposition can be sensiti#e tc adding MA components and
although AR models have some limitations, the figure dramatizes the effect of
a unit root, when all its implications are taken seriously,

The relevant pair of hypotheses for this problem is the first one,
invelving the exact unit root. The definition of a stochastic trend is
confined to DS series,vand does not extend to an explosive model.4 First
differencing a time series with a root of 1.5 is not an effective trans-
formation to induce stationarity. The unit root hypothesis is a prime example

of a sharp null hypothesis. Phillips (1988, p.348) offers additional forceful

? The estimated deterministic trendline is (standard errors in parenthesig):

Dt = 6.98 + 0.020 ¢t

(0.07) (0.001)

For the stochastic trend the Beveridge and Nelson (1981) decomposition of the
ARI(2,1) gives

Dt = Dt—l + 0.017t + 1.35 €,

(0.009) (0.25)

Alternative trend/cycle decompesitions of course exist (see Harvey (1990)).

3 See, however, Sims (1989) for a operaticnal definition of a trend in models
with an explosive AR root.
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Figure 4. Trend-cycle decompositions of US real
GNP, 1909-1988
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arguments of this statement. The second pair of hypotheses seems more
appropriate in general misspecification tests. Stationarity 1is doubted
without a clear alternative for some data series. Unlike the exact unit
roots, explosive roots do not have the profound implications that have led to
the development of cointegration and stochastic trends, or the concern with
persistent wversus transitory shocks in macroeconomics. The econometrician’s
response to expleosive roots is respec;ficaticn of the model: peossibly.

nonlinear trends, maybe a log transformation is required.

S. TESTING A SHARP NULL WITH AN IMPROPER FRIOR.
Bayesian methods are particularly suited for the decision problem encountered
in unit root econometrics. The unit root thothesis s often an auxiliary
hypothesis about the formulation of a dynamic model: TS or DS. There is not
always an economic reason to prefer one over the other. The unit root issue
is important for correct statistical inference (see, e.g. Phillips (1987]j,
Durlauf and Phillips (1988)), and affects the economic interpretation of
shocks {see Campbell and Mankiw (1987) or Blanchard and Quah (1990)}, but it
is a choice problem rather than a testing problem. The loss involved with
type I and type [I errors might be equal, unlike the preoccupation with the
type I error in classical hypothesis testing. Second, the unit root test in
autoregressive models compares a polnt hypothesis (p=1) with a composite
alternative (p<1). Such a test can only be formulated .in a classical
framework if the point hypothesis is taken as the null. A Bayesian analysis
allows a symmetric treatment of the null and the alternative.

The principal Bayesian tocl for comparing hypotheses is the posterior
odds ratio K = P(H°|data)/P(H1|data). For the second pair of hypotheses the
posterior odds ratio 1is equivalent to computing P(p2l), since P(p<l) =

1 - Plpzl). In order to apply the posterior odds te a test of the sharp null
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of an exact unit root against the alternative of stationarity, |p| < 1, we
must assign a discrete probability to the event p = 1. Leamer [1978, sec.
4.3) and Zellner (1971, p. 297-299) provide the details of the computations.
Treating Ho and H1 symmetrically, i.e. putting P(Ho) = P(H1)' the posterior

odds are equal to
J r(8)L(Y|8,p=1) do
Kx = 1 ’ (7
I Qj nl{plﬂ)-nztﬁ)-L(Y]G,p) do dp
-1

Qhere nz(ﬂ) is the marginal prior of the aux;liary parameters 9l in the
model; nl(plﬁ) is the conditional prior of p; and L(Y|9,p) is the likelihood
function.

We now apply the posterior odds formula to the AR(1) with trend and
intercept. The marginal Jeffreys prior of the auxiliary parameters
nz{c,w,G) x o3 1sg improper (see eq. (4))}. Since the conditional likelihcod
fﬁnction for p=1 does not depend on y (because y is not identified at p=1),
the integral in the ﬁumerator of (7) diverges. The integral in the
denominator of the posterior odds is well defined, since

1
{1) the prior nl(plﬂ) = (l—p}zaO{p)/ J (1—p)2ao(p)dp is proper and
-1

independent of @,

(i1} ﬂi(p) n2(6)°L(Y]ﬂ,p]dﬁ is propeortional to the marginal posterior

pJ(p[Y] in eq. (6).
The fact that 7 is locally unidentifigd at p=1 leads to the anomalous result
that the posterior odds diverge to infinity and thus imply probability one
for the wunit root. Schotman and Van Dijk (1991®) encountered the same
pathology for the flat prior on p and y. Any proper prior on p defined on the
stationary interval pe€(-1,1) combined with an improper prior on y will yield
this result. Thus the Jeffreys prior is 1ll suited for a Bayesian test of the

unit root hypothesis. The intuition is that the Jeffreys prior is improper on
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nuisance parameters that enter the model in an asymmetric way: not identified
under the null, but identiflied under the alternative. For more discussion on
the use of improper priors we refer to Zellner and Siow {1980) and the

discussion of that paper by Jaynes (1980).

6. CHOICE OF PRIOR.

The need for an informative prior greatly complicates a Bayesian procedure,
if no natural reasonable informative prior is aQailable. The analysis in the
previcus section suggests that for a proper posterior odds test we need to
break the prior independence between 7 and p inherent in the Jeffreys and in
the flat prior. If a time series is stationary, there exists a linear
deterministic trend with intercept y. The mére precise we can locate 3, the
more convinced we can be that the trendline is stable and does not wander
stochastically, as it does in the presence of a stochastic trend (p=1). On
the other hand, if the position of the trendline (y) is not well determined,
this is an indication it may shift over time, which suggests unit root
behaviour. An altérnatiye formulation of the unit root hypothesis is the
question: "How much can we learn about the-level of a series?". The only
parameter that conveys information about the level of the series is y. The
parameters y and p are tightly connected, ¥y not really being a nuisance
parameter.

A technical solution of the problem of specifying a prior on ¥ that
leads to properly behaved posterior odds is to expléit the information in the
initial condition of the time series. So far all the results used the
conditional likelihood function, given the initial observation Yy Schotman
and Van Dijk (1991a’b) suggest a normal prior on %, centered around Y5 and

Wwith a variance conditional on p and ¢.
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2
plr|p.o,y,) ~ Normally. , kl (8)
0 0 2
1 -p
The variance equals the unconditicnal varlance of an AR(1) process. This
prior is proper and weakly informative. It 1is only defimed for |p|<l. It
tends to a flat prior if psl. Combined with a proper prior on p this leads to
well defined posterior odds.® In Schotman and Van Dijk (199la’b] we used a.
flat prior on p over a part of the stationary region: pela,1). The formula

for posterior odds (eq. (7)) becomes

plp=1|Y)
K = . {9)

1 1
j—-:i I p(p[Y]dp
o

where plp|Y) 1is the marginal posterior of p for pel«,1), and plp=1]Y}
= é&T plplY). The procedgre amounts to comparing the value of the posterior
in p=1 to the average value of the posterior under the alternative pela,l).

Application of the posterior odds ratie has serious effects for the
empirical results. In table 1 we compare .the probability of nonstaticnaruty
Pj(p>l), obtalned with the Jeffreys prier, with the probability of an exact
unit roet Pr{p=1), using the normal prior oﬁ 7 and setting « equal to 0.8.
For further reference we also repart the classical Augmented Dickey Fuller
test. These three different quantities are computed with two data sets: the
ofiginal Nelsoh / Plosser data, and the extended data set.

The posterior odds ratios reveal that the data for most series are not
very informative about the unit root hypothesis. The posterior probability of

a unit root is between .25 and .75 for 9 of the 14 series in the "1970"

3 Technically, we wuse the so-called exact likelihood 1instead of the

condliticnal likelihood.
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sample. “Unemployment" 1s the only clear stationary series, 1in close
agreement with the classical test. The Iintegrated series are "Consumer
prices", "Velocity", "Interest rate" and "Stock prices", The latter results
are qualitatively the same as those of Philllps (1990). These four series

have a high probability of nonstationarity, relative to the general tendency

TABLE 1: Posterior probabilities of stochastic nonstationarity

1970 sample 1988 sample
Series P,(pz1)  ADF  Pr(p=1) | P (px1)  ADF  Prip=1)
Real GNP 0.012 -2.99 0.365 0.005 -3.46 0.309
Nominal GNP 0.074 -2.32 0.567 0.131 -2.02 0.752
Real GNP per c;p. 0.010 -3.05 0.347 0.004 -3.52 0.223
Industrial Prod. 0.188 -2.53 0.283 0.263 -2.66 0.286
Employment 0.040 -2.66 0.510 0.034 -2.87 0.614
Unemployment 0:086 -3.55 0.169 0.063 -3.92 0.110
GNP deflator 0.020 -2.52 0.613 0.134 ~1.59 0.8824
Consumer prices 0.176 -1.97 0.883 0.44% ~1.20 0.952
Wages 0.045 -2.23 0.588 0.060 -2.12 0.751
Real wages 0.014 -3.05 0.51? 0.555 ~1.68 Q.756
Money stock 0.008 -3.08 0.407 0.021 ~2.86 0.567
Velocity 0.537 -1.66 0.754 0.364 -1.60 0.861
Interest rate 0.99%6 0.39 0.854 0.650 -0.54 0.849
Stock prices 0.215 -2.12 0.935 0.313 -1.92 0.968

The first column is adapted from Phillips {1990). ADF is the Augmented Dickey
Fuller test %T, see Dickey and Fuller (1979, 1981} and Fuller (1976):; the
second column is from Nelson and Plosser (1982). Alternative region in exact
unit root test is {0.8, 1). All results are based on AR{3} model, except for
"unemployment" which is AR(4).
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toward statlonérity in the first column of table 1. The additional data for
the seventles and eightles provide a surprisingly amount of extra informaticn
on the unit root hypothesis. For the “1988" sample we have 8 series that
appear I(1), and 2 series I(0)}, the second being the much debated variable
"Real GNP per capita". For the two statlonary series we find again a close
correspondence with the classical test: the ADF rejects a unit root in "Real
GNP per capita" at the 5% level. As a general pattern the posterior .
probability Pr(p=1) indicates that the real variables are I1{(0) while the
nominal and price series are in most cases I(Oj. This is in contrast to the
results of the Dickey Fuller for the "1970" sample where I(1) can not be
rejected except for Unemployment. The extra data in the "1988" sample are
informative in the sense that now I{(1} is rejected for three series.

In many cases the differences between tﬁe results of Phillips {1990) and
our results are not dué to the different priors that are being used, but more
to the hypothesis that is tested. Figures 5 and 6 illustrate this point. The
figures compare the posteriors implied by the Jeffreys prior (pJ(piY)) with
the posterior implied by the normal prior on ¥ (PN(p‘Y}). Comparing figures
SA and 5B, we see that increasing the sample size for "Real GNP per capita"
has the same effect on the marginal posterior of p for both priors: a
tendency toward stationarity. Figures 6A and 6B show the analogous pattern
for "Consumer prices": here a strong tendency toward p=1.

Finally, our flat prior on p over a small and fixed range might not be
the best choice of prier for p. A sensitivity analysis along the lines of
Schotman and Van Di jk (1991a) can yield insights whether this has serious
consequence for the posterior odds test. Some preliminary exercises indicate
that the qualitative conclusions on the relative probabilities of I(0) and
I(1) are not much affected, though the actual computed probabilities are

different.
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FIGURE 5A: Real GNP per cap. (J—prior)
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FIGURE 5B: Real GNP per cap. (N—prior)
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FIGURE BA: Consumer prices (J-prior)
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7. CONCLUDING REMARKS.

The Jeffreys prior has as advantage in the apalysis of autoregressive time
series models that it is invariant with respect to the parameterization. But
we do pay a price for the invariance. The J-prior depends on the sample size,
the data, and the complete structure of the model. As shown in section 2,
especlally our pricr beliefs about p change according the the specification
of the determinlstic compeonents in the model. Further, as argued in section.
4, the whole point of the Bayesian exercise is in discriminating between two
well-defined hypotheses. This problem requires'an informative proper prior,
if only because of the special importance of the point p=1. "Objective"
Bayesian methods for testing a sharp null hypothesis do not exist (see Berger

and Delampady (1987)).

Finally, the preposition "on" in the title has several interpretations.
We have used the Iinterpretation: "about" or "concerning" and attempted to
explain the implications of the choice of different pricrs for inference on
unit roots. We made extensive use of graphical, analytical and some numerical
techniques. An other more literal interpretation of the prepesition “on" is

“to march on". Peter Phillips paper is also attractive since studying it may

induce other researchers to explore Bayesian routes in more detail.

AFPENDIX : Extension of Nelson / Plosser dataset.

The original time series of Nelson and Plosser (1982} are annual observations
ending in 1970. We extended all 14 series to 1988. Series are defined as:

Real GNP : [A), Appendix II.
Nominal GNP : (A), Appendix II.
Real GNP per cap. : = Real GNP / Population,

(B), Population: Total.
Industrial Production : (A), Indexes, total.

Employment : (A), Civilian Labor Force + Resldent Armed Forces.
Unemployment rate : {A), Total unemployment rate civilian workers.

GNP Deflator : (A), Implicit price deflator, Appendix II.
Consumer Prices : (A), all items, urban consumers.

Vages : (A), Average weekly earnings of productien workers,
Real wages : = Wages / Consumer Prices.

Money Stock : (C), M2, definition of 1980.
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Velocity : = Nominal GNP / (Currency plus Demand Deposits) (C).

Interest rate : (C), yield offered on a recently offered A-rated
utility bond.

Stock Prices : (A), Standard and Poor 500 composite stock index.

Primary data sources are: .

(A) Business Statistics 61-88, U.S. Department of Commerce, Bureau of
Economic Analysis.

(B) Statistical Abstract, Bureau of the Census.

(C} Banklng and Monetary Statlstics, Federal Reserve Bulletin.

Data are spliced to the original series. The conversion factor is the average

ratio of the old serles over the new series for the period 1965 - 1970.
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