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1 Introduction

This paper is concerned with the econometric issues that arise in the empirical analysis of markets
subject to a government policy aimed at keeping the price movements within publicly announced lower and
upper bounds. Important economic examples are the exchange rate target zone mechanism, and the fioor and
ceiling restrictions on the price movements of some primary commodities [see Ghosh (1987)]. Some of the
econometric issues involved in the analysis of such markets are addressed in the recent literature on limited-
dependent rational expectations (LD-RE) models. See, for example, Chanda and Maddala (1983, 1984),
Shonkwiler and Maddala (1985), Holt and Johnson (1989), Pesaran and Samiei (1992, 1995), Donald and
Maddala (1992), and Lee (1994). This literature has focused on the rather restrictive case where the bounds
are assumed to be pre-determined and fully credible. However, in most applications of interest the publicly
announced bounds are not necessarily credible to the agents, and are often subject in practice to sudden and
unpredictable movements. In a recent paper, Pesaran and Ruge-Murcia (1993) extend the analysis of the LD-
RE models to the case of stochastic thresholds where the bounds vary randomly in every period. Using Monte
Carlo experiments the authors show that the assumption that the band is perfectly predictable by the agents
(when inappropriate) can seriously bias the estimates and the inferences based on them.

In this paper, we consider the more general and relevantcase where the bounds can rernain fixed over

an extended period of time, but are subject to discrete, occasional jumps. The timing and size of these



changes in the bounds are assumed to be not fully predictable by the economic agents. This extension is
particularly important for modelling (i) changes in short-term interest rates targets [see Balduzzi et. al.
{1993)], (i) central parity realignments in exchange rates target zones, and (#ii) unpredictable changes in
the floor price of commodity price support schemes. All these examples share the feature that the adjustments
to the bounds established by the authorities are implemented infrequently and by finite amounts. Thus, the
uncertainty regarding the future value of the bound has two related, but conceptually distinct, components.
The first one is the occurrence or timing of the adjustment. The second one is the size or magnitude of the
adjustment. We model the occurrence of jumps in the bounds by means of a discrete state variable whose
current value is defined by whether there is a change in the bound or not. This state variable is postulated
to follow an ergbdic Markov-chain with possibly time-varying transition probabilities and its current value
1s conjectured to be contemporaneously observed by the agents. The later assumption simply follows from
the fact that the band is publicly announced and has the implication the state is an observed, rather than a
latent variable [as in Hamilton (1989)]. Conditional on there being a jump in the bound, the size of the
adjustment is then specified as a (continuous) function of the model’s forcing variables.

The LD-RE with jumps postulates a more general specification for the bounds while preserving an
important feature of the standard LD-RE model. Since the government’s intervention prevents the
endogenous variable from falling below the band, the observed endogenous variable is censored. The agents’
decision is affected by the presence of the band and by the expectations of the government’s intervention,
Furthermore, expectations atfect the behavior of the variable even while it is above the band. In the LD-RE
with jumps, the government’s intervention is not confined to changes in the fundamentals but it includes the
possibility of adjustments to the bounds. Since these adjustments are not perfectly predictable, agents
consider both the government’s intervention (through the fundamentals) and the stochastic nature of the band
when constructing their expectations about the endogenous variable.

The plan of the paper is as follows: Section II provides a general formulation of the LD-RE model
with stochastic jumps. Sections Il and ITI derive respectively the exact RE solutton for the one-sided and two-
sided bounds and show that the solution encompasses the cases of perfectly predictable and continuously and

stochastically varying bounds already examined in the literature. (The mathematical proofs are relegated to



appendices). It is demonstrated that the solution for the one-sided band exists and is unique when the
coefficient of the expectational variable is less than one. In the case of a two-sided band, it is shown that the
RE solution exits for all the parameter values and is unique if the coefficient of the expectational variable is
less than or equal to one. Section V shows that these results hold even when the jump probability is
stochastically varying and the disturbance terms are conditionally heteroscedastic. The log-likelihood
function of the model is derived in Section VI. Finally, Section VII applies the model to monthly
observations on French Franc/Deutsche Mark bilateral exchange rate between July 1979 and April 1993.
During this period, the exchange rate was subject to a target-zone regime, with six (stochastic) jumps taking
place in the central parity. In this application, we consider a dynamic, sticky-price exchange rate target-zone
model, and show how the exchange rate equation predicted by the theoretical model can be approximated by
a simple LD-RE model with jumps. We then estimate four models; the first being a benchmark linear RE
model, with the remaining specifications taking account of the effect of the target zone on the agents’
expectations, but differing in the way the probability of realignment is modelled. The empirical results
support the LD-RE mode! with a non-zero, time-varying probability of realignment. We also found important
asymrnetries in the relationship between the realignment probability and deviation of the exchange rate from
the central parity. For plausible values of the interest differential, probability of realignment was found to
be close to zero when the exchange rate was at the bottom of the band, and became significantly larger than
zero {sometimes close to one) when it was in the upper half of the band. Using this framework, we are able
to formally address the issue of the credibility of the target zone regime. We conclude that although the target
zone has generally been a credible instrument of exchange rate management, in periods preceding parity
realignments the announcements by the government about the immutability of the bounds have not been
credible to the agents. This is an important shortcoming of the target-zone regime which makes it highly

vulnerable to serious bouts of currency speculation.

IL The LD-RE Medel and Specification of the Bounds
Consider a variable y, whose process (in the absence of censoring) is described by the linear rational

expectations equation,



y, =YEQI|I_)+*Bx, +u, 2.1

where ¥is a non-zero scalar coefficient, P is a 1 X k vector of parameters, x, is 2 k x 1 vector of predetermined
variables including an intercept term and (possibly} lagged values of y,, I, | is the non-decreasing set of
information available to the agents at time #-1, E(y)l,,) is the conditional expectation of y, and u, is a

disturbance term. For the {x,} process, we adopt the following general linear specification,

x, =Tz, +n (2.2)

,!

where I} is a k X m matrix of coefficients, z,,, is a m x 1 vector of predetermined variables (possibly
including lagged values of x, and y,), and m, is a & % 1 vector of random disturbances. Notice that the
specification assumed for the x, process is quite general, in the sense that it encompasses vector autoregressive
schemes, does not rule out unit-roots in the process, and accommodates the case when x, is first-difference
stationary.

Consider the situation when an exogenously given lower bound is imposed on the variable y,. That
is, ¥, is prevented (for example, through government intervention) from taking values below the lower limit

denoted by y,,. In this case, y, is a censored variable and the observed dependent variable is given by,

Y = Max{yE(y”]!_I) +Bx:+ur’yLr}’

or equivalently,

'YE()’; |I,_1) +Bx[ +u;’ lf ’YE(.V]‘I;-]) +ﬁx[ +u; > ny’ (2 3)
y, = '

¥, otherwise.

The special case when the bound y,, is constant and/or perfectly forecastable by the agents has been examined
by a number of researchers [e.g., Chanda and Maddala (1983, 1984), Shonkwiler and Maddala (1985}, Holt
and Johnson (1989), Pesaran and Samiei (1992, 1995), Donald and Maddala (1992), and Lee (1994)].
Pesaran and Ruge-Murcia (1995) consider the more general case when the bound is changing stochastically

in every period and, consequently, the future value of y,, is no longer perfectly predictable by the agents.



This paper gcnera]i.zes the model examined by Pesaran and Ruge-Murcia (1995) by considering a
stochastic specification of the bound in which y,; can be fixed for more than one period but is subject to
discrete, occasional jumps. In this case, the behaviour of the endogenous variable is affected by the agents’
expectations about both the likely occurrence and the size of the jump. More specifically, we assume that

the stochastic process of the threshold, y,,, is given by,
yLl = yL,r—l * Sr(ar * V:) ’ (24)

where y; ., is the level of the bound in effect in the previous period, s, is a discrete state variable whose value
depends on whether an adjustment in the bound takes place at time ¢ (s,= 1) or not (s,= 0). The term &, +v,
decomposes the size of the change in the bound that would occur at time ¢ if s, = 1, into a forecastable

component 8,, and a random, non-predictable part v,. The predictable part, 8,, is modelled by,
8 =Tz, (2.5)

whereI'; is a 1 X g vector of fixed coefficients and z, ,_, isag x 1 vector of predetermined variables contained
ini, .

Under the process in (2.4), the lower bound follows a random walk on randorn time-steps. Exarnples
of such variables include the targeted Federal Fund Rate used by the monetary authorities in the United States
[see Balduzzi et. al. (1993)] and the exchange rate target bands in the EMS. Figure 1 presents monthly
observations of the French Franc/Deutsche Mark exchange rate between April 1979 and April 1993. Notice
that throughout the sample period six adjustments in the band were implemented by the monetary
authorities.' In the model developed in this paper, the government affects the endogenous variable, y,, not
only through market intervention but also by means of changes in the bounds. Moreover, in an economy in
which agents are rational, agents will consider both the stochastic nature of the band as well as the effect of
government intervention when constructing their expectations about the future values of the endogenous

variable, Thus, the agents’ perception that the bound is not immutable, but that instead is subject to

! The realignments on the Fft/DM parity took place in September 1979, October 1981, June 1982, March
1983, April 1986, and January 1987.



unannounced movements, is allowed to have an effect on the path of the variable the government seeks to
control.

It is assumed that at time -1, the state s, , is observed by the agents. This conjecture follows directly
from the fact that the band is publicly announced and has the implication the state is an observed, rather than
a latent variable [as in Hamilton (1989)]. However, notice that the agents still need to construct a forecast
of 5,, as part of forming expectations of y,, We postulate that the current state, s, depends only on s, , through

a Markov-chain with a (possibly time-variant) matrix of transition probabilities given by,

" - P, P, | 26
P P,

where P (1) = Pr(s, =jls,, = i), for {, j = 0,1, and by construction Pz} + P, (1) = 1 fdr i=0,1. This
specification allows additional restrictions to be imposed on the elements of P(r) and/or the parameterisation
of the transition probabilitics in terms of predetermined variables. Thus, P, (¢) could be written as P,(1) =
¥(z;,,), where W(»):R — (0,11, and z, , , designates a set of predetermined variables contained in the agents”
information set at time -1, possibly including lagged values of v, and x,, but exciuding E(y I, ;). Finally, to
complete the specification of the model, it is assumed that conditional on x, and 7, ,, the disturbance terms
u,, v,, and M, are identically and independently distributed (i.i.d) with zero means and constant variance-

covariance matrix given by?

U, o, 0 | 0,
P L L S @7
'ﬂ, kal kal ' Q J

where 0,,, denotes a 1 X g vector of zeros and € is the k X k variance-covariance matrix of 1.
In what follows, it also proves convenient to define the composite and scaled random variables,

®,=u,+fBn, with Var(®,) = 6% = o> + BQR’,

2 The case when the error terms are conditionally heteroscedastic will be examined in Section V.
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g, =u+pBn,-v, with Var(e,) =62 = 62+ BOR’ + &,
v, = /0, and £ =¢/o,.
As shown below, the rational expectations solution depend on the cumulative distributions function of v, and

&, which are respectively denoted by F(*) and H(+). Other key variables entering the solution are,
= [y ~1EG, 11,0 -Bx 1o, 28)
and
ey = [V + 8, ~TEG, |1, - Bx" |l 29

where x7 = E(x I, ).

With the above notation, the process for y, can be written compactly as

[ . 0
YEQ, |1 ) +Bx +a,, if v>cp, 2.10)
y, =
Vit otherwise,
when no adjustment in the lower bound takes place at time ¢ (that is, when s, = 0) and,
e . 1
YE(y,|1.)+Bx" +o, if &>c,, @11

Y

Yo * O,V otherwise ,

when a jump in the bound occurs at time ¢ (s, = 1). Thus, the proposed LD-RE model with discrete changes
in the bounds encompass the cases when the bound is (i} fixed (or perfectly forecastable), and (i) changes
stochastically in every period and, consequently, is not perfectly predictable [Pesaran and Ruge-Murcia
(1995)]. The present more general specification allows a formal treatment of a wide variety of economic
problems where the realignments to the bound are made infrequently and at discrete time intervals, and where
the agents’ uncertainty about both the occurrence and the size of the adjustment in the band affect the

evolution of the endogenous variable.



IIl.  Solution for the One-Sided Case
On the assumption that the state s,, =/, for i = 0, 1 is observed by the agent at time ¢-1, the

conditional expectation of y, can be written as®
E,|I.) = Ep |1 _,5,=0)xP0)+EQ,|I_,5=1)XP(0D), (3-H

for i =0, 1, where the values of P,(r) and P,(t) are given by the ith row of the matrix P,, and satisfy the
testriction P(f) + P,(t) = 1. From (2.10) and (2.11), it can readily be seen that the conditional expectations
on the right hand side of (3.1) can be written as the following weighted averages of the conditional
expectations for the case when y, is above the bound and when it is at the bound,

E@ |1 ,.5,=0) = EQ,|1_,v>cp) Priv>cl) + EG, |1, v,S¢) Priv,Sc.), (3.2)

and

EG L ,5,=1) = EQ |I_,E>c) PrE>c) + EQ, .8 ey PrESc,). (3.3)

Using the appropriate expressions for the expectations of y, conditional on the information set
available to agents at time -1, the state s,, and the position of y, with respect to the band [see Lee (1994), and

Pesaran and Ruge-Murcia (1995)], and substituting (3.2) and (3.3) into (3.1} we have:
EGL) = {WEQ L) + BxS + 0, EW L, v> et =HED] + v, Hed)}

X Pt + {VEG 1) + B + S, EG, ., E>e/)M1 -Fle,) (3.4)
* (yL,I—l + 81) F(C.Lil)} X P‘](t) 1
fori =0, 1, where we have made use of the relations Pr(v,> ¢,) = 1 - H(c},), Pr(v, < ¢},) = H(c},), Pr(&, > ¢[,)

=1 - F(c[,) and Pr(§, < c),) = F(c},). The particular form of (3.4) in the case when the disturbance terms are

normally distributed is presented in Appendix A. The rational expectations solution for the case of a one-

* Strictly speaking, E(y,|I,.,} should be written as E(y,|l,,, 5., = i) to highlight the dependence of the
expectations of y, on whether a realignment has taken place at time £-1 or not. But to simplify the notation
we have subsumed this dependence implicitly in the information set [, ,, which contains the value of 5, =i
as a sub-set.



sided band with occasional jumps is given by the value of E(y, |/, ) that solves the implicit equation (3.4).*
Below we present the conditions under which this solution exists and is unique.

The relationship of this model with the ones previously considered in the literature is apparent from
(3.4). The case in which no adjustment in the band ever takes place or all adjustments are perfectly
forecastable corresponds to the situation when P, () =0, and P(f) = 1 for all i and ¢. Thus, the second term
in the right hand side of (3.4) drops out and the solution reduces to one presented by Lee (1994) for a fully
predictable, one-sided band. On the other hand, if unpredictable adjustments in the bound take place in every
period (i.e., P,,($) = 1 and P,(z) =0, for all { and 1), then the first term in the right hand side of (2.4) vanishes
and the rational expectation solution corresponds to the one established in Pesaran and Ruge-Murcia (1995).
The rational expectation solution (3.4) is a weighted average of the solutions obtained in these two polar
cases, with the weights given by the transition probabilities in P(¢). The weights are time-varying because
the particular values of P,(f) and P;,(r) depend on the state i which is in effect at the time the agents form
their expectations and could be specified to be a function of predetermined variables.

The following proposition establishes the sufficient conditions for the existence and uniqueness of
the rational expectations sohition in the case of a one-sided band with occasional jumps in the bound.
Proposition 1. Ify < 1, and F(+) and H(s) are continuous and first-order differentiable distribution functions,
then the rational expectations solution for the one-sided band with occasional jumps exists and is unique.

Proof. See Appendix B. B

IV.  Solution for the Two-Sided Case

The specification presented above can easily be extended to the case where both a lower and an upper
bound are imposed on the variable y,. A simple example of a two-sided band is when y, is allowed to vary
around a central value or "parity” (say y.,) within a band of fixed width of size 8.° The upper and lower

values of y, are then given by y,, =y, + 6/2 and y,, =y, - 0/2, respectively. The process for y, is assumed

* Note that c}, and ¢}, (defined by (2.8) and (2.9)) are also functions of E(y, |1,.,).

3 We also considered the case when the width of the band is stochastic, but were unable to find a tractable,
closed-form solution. .



to be described by

th = yC,x-!. + S:(az +vt) ’ (41)

where y,,, is the central parity in the preceding period, and all the other variables are defined as before. It

the follows that,

y.i! = yi,{-] *+ S!(ar +v,) 3 for i = U, L. (4_2)

Defining the variables,
cd = vy -¥EOLL) ~Bxio,,  for i=U, L (4.3)
and
Ch = Ya + 8, ~YEQ ) -Bxilis,,  for i=UL, (4.4)

the observed process for y, can be wriiten as

yylr_p 1f 'U' = CS‘,
y, = 'YE(y:”z-l)"'ﬁxf +w, if 03 < < an_ 4.5)
yL',_,, if UJ’ < C‘g

when no adjustment in the central parity take place at time £ (that is, when s, = 0) and,

Yo +0,+v, if & = c,},,
y, = LYE ) +Bx +w, if ¢ < <cg, (4.6)
yL,:-1+6r+vr’ if g; s Cli-

when the central parity is displaced by 8, + v, at time ¢ (that is, when s, = 1).

As in the previous section, we assume that s, , is included in the agents” information set at time -1

and write the expectation of y, conditional on {, , as,
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Ey|1.) = EQl ,,s5,=0) x P +EQ\_,,5,=1) x P (). (4.7)

=1

Once again the conditional expectations in the right hand side of (4.7) can be written as the weighted averages

of the expectations conditional on y, being inside the band or at the upper/lower thresholds:

EQ . 5=0) = Ey\_,,v,2 cp) Priv,Zep,)
+EO,1 . c<v,<cg) Pric,<v, <cgy) (4.8)
+ B M, v, <c) Priv,<c;))

=17 "¢

and
EQll,5,=1) = EO,ll_, &2 cp) P& 2 cy)
+EM_, e <& <cp) Prics, <& <cp) 4.9)

+ EG I, & <c)) PrE <cp)

Substituting these results in (4.7) and using the appropriate expressions for the conditional expectations that

enter these relations,

EG|1,.) = (g, ll - HEg)) + YEG, ]I, + B (4.10)
0, EW,|L,, ch<v, < coH(ed,) - Hei) +y,,, Hied)}
X Pot) +{rg, + 8,011 = Fleg)) + YEQ,11,.) + Bxf
+ 0BG, ¢l <& <cg)l[Fley,) - F(c&)] Oy + B} X P

As in the one-sided Eand, the special case when no realignments ever takes place [Lee (1994) and Donald and
Maddala (1993}] can be obtained by setting P;,{t} = O for all { and ¢, and P (¢} = 1 for all ¢, while the solution
for a continuously changing band [Pesaran and Ruge-Murcia (1995)) corresponds to P;(f) = 1 for all ¢, and
P,(t) = 0 for all i and r. Therefore, the solution (4.10) can also be interpreted as a time- varying, convex
combination of the solutions obtained for fixed and continuously varying bands. Appendix A presents the

solution for the case of a two-sided band when the error terms are assumed to be normally distributed.
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Proposition 2. Foranyye R, and assuming that H(*) and F(*) are continuous and first-order differentiable
probability distribution functions, then the rational expectations solution for the two-sided band with
occasional jumps in the central parity exits. Ify< 1, then the solution is also unique.
Proof. See Appendix B. l

In order to illustrate the extent to which the rational expectations solution of the LD-RE model with
jumps varies with the probability of realignments, we computed the RE solution of the following model under

three different realignment scenarios:

y,=08EW|, ) +x, +u, u, ~ i.i.d N(0,0.4%), (4.11a)
x,=09x,, +1n, M, ~ i.i.d. N(0,0.25, (4.11b)
Vo = Ve + 58+, v, ~ i.id N(0,1.5%, 4.11c)

where y.,., =0, 8=4, and s, | = 0 (that is, no jump in the central parity has taken place at time z-1). For the
realignment probabilities we considered the cases:

) when the realignment probability is zero and the band is perfectly credible.

(i) when the realignment probability is fixed and set at P, (1) = 0.25.

(fif)  when the probability of realignment is assumed to increase monotonically in x, , according

to a logistic function, namely P, () = exp(Sx, M1 + exp(5x,.)]-
The fundamentals are simulated numerically by iterating successively on (4.11b) using as starting values x;
=1, = 0. For each simulated value of x,, the conditional expectations, x;, are calculated as 0.9x, ,. Taking
the additional parameters as given, the rational expectations solution associated with each value of x{ is
obtained by solving numerically equation (4.10) for E{y I, ).

The RE solutions are displayed in Figures 2 and 3, for 8 = 0, and 8 = 1.5, respectively. The case &
={ is interesting as it represents the situation where the uncertainty about the band is solely characterized by
G,, which measures the degree of volatility in the band. In contrast, Figure 3 gives the RE solutions when
both the volatihity of the band and the expectations of a positive realignment are allowed to impact the agent’s
expectations. As can be seen from these Figures, in all cases the RE solution is a non-linear function of the
fundamentals, x,, and have the distinctive S-shape now familiar from the continuous-time target-zone

literature [see, for example, Krugman (1991)]. However, only in cases where the bounds are perfectly
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forecastable, is the RE solution a symmetric function of the fundamentals. The degree of asymmetry and
non-linearity of the solution crucially depends on the probability pf realignment and the predictable
component of the size of the jump in the central parity. Not surprisingly, the higher is the probability of
realignment, the less non-linear is the solution. For example, in the case when the realignment probability
is postulated to rise with the fundamentals, the degree of non-linearity of the solution declines steadily as the

values of x, are allowed to increase from -1.0 to 1.5.°

V. Extension to the Case of Heteroscedastic Disturbances

In this section we propose a number of time-varying specifications for the vaniance of the error terms
and argue that .the results derived above regarding the existence and uniqueness of the RE solution still hold
in the more general case when the disturbance terms are heteroscedastic. In particular, we consider (i) state-
dependent variances, (f{} ARCH and GARCH specifications, and (iif) other parameterisations of the

conditional variance as a function of lagged endogenous or exogenous variables.

A. State-dependent Variance

The variance of the error terms in the model could easily be specified as a function of the state
variable s,. - An interesting example would be when the variance of disturbance term to the process of the
endogenous variable, namely u,, is allowed to depend on whether a realignment has taken place at time 7 or
not. Hence, 67 could take either of two possible values and the variance of the standardized error terms o,
and €, would be further distinguished by the heteroscedasticity of the disturbance term «,. The association
between the state variable, s,, and the variance of y,, along with the change in parity itself, would help to
econometrically account for the observed jumps in the endogenous variable when a realignment takes place.
Another possibility would be to model the variance of the fundamentals (or a subset of them) as a function
of the state variable. Notice that the specification with a constant (i.e., non-state-contingent) variance is

nested in the more general model where the variance differs across states. Thus, it is possible to employ

® In a related paper, Lewis (1995) develops a model of floating exchange rates with occasional
interventions and shows that the relationship between the fundamentals and the exchange rate depends
directly upon the probability of intervention.
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standard tests to verify if the assumption that the variance is the same for all possible values of s, 1s in effect

supported by the data.

B. Autoregressive Conditionally Heteroscedasticity

Other time-varying configurations for the variance of the disturbance terms are the Autoregressive
Conditional Heteroscedasticity (ARCH) proposed by Engle (1982) and the Generalized Autoregressive
Conditional Heteroscedasticity or GARCH [Bollerslev (1986)]. These specifications are of special interest
when the procedure developed in this paper is applied, for example, to high frequency data on commodity
prices, exchange rates, interest rates, or other financial data. The representation for the disturbance term in
the {x,} process is easily generalized as N, |/, ~ i.i.d (0, Q,), where the conditionally time-varying matrix
€3, could be specified as a function of lagged squared values of the elements of ij, and ©,. In particular,

consider the following multivariate GARCH (q,, 4,) specification [see Engle and Kroner (1995}],

Q =y+pm M _n o+ +uq,n:-q.ﬁr‘qlu;1 +p, 2Pl pngf-fh p'ql, 5.0

where y, 1, fori=1,2,..,q,and p;forj=1,2,. ., g, denote k X k matrices of parameters. A multivariate
ARCH(q,) process for m, can be trivially obtained from (3.1) by restricting the elements of p, forj=1, 2, .
.« g, to be zero.

For the error term u,, notice that the limited-dependent nature of the endogenous variable y, makes
the exact calculation of the residuals for the censored observations infeasible. The difficulty arises because
for the case of observations at the bound, the exact values of the residuals are not observed by the
econometrician. Thus, it does not seem viable to implement ARCH or GARCH specifications for the
variance of the stochastic disturbance «,. This limitation might not be specially significant in the situations
where the heteroscedasticity of the endogenous variable can be modeled as arising directly from the
heteroscedasticity of the fundamentals, x,. In addition, as we argue below, other parameterisations of the
conditional variance of k, in terms of (observable) lagged endogenous or exogenous variables are feasible

and straightforward to implement.
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C. Other Specifications for the Conditional Variance

In view of the difficulties associated with the use of ARCH type specifications in the context of the
limited-dependent variable models, one could employ other parameterizations of the conditional variance of
u, (or of 1), that do not involve lagged residuals. Inthe case of the target-zone application discussed below,
it is, for example, reasonable to mode! the conditional variance of u, as a function of the lagged squared
deviation of the exchange rate from the central parity. This specification seeks to account for the observed
increase in the volatility of the exchange rate as it approaches the lower/upper bound [see Bertola and

Caballerc (1992, p. 527)].

D. Existence and Uniqueness of the Solution in the Case of Heteroscedastic Disturbances

Recall that the RE solution of the model was derived by taking expectations conditional on the
agent’s information for all possible states of the system. Also notice that the lagged values of n,, &, and all
the variables are assumed to be contained in /, ,. Thus, for the more general case when the variance is state-
dependent, or the conditional variance is assumed to follow an ARCH/GARCH process or other
parameterisation in terms of lagged variables, the RE solution would still be given by (3.4) and (4.10) for the
one-sided and two-sided bands, respectively, with the conditional variances of the composite errors ®, and
g, varying overtime. The existence and uniqueness of the solution in the case of conditionally heteroscedastic
disturbances is insured under the conditions set out in Propositions 1 and 2, because o, and €2, are functions
of lagged, and not current values of E(y,|/, ). Thus, results in Appendix B hold for these more general

specifications of the error terms.

VL Derivation of the Likelihood Function
Consider first the case of a one-sided band, and suppose that T observations are available on the
various variables that enter the LD-RE model characterized by equations (2.2) to (2.5). Letw, = {x,, 5. .,

y,} and notice that since w,, w,, . . . w, are contained in /, (the agent’s information set at time £), we can write,
Priw,, w,,~, w,, ~,wp) = Priw) Priw,|I.) - Priw |I_) - Priw,|I_), (6.1)
where

15



Pr(w:“r-l) = Pr(xr“r-l) Pr(s:!xr’lr-l) Pr(yl.:ist’x:’l:-l) Pr(yr|yu’sr’x:’lr‘1)' (62)
However, under the assumptions set out in Section II and V, we have:

Pr(xrllr-l) = (Zn)_m}ﬂri'% exp[_% (xr _rlzl.r-l)'ggi(x: _Flzl,!-l)] ’ (63)

where £, denotes the (possibly time-varying) conditional variance matrix of the disturbance term nj,. Also

since 5, and 1}, are assumed to be distributed independently,

Pris|x,I1_) = Pr(s |l ). (64
To derive Pr(y,ls, x,, I,_,) first note that

Priy, |s, = 0,x,1) =1, (6.5)

because in this case y,, = y, ,, and
Priy,ls, = Lx,1_) = 2n62)* exp|- Ay, ~T,z,, %207 ], (6.6)

where we have used the assumption that v, is independently distributed from n, and s,. Finally, consider the
last term in (6.2) and note that Pr(yly,, s, x,, I,,) = Pr(y,ly,, x, 1,.;), because observing y,, and y, , , (the
latter being contained in /, ;) is sufficient to infer s, (i.e., whether there has been an adjustment in the band
at time 7 or not.) The converse, clearly, does not hold: observations on 5, and y, |, do not necessarily deliver

the value of y,,. Having conditioned on x, and y,, the process for y, is simply given by

YE(,_)+Bx, +u,, it >y, ~YEOM_)-Bx,, (6.7)

Y, = .
! Yy, otherwise .

The density function of (6.7) is akin to the density that appears in the standard Tobit model. Assuming that

the 2,’s are normally distributed, for observations lying exactly at the (lower) boundary we have:
Pr(y!IyLr’ X Ir—l) = d)(cl.r) ’ (68)

where @ is the cumulative distribution function of the standard normal variable, and
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CL: = (yLr - YE(yr“:—l) = Bxﬂ )fcur * (69)

while for observation above the boundary
Pry, [y %, 1,0) = 2ROZ)™ exp|- 0, - YEW,IL,,) - Bx,)/20%,|. (6.10)

In what follows it will be convenient to represent the unknown parameters n the sets, {T",, Q3 (P},
{T,, 62}, and {v, B, ©2,}, by the parameter vectors p,, P, P3, P4, Yespectively; and let p = p,up,upsp,. Also
denote by E, the observations of y, at the lower band and by =, the observations above the band, and define
= =ZUE,. Finally, denote the set of observations at which no realignments has taken place (that is, 5, = 0)
by 1o, and the remaining set (i.e., the data points for which s, = 1) by 1,. Collecting the various expressions

given above in (6.1), the log likelihood function in this case is given by

L) = Lp,) +Lp) +Lp) +L(py) - ©.11)

where L, L, L, and L, denote, respectively, the contributions of x,, s, y;,, and y, to the overall log Jikelihood

function. The component log-rlikelihood functions L, L, L, , and L, are given by

L = - (kT12)log(2m) - (T12)log | |

T (6.12)
(%)Y &+, -T2, 09 0 -1z, )
=1

L = logPr(s) + lOgP?“(S2 [11) + o+ log Pris, |IT_2) +log Pr(s, l L), (6.13)
L, = -(172) X log(2nc)) - (1120)) X (Ay,-Tyz,, Y, (6.14)

1e T, 1e T,

and finally,

L, = Z_ log(c,) - (% )z; log (2na?,)

) ) (6.15)

- %o,y y-YEG),) -Bx ],

tes,
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where ¢, is already defined by (6.10) and differs from ¢}, and ¢}, that enter the RE solution.” The
conditional expectations, E(y |, ;), are given by the solution to the implicit function (3.4). Notice that the
above specification of the log-likelihood function includes the cross equation restrictions that are implicit in
the dependence of E(y,|/,.,) on the parameters of the process of x, and the changes in the band.

For the case of a symmetric two-sided band (where Ay, = Ay,,), the log likelihood function can be
obtained in a similar fashion and is given by (6.11), except for L, which is now generalized to

L =Y logd(c,) - (%)Y log(2na;,)

e, 1€ g,

-(% 0,0 Y Iy, ~YEQ).) -Bx)*+ ¥ logli-@(c,)]

teE, teE,

where ¢y, = (vy, - YEQM,) - Bx,Yo,,, and E, denotes the set of observations of y, on the upper bound.

VH. Illustration: Exchange Rate Determination in a Target Zone

The LD-RE specification developed in this paper provides a flexible econometric framework for the
analysis of the various issues that arise in exchange rate determination within a target zone, and in our view
compares favourably with the continuous-time literature on target-zones which have emerged over the recent
years following the serninal papers of Krugman (1991) and Flood and Garber (1991):

() Our proposed model permits a generai specification of the fundamentals, and can accommodate
both stattonary and non-stationary processes. This needs to be contrasted with the continuous-time literature
which assumes that the fundamentals follow either Brownian motion [as in Krugman (1991) and Fiood and
Garber (1991)1, or the less tractable Omstein—Uhlenbeck process [as in Froot and Obstfeld (1989) and
Lindberg and Soderling (1991)].

(i) The model’s disturbances could be conditionally heteroscedastic and can possess any probability
distribution, provided that certain weak restrictions {(e.g, continuity and differentiability) are satisfied. To our

knowledge none of the continuous-time versions of the target-zone model allow for this important feature

" Notice that in (6.14), for the observation in the set with no realignments, namely 1,, we have log Pr(y, s,
=0,x,1,,)=0.
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of the time series observations.

(iii) The specification allows for stochastic jumps in the bounds with a time-varying probability.
This is a significant improvement over the continuous-time literature that considers changes in the central
parity under a number of special cases, while retaining the assumption that the fundamentals follow a
Brownian motion. Svensson (1991), for example, examines the situation when realignments of a constant
size take place with fixed probability and independently of the position of the exchange rate in the band;
Bertola and Svensson (1993) incorporate an exogenous, time-varying, stochastic devaluation risk that can
account for the observed positive correlation between the exchange rate and the interest rate differential;
Bertola and Caballero (1992) allow for deterministic changes in the central parity with a constant probability
when the exchaﬁge rate is at the upper edge of the band [see also Miller and Weller (1988, 1989)]; and
Tristani (1994) examines the case of a constant realignment size occurring with a probability whichis a linear
function of the fundamentals and symmetric with respect to the central parity. Unfortunately, the solution
of the continuous-time models loses much of its analytical tractability when the fundamentals do not follow
a simple Brownian motion [see for example, Miller and Weller (1989) and Lindberg and Soderling (1991)].

In the discrete-time literature, Koedijk, Stork, and de Vries (1993) examine a version of the Krugman
model and show that the S-shape property of the solution is maintained under less restrictive distributional
assumptions. Pesaran and Samniei (1992a, 1992b) develop aLD-RE specifiéation with current expectations
and perfectly credible bounds whose solution is also characterized by an S-shape relationship between the
exchange rate and the fundamentals. Pesaran and Samiei (1995) consider a LD-RE model with future
expectations and demonstrate that when the forcing variable is serially independent, the exact analytical
solution of the model can be calculated by backward recursion. In addition, the authors show that forthe case
of a serially correlated forcing variable, it is not feasible to estimate the exact solution of the model and an
approximation procedure is required.?

The models of exchange rate determination that employ the assumption of UIP usually yield an

specification in which the exchange rate is a function of the agents’ expectations about its future value [for

# In particular, Pesaran and Samiei (1995) adopt as an approximation E(z,,, ., ) = E(z,, ., Ml,), where (in
their notation) z, is an “intervention" variable which insures that the endogenous variable remains inside the
band.
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example, see Domnbusch (1976), Frenkel (1976), and Mussa (1976)}. However, as shown in the Appendix
C, the process implied by the saddle-path stable solution of a linear future expectations model (with and
without a lagged endogenous variable) is mathematically equivalent to the one obtained using the solution
of acurrent expectations model with certain parameter restrictions and a suitable transformation of the forcing
variables. For the case of the non-linear RE models in the exchange rate target-zone literature, the
appropriately formulated current expectations model might be regarded as an approximation to the standard

future expectations model.

A. Mode!l of Exchange Rate Determination
We consider a dynamic, sticKy-price exchange rate model [see Dornbusch (1976)] consisting of the

following equations:’

E(yH-l - ytllx) =r+ C; ’ (71)
VoY =00 - Yo 0<o<l1, (7.2)
Y, = Op+ O, - O, + Oy, + U, 0,00, 06 > 0 (7.3)

Equation (7.1} is the Uncovered Interest Parity condition where y, is 100 times the logarithm of the exchange
rate, , is a time-varying risk premium, and r, denotes the interest rate differential between the home and
foreign countries (measured as 100 times the logarithm of the ratio of domestic to foreign interest rates).
Equation (7.2) describes the adjusiment process of the exchange rate towards its equilibrium level (designated
by y,). Finally, (7.3) determines the (long-run} equilibrium level of the exchange rate and corresponds to the
one obtained in the standard monetarist model with a Cagan money demand equation and the assumption of
Purchasing Power Parity [see Frenkel (1976), Kouri (1976), and Mussa (1976)]. Thus, y, is a function of the
interest rate differential, r,, the differences in outputs, z,, and money supplies, m,, between the home and
foreign country. The variables z, and m, are measured as 100 times the logarithms of the ratio of domestic
to foreign outputs and money supplies respectively. The parameters o, ), and ¢, are positive and , denotes

a stochastic disturbance term that is assumed to be serially uncorrelated and normally distributed with mean

® Miller and Weller (1990) also examine a continuous-time model of exchange rate target-zones with price
inertia.
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zero and a time-dependent variance, o2, [the specification for 67, will be presented below]. Notice that the
above model encompasses the flexible price model as a special case when ¢ = 1. Eliminating r, from (7.1}

and (7.3), and solving for y, in terms of the fundamentals we obtain:

Y = "[E(yl"‘] |Ir) * ?\'yr-i +W:’ (7‘4)
where
o -
v = 2% oeyel, A=_179%  o<rc«l,
1+¢a 1+¢a,
and
W= |t o0 - 0,02+ om0, § G+ 0 ).
! 1+¢(I‘ ] 2 t 3 ' 1 ' f

As shown in Appendix C, the saddle-path solution of a linear rational expectations model with future
expectations is mathematically equivalent to a rational expectations model with current expectations, once
the model’s forcing variables are appropriately augmented with their lagged changes. In the present
appiication where due to the target zone regime being in effect the model is non-linear, the current
expectations version of the model is best regarded as an approximation to the future expectations model,

(7.4). Applying Proposition 4 in Appendix C yields

y, = YE(ytlIr—l) * CI(1 —Y)yr-l + er + u, (7'5)

where ¢, is the root of the quadratic equation Ac + y¢' = 1, that falls inside the unit circle.'® The augmented
set of forcing variables in (7.5) are now m,, z,, their lagged changes and the determinants of the risk premium
{,, and their lagged changes. In the empirical applications we proxied the determinants of the risk premium

by the lagged interest rate differential, r,;, and the lagged deviations of the exchange rate from its central

' Notice that denoting the roots of this equation by ¢, and c,, we have (1- ¢))(c, - 1) = X1 - - y) = o/(1
- $) > 0, and hence one of the roots must always lie inside the unit circle.
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parity, ¥, - Ye,.1» and used Am, Am, ,, Az, |, Az, Ar,,, and A(y,, - y.,), as lagged changes of the forcing
variables to control for the error involved in estimating the model with current instead of the future

expectations of the exchange rate. Therefore, for x, we choose the 11 x 1 vector of explanatory variables,

= /
xl - [1 5m,’Zf:Am:_11Aml_2,Azr_1$Azl_zsr:_l,(yr_l"yc‘,_l)5Ar,_2$A(y,_2_yC';_2)] -

We estimate (7.5) as a two-sided LD-RE mode! with jumps using 166 monthly observations on the
French Franc/Deutsche Mark bilateral exchange rate between July 1979 and April 1993." During this
period, the exchange rate was allowed to fluctuate +2.25% around an agreed central parity with six changes
in the parity taking place on 24 September 1979, 5 October 1981, 14 June 1982, 21 March 1983, 7 April
1986, and 12 January 1987." The data on output was proxied by the index of industrial production for
which monthly observations are available. The money supply is measured by seasonally unadjusted M1 and
the interest rate corresponds to the end-of-period, nominal interest rate per month. The time series data on
all the variables were obtained from the OECD Main Economic Indicators, except for the central parities that
were kindly provided to us by Casper de Vries. The upper and lower bounds were calculated using the fixed
maximum deviation from the central rate {(i.e., 2.25 percent).

We now specify the process of the fundamentals of the exchange rate, namely the relative money
supplies and output between France and Germany. The money supply differential variable is modeled as an

autoregressive, first-difference stationary process,
Am, = o, v, Am_ +oLAm, , +0Am ,+m,, (7.6)

where 1, is a random disturbance term assumed serially uncorrelated and normally distributed with mean

zero and variance o-. The output differential variable is postulated to follow a stationary process in levels,
L A R CE/RTRL PYE 7N

where 1),, is an esvor term assumed N(0,6%) and serially uncorrelated. For the estimation of the model, the

" In practice our sample period starts in July 1978, but the first twelve observations are emmployed to
construct the lags of the explanatory variables.

12 After 2 August 1993, the exchange rate was allowed to fluctuate by £15% around the central parity.
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disturbance terms 1),, and 1, are allowed to be contemporaneously correlated. The twelfth-order lagged
variables have been included in (7.6) and (7.7) in order to capture the seasonal component that may be present
in the data.

The realignment process is specified as
yC: = yC:—l +S:(5 +V.r) 4 (78)

where y., is the central parity at time ¢ and & is the {constant) forecastable part of the realignment. Finally,

the matrix of transition probabilities is given by

P() = { Poo(t) Po:(t) ] (1.9
1 0

where F,,(1) represents the probability of a realignment at time ¢ and P,,(f) has been constrained to be zero
since realignments in two successive periods are not encountered in the sample under consideration.

In order to model the increase volatility of the exchange rate as it approaches the upper/lower bounds
[see Bertola and Caballero (1992, p. 527)], the variance of the disturbance term to the exchange rate equation

(namely u,) was parameterised to be a function of the lagged square deviation of the central parity. Formally,

G = a+by,, ~ye, VP, (7.10)

where g and b are two non-negative scalar coefficients. For the estimation of the models, we assume
homoscedastic conditional vartances for the random errors in the processes for the fundamentals given by
(7.6) a.nd (7.7). We tested for neglected ARCH effects in the disturbances of these processes, but could not
reject the hypothesis that disturbances to the money growth and output differential equations are conditionally

homoscedastic.'?

13 The statistics obtained from the product of the number of observations and the uncentered R of the OLS
regression of f}Z, on a constant and four of its lags for i = 1, 2 were 6.012 for the money growth differential
and 5.513 for the output differential. Under the null hypothesis of no ARCH eifects these statistics are
asymptotically distributed as chi-squared variates with 4 degrees of freedom.
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B. Empirical Results

We estimated four different exchange rate models. The first model (referred to as M) is a benchmark
linear RE model which does not take into account the effect of the band on expectations. The remaining
specifications (models M, to M.} explicitly allow for the effect of the target zone on the agents’ expectations
of the exchange rate, but differ in the way the probability of realignment is modelled. Specifically, model
M, assumes that the band is fully credible and, consequently, the probability of adjustments in the band is set
equal to zero {as in Pesaran and Samiei (1992b)]; model M, allows for a constant, but a non-zero, probability
of realignment; and model M, postulates a time-varying realignment probability, where P,,(t) is specified to
be a logistic function of the exchange rate deviations from the central parity, the interest rate, money supply,
and output differentials between France and Germany. The parameter estimates for these models, computed
by the ML method, are presented in Table 1.

Notice that for the linear model, the point estimates of the coefficients on the money supply and
output differential have the opposite sign to the one predicted by economic theory. That is, an increase in
the French money supply relative to the money supply in Germany would imply an exchange rate
appreciation. Similarly, a reduction in output in France vis a vis Germany would generate an appreciation
of the exchange rate. For this model, none of the estimated coefficients, except for the coefficients of the
expectational variable, v, is different from zero at conventional levels of significance. In contrast, under the
non-linear models, all the estimated coefficients have the expected signs, and in the case of models with non-
zero realignment probabilities, v is found to be significantly different from both ¢} and 1. Under model M,
the coefficient of the lagged exchange rate and interest-rate differential variable are also significant at the 5

and 10 per cent level respectively. Notice that none of the other estimated coefficients is statistically

'* As can be seen in Figure 1, there is a small number of observations of the exchange rate that lie outside
the target zone. In particular, the data points for October 1980 and March 1993 are below the lower bound
while for October 1988 and December 1990 are above the upper bound. For the estimation of the limited-
dependent variable models these observations are treated as censored at their numerical value rather than at
the upper/lower limit. Given (i} the small number of observations outside the band (4 out of 166) and (ii)
their numerically small deviation from the bounds, it seems unlikely that the results presented below could
be significantly affected by the way we have treated these four observations.
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significant; suggesfing that even in the case of the non-linear models the deviation from the random walk
model might be small.

The RE solution of the model was found under the assumption of saddle path stability. In particular,
the root ¢, was postulated to lie inside the unit circle. Using the estimated parameter values it is possible to
verify whether this conjecture is indeed satisfied by the data. From (C.9) the coefficient on the lagged
endogenous variable was given by ¢,(1 - v). In the empirical specification of the model [see Table 1], the
coefficient on the lagged endogenous variable is obtained as the sum of coefficients on y, , and on y, | -
Yeri- Solving for ¢, in the above relationship and using the estimates in Table 1, yield the estimates 0.997,
1.047, 1.090, and 0.889 for ¢, in the case of the models M,, M,, M,, and M,, respectively. Thus, except for
the model that explicitly allows for a time-varying probability of realignment (i.e. model M,), the point
estimates of ¢, suggest either explosive or near explosive processes for the exchange rate.

The estimates of the time-dependent variance of i, are presented in Table 2. Notice that in all cases
the coefficient on the lagged square deviation of the exchange rate from the central parity are significantly
different from zero at conventional levels of significance. This results supports the view that the variability
of the exchange rate increases as it approaches the upper/lower limit of the band and provides econometric
evidence against one of the implications of the continuous-time, fully credible models of exchange rate target
zones that predict a low-exchange rate variability in the neighbourhood of the upper and lower bounds (see
Beriola and Caballero (1992, p. 526)].

Since there are 6 realignments of the central parity during the 166 months in the sample, an
unconstrained estimate of the probability of realignment (i.e., an estimate not subject to the cross equation
restrictions of the RE solution) would have been 6/166 =0.0361. The estimate of the realignment probability
in the model with a non-zero, but constant probability is 0.0392 (0.0154). The bracketed figure is the
asymptotic standard error of the estimate. The estimates for the time-varying probability of realignment
model, M,, are presented in Table 3. Note that all the explanatory variables, except for the output

differentials, are significantly different from zero and have the expected signs. Thus, arise in the interest rate

13 Notice that the coefficient on the central parity deviation is also (by definition) a coefficient on the
lagged endogenous variable, albeit subject to the linear constraint that its numerical value be the same that
on Yo
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differential, a higher rate of money growth in France than in Germany, and a larger deviation of the exchange
rate from the central parity increase the probability of a realignment.

Figure 4 examines the relationship between the probability of realignment and the interest rate
differential and the deviation from the central parity. In constructing this graph, we have fixed the money
supply and output differential between France and Germany to their average levels during the sample period.
From this figure, it is apparent that for certain values of the interest rate differential, the probability of
realignment can increase quite rapidly with the exchange rate deviation from the central parity. Forexample,
for a difference in the rate of interest of 0.5 percent per month between France and Germany, the probabihity
of realignment can increase f_rom almost zero at the lower end, to 0.026 at the central parity, and to 0.754 at
the upper end of the band. These results indicate a strong asymmetry in the empirical relationship between
deviation of the exchange rate from the central parity and the probability of realignment. Thus, for plansible
values of the interest rate differential, the probability of realignment is zero or close to zero when the
- exchange rate is at the bottom of the band and significantly lairger than zero (sometimes close to one) when
it is in the upper half of the band. This empirical result would seem to undermine the assumption of a
symmetry in realignments imposed by some of the researchers in the continuous-time literature [see, e.g.,
Tristani (1994)].

The graph of the time-varying realignment probability is presented in Figure 5. Notice that the
probability rises significantly prior to the realignments in October 1981, June 1982, and January 1987. The
probability associated with the adjustments in September 1979 and April 1986 are, however, much smaller.
Itisinteresting to note that the two largest values estimated for the probabilities of the realignment correspond
to what turned out to be the largest devaluations in the sample. The realignments on 5 October 1981 and 14
June 1982 were approximately of 8.4 and 10.1 percent respectively compared with 2.0, 7.9, 6.0 and 3.0
percent (approximately) for the devaluations on 24 September 1979, 21 March 1983, 7 April 1986, and 12
January 1987. Similar results are obtained by Koedijk, Stork, and de Vries (1993) that use a linearised,
discrete-time, exchange rate model with a GARCH(1,1) disturbance term to calculate the probability of
realignment (defined in their analysis as the probability that the exchange rate in the incoming period falls

outside the target zone).
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The importance of allowing for variations in the probability of realignments can be formally
evalnated by testing model M, (that assumes a fixed realignment probability) against model M, (that postulate
a time-varying probability of realignment). Specifically, we test whether the restrictions imposed by M; of
a fixed, non-zero realignment probability is supported by the data against the alternative that lagged interest
rate, money supply, output differentials, and lagged deviations from the central parity have significant
explanatory power over the probability of realignment. Using the maximized log-likelihood values in Table
4, the relevant chi-squared statistic for such a test is given by 2(955.973 - 943.921) = 24.104 which is well
above the 1 per cent critical value of the chi-squared distribution with 4 degrees of freedom. Thus the
restriction of a constant probability of realignment is decisively rejected by the data.

In principle, it is also possible to devise formal statistical tests of the importance of allowing for the
bands in the analysis of the exchange rates. There are, however, a number of technical difficulties that need
to be resolved, which arise because (i) the linear model M,, and the three non-linear models are non-nested,
(i) the parameters of the matrix of transition probabilities would not be identified under the null hypothesis
of linearity, and the testing problem will be subject to the so-called Davies’ problem [Davies (1977)]. A
satisfactory treatment of this probiem is beyond the scope of the present paper, but a casual examination of
the values of the log-likelihood function and the mean squared forecast ertors in Table 4, do seem to support
the non-linear specification, M,, with time-varying realignment probability, as compared to the other three

specifications considered in the paper.

C. The Credibility of the Target Zone

‘We now turn to the question of the credibility of the target zone regime. In what follows we focus
on model M,. Svensson (1993) defines the target zone as credible if the expected future exchange rate is
inside the current band. Since under the assumption of UIP and in the absence of a risk premium, the interest
rate differential would measure the agents’ expectations of devaluation, Svensson uses the spot rate and the
interest rate differential in order to construct a series of future expected exchange rate. Subsequent work by
Rose and Svensson (1994) and Rose (1993) have focused more precisely on the agents’ expectations of

changes in the parity. In particular, they distinguish between devaluation within the band and realignment
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expectations. Total expectations are measured by the interest differential, while devalaation within the band
is postulated to be a function of various economic variables. By subtracting the latter from the former, these
researchers obtain an empirical estimate of the agents’ expectations of arealignment [see also Koedijk, Stork,
and de Vries {1993)].

In our preferred specification, M,, the rational expectations solution provides a close form
representation of the agent’s expected future value of the exchange rate. Consequently, as in Svensson
(1993), it is possible to assess the credibility of the band by examining whether the expected future of the
Ffr/DM rate is inside or outside the band. Only for 7 of the 156 observations in the sample, does the expected
exchange rate exceeds the upper limit of the target zone. In most cases, this event is associated with the
agent’s correctly anticipating an incoming realignment of the central parity. Specifically, the expected
exchange rate rises above the upper bound in the months of June, August and September 1981 (just before
the parity realignment of October 1981), April and May 1982 (prior to the realignment in June 1982),
December 1986 (prior to the realignment of January 1987) and finally in October 1988.

In light of the above results, one could conclude that although the target zone has been generally a
credible instrument of exchange rate management (as captured by the effect of the band on expectations), in
the periods preceding parity realignment the announcements by the government about the stability of the
system have not been credible to the agents and that the agents have correctly anticipated most of the changes

in the central parity that have taken place over the period between July 1979 and April 1993.
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Table 1
Parameter Estimates under Alternative Exchange Rate Models

Explanatory Linear Model P,(H=0 Py () = constant’ Py () =fx)
Variables M) (M) (M) (M)
Intercept -0.162 -0.139 -0.212 -0.247
(0.399) ' (0.923) (0.400) (0.291)
Ey )i ) 1.381™ 0.424 0.424" 0.684"""
(0.640) (0.515) (0.278) (0.129)
Yir -0.378 0.575 0.574 0317
(0.637) (0.515) (0.279) (0.128)
m, -0.158 0.367 0.283 0.225
(0.386) (0.858) (0.344) (0.242)
z, 0.435 -0.488 -0.374 -0.280
(0.732) (0.695) (0.413) (0.281)
Am, | -0.644 1.319 1.072 0.380
(1.287) (1.969) (0.964) (0.670)
Am, , -0.637 0.746 0.629 0.668
(1.331) (1.347) (0.846) (0.625)
Az, , -0.131 -0.021 0.012 0.109
(0.344) (0.179) (0.107) (0.254)
Az, , -0.219 0.118 0.089 0.150
(0.431) (0.528) (0.313) (0.263)
riy -0.235 -0.203 -0.174 -0.429°
(0.430) (0.485) (0.302) (0.273)
VYo oa -0.002 0.028 0.054 -0.036
(0.038) (0.073) (0.055) (0.045)
Ar,, 0.147 0.339 0.306 -0.048
(0.564) (0.914) (0.745) (0.309)
A, 5Ve 10 -0.0004 -0.011 -0.003 -0.008
(0.040) (0.125) (0.050) (0.032)

Notes: The dependent variable, y,, is 100 times the log of the exchange rate (in French Francs per Deutsche
Marks), m, is 100 times log of the relative money supplies, z, is 100 times log of relative outputs (proxied by
indices of industrial production), r, is 100 times the log of the relative nominal interest rates, y,-y., is the
exchange rate deviation from the central parity. Asymptotic standard errors are presented in parenthesis.
Specification of P,,(¢) = f(x) is given in Table 3. The superscripts *, ", and ™" respectively indicate statistical
significance at the 10, 5 and 1 percent levels.
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Table 2

Estimates of the Conditional Variance of z, Under Alternative Models

Explanatory Linear Model Py =0 Py, (1) = constant P, =flx)
Variables (M) (M,) (M) (M)
Intercept 0.791™ 0.385™ 0.381"" 0.420"
(0.123) (0.085) (0.082) (0.085)
1Y, i) 0.147" 0377 0.377"" 0271
(0.081) (0.117) (0.107) (0.092)

Notes: Asymptotic standard errors are presented in parentheses. For further details also see the notes to Table

1.

Table 3
Estimates of the Probability of Realignment

Explanatory Py, (1) = constant Py (o) =fix,)
Variable (M (M)
Intercept term 0.039™ -8.709™
(0.015) (1.804)
I - 10.172™
(2.990)
Y- Yo - 2'107"*
(0.563)
Am, -Am, - 16.135"
(8.510)
Z - -3.669
(3.691)
L, -25.593 -19.192

Notes: Py, (1) is the probability of realignment (conditional on not having had a realignment in the current
period), and is assumed to be a logistic function of x, = (1, r,;, ¥, - Y., Am,, - Am,,, Z,,). Asymptotic
standard errors are presented in parentheses. L. is the maximized value of the log-likelihood function
associated with changes in the central parity. See relation (6.13) in text. For further details see the notes to

Table 1.
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Table 4
Comparison of the Alternative Exchange Rate Models

Criteria Linear Model Py (=0 Py, (r) = constant Py =fix,)
(M) (M) M) (M)

Mean of Squared 0.99% 1.044 1.044 0.925

Forecast Errors

L, -80.675 -62.505 -62.173 -56.407

L+L+ L, + L, - - 043,921 955973

a o0 4.50 4.50 4.50

Notes: P,, is the probability of realignment (conditional on not having had a realignment in the current
period). O is the assumed value of the band width. L,, L, L,;, and L, are the maximized values of the log-
likelihood functions defined in Section VI.
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Appendix A: RE Solution in the Case of Normally Distributed Disturbances
For the econometric estimation of the model, it is often convenient to assume that the disturbance
terms are normally distributed. In this case, the standardized variables £, and v, are i.i.d. N(0,1), with their
distribution and density functions, denoted by ®(*) and &(s), respectively. The One-Sided Case
Using the well-known results for censored normal variables [see Maddata (1983, pp. 367)] write,
E(ull,.,, v>el,) = oL W1-D(c])], (A.1)
and
E(EM, 1, E>cl) = 0(ch,W{1-0(ct)]. (A2)
Substituting (A.1) and (A.2) into (3.4), |
E)L.) = {(YEQM)ABXI1-(c)] + ., Dlct) + O,0(ci)} X Pio(t)+
{VEGM.D+BxI1-@(c; )] + Op, +8)D(cy,) + Oulle )} X Pyy(1), (A.3)
which implicitly determines the rational expectation solution E(y/l. ;). Since the conditions stated in
Proposition 1 hold, a value for coefficient of the expectational variable y< 1, insures that the solution of (A.3)
exists and is unique.
The Two-Sided Case
Using the results [Maddala (1983, pp. 366)],
E(0M,, cp,<v<ct,) = [9(cf)-0(e 5V D(c,)-D(c])] (A4)
and
EGM,., cii<€<ey) = [9c)-0(c )V [P(ey,)-DleL )], (A.5)
into (4.8), the RE solution can be written as,
ECy 1) = {YEQM, B[ D(c)- ()] + vy, 1-0(cp,)] | (A6)
+ Y21 ®P(ch) + O[O0 EI } X Pols) |
+ {VEQ M, )+BxND(c;,)-De;)] |
+ Gy tOL-@lei)] + (. +8)D(el,) + O {d(ei)-d(e ) X Py(2).
Since the normal distribution function is continuous and differentiable, Proposition 2 insores that the solution

of the implicit function (A.6) exists for any value of y and is unique if y< 1.
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Appendix B: Existence and Uniqueness of the Rational Expectations Solution
Below we will establish the conditions for the existence and uniqueness of the rational expectations
solution under a general specification for the probability distribution of the error terms for the one-sided and
two-sided band.
The One-Sided Case
Using the definitions (2.8) and {2.9), ¢}, can be written in terms of ¢7, as ¢}, = ac}, + b,, where a =
6,/0,, and b, = 8 /5,. Note that a is positive and b, is assumed to be finite. Employing the definition of c7,,
the rational expectations solution (3.4} is rewritten as
¢2, = e [1-H(c2 )P o(0)-Flack +b,)P (9]
- (Ya)EE N, ,, E>ac) +b)[1-Flac) +b)IP,, (D) (B.1)
-YE@M, ,, v >c] MI-H(cI NP, (0) - (Wb, Flac +b )P, (1) - d,,
where d, = [(1-Y)/c J[Bx/(1-Y)-v,,.,], and we have used P (#)+P,(£) = 1. Now define the function,
G(ct) = f, - Yl [1-H(c )P o(t)-Flac)+b )P, (1))
+ (YEEM, ,, E>ac) +b ) 1-Facd +b 1P, (1)
+YEQIL,;, v, > eI I - H(C )P (D) + (Yia)b, Flaci +b )P, + d,,
In order to prove that the rational expectations solution exits, we need to show that the function G(c?,) has
a fixed point.'"® Consider first the following result:
Lemma 1. Assume E(vll ) exists, then we have
Limed oo B, 0>E)[1-H(e])] = 0, (B.1)
and
Limeo _y oE(OJL,,, v pH (el ) = 0. (B.2)
Proof. See Pesaran and Ruge-Murcia (1993). B
Using Lemma 1, the existence and uniqueness of the rational expectations solution can be established.

Proposition 1. If y< 1, and F(*) and H(*) are continuous and first-order differentiable distribution functions,

' Note that 5, is a linear function of E(y I, ;). Thus, establishing that G(c},) has a (unique) fixed point
implies that there exists a (unique) value of E(y I/,_,) which satisfies (3.4).
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then the rational expectations solution for the one-sided band with occasional jumps exists and is unigue.
Proof. Notice that G(c},) is a continuous on ¢}, for any continuous distribution functions F(=) and H(*), and
consider Limcg’ —3000(c,). Note that d, is bounded,

Limcgl eV Flac+b )P \(8) = (Ya)b P (1),

Limcgl —3eeB (O 1 V> I-H(CI )P (1) =0,
by Lemma 1, and

Limgo oo EEM,., E>act+b)[1-Flac!,+b)IP () =0,
by Lemma 1.
Since the functions F(*} and H(*) are bounded between 0 and 1, and P (f)+P,,(f) = 1, then

Limeo _yoacl 1 - M1-H(c )P o(0)-Flaci+h )Py (0]} = oo.
Therefore, Limcu —3000(cy ) = 0. Now consider Limcu —-00(cy,). Notice that

Limg —s-oal V)b, Flact +b )P, (1) exists and is bounded,

Limgd _, B0, 0> )1-HESP 1) = EOAL, )P o(0),
and

Limo _y ooEEM,., E>ac)wb ) 1-Flac) +b)IP (8 = EGM, )P (@),
because Lim o S-eoflcl) =0, Limeo s ooF (aci+b,) =0, and as c],—>-o, the conditions v, > ¢, and &, >
ac? +b, do not impose any restrictions on v, and £,. Also

Limg, _y oatlil 1 - YI-HCL)Po(0-Flachtb )Py ()]} = -2,
as long as y < 1, because the functions F(») and H(*) are bounded between 0 and 1, and P ()+P,, (D) = 1.
Thus, L.v.',vncgr —s.0aG(cL,) ==, Since Limcgl e AT Limci, —y-0aGlc],)=-20, and G{(c},) is a continuous
function of ¢},, then is must be the case that G(c},) crosses the axis G(ci,) = 0 at least once. This establishes
the existence of the rational expectations solution.

For the second part of the proof, it will suffice to show that the function G(c{,) is monotonically
increasing. Take the derivative of G(c,) with respect to c7,,

G'(c%) = 1 - f1-H(c? )P o(O)-Flac’ +b )P (1]

Notice that since the functions F(*) and H(*) are bounded between zero and one and P(1)+P,(z) = 1, the
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linear combination of F(*) and H(*) is also bounded between 0 and 1. Therefore the condition y< 1 implies

that G'(c?,) > 0 for all ¢?, M

The Two-Sided Case
We write ¢, = ¢+, ¢, = ac) +b,, and ¢}, = acl+ay+b,, where y = 6/6,, > 0, and a and b, are
defined as before. Rewrite the RE solution in terms of ¢?, and define the function,
G(c7) = ¢, - Ve IH(cL+W)-H(c] )P 1) + YeL [F(ac] +ay+b )-Faci +b)IP o(1)
+ YE(I, . ¢} <& <ch AWIH(c] +y)-H(c})]
+ YW 1-H(c] AP o(1)-F(ac) +ay+b )P, (#)]
+ (Ya)EEM, ,, act +b<&<ac) +ay+b )[F(acl +ay+b,)-F(ac! +b,)]
+ (Ya)b[1-Flac] +aw+b}+F(ac) +b )P, () + d,,
where d, defined as before. In order to prove that the rational expectations solution exits, we need to show
that the function G(c},) has a fixed point ¢?,. Consider first the following result,
Lemma 2. Assuming E(0Jl,)) exists and ¥ Is finite, then we have
Limgp _yooEO),., cf <v<c] A)[H(c]+y)-H(c[)] =0 | (B.3)
and
Lim _y ooE(OfL,,, cd <E<c? AW H(ch +y)-H(S )] = 0. (B.4)
Proof. See Pesaran and Ruge-Murcia (1993). B
The conditions for existence and uniqueness of the rational expectations solution is now established in the
following propo.sition:
Proposition 2. Foranyye R, and assuming that H(*) and F(*) are continuous and first-order differentiable
probability distribution functions, then the rational expectations solution for the two-sided band with
occasional jumps in the central parity exits. If Y < 1, then the solution is also unique.
Proaf. Notice that G(c?,) is continuous on c?, for any continuous distribution functions F(s) and H(»), and
consider Lim o —5000(cf,). Note that

Limcﬂ,-»mYW[l-H(CﬁﬁllﬂP wlf)-F (aciﬂﬂ‘!”'b,)l’ a01=0,
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Limcgr oo ¥a)b [1-Flac) +ay+b y+F(ac] +b ))P (1) exists and is bounded by Lemma 2,

Limcg'_amE(D,U 1 Cg:<§:<c€r+w) [H (C€,+\I’)'H (CE,)] =0,
and

Limo —eoBEI ., acl+b <E<ac] +ay+b Y Flac] +ay+b,)-Flac]+b )] = 0.
Finally,

Limch—)oocl.:{l - Y[H(C?,r+W)'H(Cg:)]P iol) - YIF (anr"'a\iﬂ'b:) - F (acf,+b,)]P il(t)} =9,
because F(*) and H(*) are bounded between O and 1 and P,(#}+P, () =1. Hence, Lim <, _)ooG(cg,) =eo, Now
consider Lim o —3-00G(c},). Note that

Lime, _y o WI1-H(cLAWP o(0-Flach +ay+b )P (D] = 14,

Limd _, oo(Wa)b,[1-Flacl+ay+b )+ F(act+b )P (1) = (Ya)b,
By Lemima 2 and using the fact that W and &, are finite,

Limgo _y E(OI,,, cf <€ <l AWH(C) +y)-H(c,)] =0,
and

Limgo -l EM,, acl +b<E<ac] +ay+b )[F(ac] +ay+b)-Flac],+b)] = 0.
Finally,

Limgs . cxs {1-VH(ChAW)-H()IP o O-YIF @ch +avth,)-Flack+b ) 1Po(6) =+ oo
for any value of v, because F(*) and H(*) are bounded between O and 1. Thus Lfmcf, __,_ooG(cf,) = -oo,
Therefore, since Lim &, —5-000(Cl,) ==, Lim ¢, yeeGlc) ) ==, and G(c{,) is a continuous function of ¢}, then
it must be the case that G(c},) crosses the axis G(c?,) = 0 at least once, regardless of the value of the parameter
v. This establishes the existience of the ratonal expectations solution in the case of a two-sided band.

For the second part of the proof, it will suffice to show that the function G(c?,) is monotonically
increasing in ¢;,. Take the derivative of G(c},) with respect to ¢, and simplify to obtain,

G'(c?) = 1 - y{{H(c] A)-H{c) )P ) + [F(ac] +ay+b,)-Flac +b )P, (1)},

Since ¥ > 0 and both F(=) and H(*) are a non-decreasing function bounded between zero and one, the

condition y < 1 implies that G’(c},) > 0 for all ¢],. W
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Appendix C: On the Equivalence of Future and Current Linear RE Models
The following propositions establish the equivalence of the general future LRE model and a current

LRE Model with and without lagged dependent variables,

Proposition 3. The process of the variable y, implied by the future LRE Model

¥, =YE@, L) +w, (C.1

w, = o(l)n,, (C.2)
with I < 1, is mathematically equivalent to the process generated by the Current LRE Model

v, = YEG, |1 )+ {%‘;ﬂ} Aw, +w,, (C.3)

where h(L) = [Lo(L)-yo(NIAL-Y), and w, is defined as in (C.2).
Proof. In order to prove the Proposition, we will prove that the RE solution of (C.1) and (C.3) are identical.
First, note that under the assumption Iyl < 1, the unique linear stationary solution of (C.1) is given by [see
Pesaran (1989), pp. 92],

¥y, = h(Lym,. (C4)
Second, use (C.2} to rewrite (C.3) as

y, = YEM, ) + (LM, - [A(L)-oL)In . (C5)
Taking conditional expectations in both sides of (C.5) and solving for E(y,|/, ;) obtain,

E(yMl, ;) = [A(L)-holn /(1-9) + [A(L)-0(L)m, /(1-). (CH)
Plugging (C.6) into (C.5) and using A(L)-h, = [A(L)-0(L)1L/y yields, v, = A(LM,, which corresponds exactly

to the solution of future LRE in (C.4). B

Preposition 4. The process of the variable y, implied by the future LRE Model
ylt = YE(yH-l[It) + A'y;-l + W, (CT)
w, = om, (C.8)

where the roots of the equation 1 =¥c' + Ac, are real and satisfy Ic|| < 1, eyt > 1, is mathematically equivalent
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to the process generated by the current LRE Model
y, = YEQ, 1) +e,(1 = Py, , + {%&Q} Aw, +w., (€9

where h(L) = [Lo(L)-ya(M/(L-Y), and w, is defined as in (C.8).
Proof. Under the assumptions about ¢, and ¢,, the unique linear stationary solution of (C.7) is given by,

Y, =c¢y,.q+ k(M. {C.10)
Use (C.8) to rewrite {C.9) as

ye = YEGM,. ) + o (1-9)y,, + LM, - [W(L)-o(L)M,;. (C.11)
Take conditional expectations of both sides of (C.11) and solve for E(y [, ;) to abtain,

EQI,.) = ey, + [AL)-RoI/(1-9) + [R(L)-a(L)In,,/(1-7). (C.12)
Substituting {C.12) into (C.11) and using h(L)-h, = [A(L)-o{L)]L/y yields,

Y. =y + AN, (C.13)

which corresponds exactly to the solution of the future LRE in (C.7). B
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Figure 5. Time-varying Probability of
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