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ABSTRACT

In this paper we develop a discretized version of the dynamic programming algorithm and derive error
bounds for the approximate value and policy functions. We show that under the proposed scheme the
computed value function converges quadratically to the true value function and the computed policy function
converges linearly, as the mesh size of the discretization converges to zero. Moreover, the constants
involved in these orders of convergence can be computed in terms of primitive data of the model. We also
discuss several aspects of the implementation of our methods, and present numerical results for some
commonly studied macroeconomic models.
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1. Introduction

In recent years, computational analysis has become an important tool for the
study of economic models [see, for instance, recent survey work by Judd (1991),
Kehoe {1991), Marcet (1994), Rust (1994), and Taylor and Uhlig (1990)}]. This
analysis generally provides an approximate solution of a given model, and such
relevant quantitative information is not usually available from more traditional
mathematical techniques. In order for numerical experiments to be effected rigor-
ously, however, it is essential to have in hand error bounds or accuracy estimates
of the computed solutions [cf., Bona and Santos (1994)]. As is commonly real-
ized [e.g., Judd (1992, Sec. 7)}, there has been very little theoretical work by
economists on proving the accuracy of their numerical simulations.’

In this paper we consider a family of discrete-time stochastic growth mod-
els. As it is well known [cf. Stokey and Lucas (1989)], solutions to these models
are most conveniently approached by the methodology of dynamic prograraming,
as embodied in the value and policy functions. Via a value-function iteration
algorithm, we develop a numerical discretization procedure to compute these fun-
damental functions. We prove that if h is the mesh size of the discretization then
the approximation error for the value function is bounded by Mh?, and the ap-
proximation error for the pelicy function is bounded by Nh, where M and N are
positive constants that can be ascertained in terms of primitive data of the model
as comprised in the objective function and technological constraints.

Qur analysis is based upon differentiability properties of the value function.
In deterministic models this function is of class C? under regular conditions [see
Santos (1994) for a recent account of this topic]. For the class of models considered
in this paper, a formal proof of the differentiability of class C? of the value function
is not available. However, we shall show that a simple extension of the existing
analysis is sufficient to validate such property in the present context.

111 (1993) and Marcet. and Marshall {1994) are notable exceptions to this trend. Li provides
a rigorous derivation of error bounds for a simple monetary model. Marcet and Marshall prove
certain asymptotic properties of a parameterized expectations algorithm in a standard growth
model similar to our framework. Although Marcet. and Marshall’s convergence results are com-
forting, these results cannot be generally invoked in numerical computations since they only
show that the approximation scheme reaches the exact solution as the computational cost goes
to infinity.



Our approach to the differentiability problem yields upper estimates for the
secand-order derivatives of the value function in terms of primitive data of the
model. These estimates can then be employed to bound the constants involved
in the above orders of convergence. Much less is known, however, about higher-
order derivatives of the value function; moreover, regular examples have been
constructed where this function fails to be differentiable of class C® [cf. Araujo
(1991) and Santos (1994)]. Hence, differentiability analysis suggests that without
further specific assumptions higher orders of convergence for the value function
beyond the quadratic one are not available.

Although our numerical procedures may yield fairly accurate solutions, they
would be of limited interest if they cannot be implemented in practice. At a later
stage of the paper we present some illustrative numerical computations, and show
that our proposed methods perform relatively well in medium-scale models. Like-
wise, our accuracy estimates are also useful at several stages in the computation
process, since they provide basic information for devising the discretization pro-
cedure, for testing the computer code, and for constructing continuation methods
to speed up computations.

In implementing our methods we also discuss certain computational issues of
some concern to us. More specifically, we focus on the following points: (a) tight-
ness of our accuracy estimates and efficient ways to compute them numerically,
(b) magnitude of the error involved in alternative discretizations, (c) efficiency of
higher order approximations, (d) accuracy of some standard simulated results in
real business cycle theory.

The remaining sections proceed as follows. In Section 2, we present a non-
linear, stochastic model of economic growth. Our analysis begins in Section 3
with the differentiability properties of the value and policy functions. This is a
necessary step to derive subsequently orders of convergence for the approximate
value and policy functions computed from a dynamic programming algorithm. In
Section 4 we implement our numerical procedures with the aid of some familiar
examples. Some concluding comments follow in the final section.
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2. The Model and Preliminary Considerations

We shall focus on a standard class of stochastic, reduced-form models of economic
growth in which the solution to the optimal planning problem may be interpreted
as the equilibrium law of motion of a decentralized economy. Our framework of
analysis is encompassed in the class of economies set out in Stokey and Lucas
(1989). The reader is referred to this monograph for several basic definitions and
technical points raised in the course of our discussion.

Let (K, K} and (Z, Z) be measurable spaces, and let (5,8)=(Kx Z,KxZ)
be the product space. The set K contains all possible values for the endogenous
state variable, Z is the set, of possible values for the exogenous shock, and S is
the set of state values for the system. The evolution of the random component
{z1}s>0 is governed by a stochastic law defined by a function ¢ : Z X Z — Z
and an ii.d. process {e;},5; Where 2t = ¢ (2~1,8¢)- It follows that the mapping
¢ induces a stationary transition function & on (%, Z). Moreover, for each zo
in Z one can define a probability measure p* (2p,-) on every t-fold product space
(782 = (ZXZ x .. X2, ZXZX..X Z) comprising all partial histories of
the form, z* = (21, ..., 2t)-

The technological constraints of the economy are summarized by a given fea-
sible set  C K x K x Z, which is the graph of a correspondence I' : K x Z — K.
The intertemporal objective is characterized by a one-period return function v on
Q and a given discount factor 0 < J < 1. The optimization problem is to find 2
sequence of measurable functions {m}{2g, 7 : Z+ ' — K, as a solution to

Wko,z0) = sup Y08’ [ v (e, Tpgr, 2¢) 1 (20,d2")

{meh»o
s. t. (m,mﬂ,zt) €0 (21)
Zy = @ (zt-—lagt)

(ko, z) fixed, 7o = ko,and £ =0,1,2, ...
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ASSUMPTION 1: The set K x Z C R' x R™ has non-emply interior, and KX 2
is the Borel-algebra of subsets of K x Z. The set ( 1s closed, and for each fized
x the projection Q, = {(k,k') | (k,k',2) € 0} 1s convez and varies continuously
with z.

ASSUMPTION 2: The mapping v : Q0 — R is bounded, conlinuous, and on the
interior of its domain it is differentiable of class C? with bounded first- and second-
order derivatives. Moreover, for all fized z there exists some constant a > 0 such
that v(k, k', z) + g k|| is concave as a function on {(k,k').

ASSUMPTION 3: For cach (ko, zp) € int(K X Z) there exists an oplimal solu-
tion to (2.1) such that every optimal realization {k;, Z }e>o has the property that
(ke, key1,2e) € int(Q) for each t > 0.

ASSUMPTION 4: The function p : Z X Z — Z is conlinuous, and for each fized
e, the mapping ¢ (-,¢) is C? and the derivative functions Dip(z,¢) and Dyyp(z,€)
are bounded and jointly continuous over all points (z,¢) in Z x Z. Also, there
are non-negative constants 0 < p <1 and C 20 such that the firsi- and second-
order partial derivatives of z, with respect zo, g—ig and %Zf?, have the property that

8Zt 82Z¢
0 2

0

< Cp* and < Cp* for each t > 0.

These assumptions are entirely standard and are usually presumed to hold over
a certain compact domain which comprises the asymptotic dynamics of the opti-
mal law of motion [cf., Santos (1994), and Stokey and Lucas (1989)]. In Assump-
tion 2, the norm ||k'|| is the usual Euclidean norm. Hence, such an assumption
imposes a strong form of concavity on the second component of the utility func-
tion [cf., Montrucchio (1987)]. Observe that over compact sets the assumption
is weaker than the conventional requirement that the Hessian matrix D?v, (k, k)
be negative definite? over all points {k, k', z) in €. The interiority postulate as-
serted in Assumption 3 is necessary to establish subsequently the smoothness
of optimal paths. The examples below enhance the applicability of this condi-
tion. Regarding Assumption 4 note that 2z = ¢ (2 (- (¢ (20,€1) ,E2) - =), €2)-

2For functions v over a set 2 C R x R x R™, Du(kg, k1,2) will denote the (first-order)
derivative of v evaluated at an interior point (Ko, k;, 2), and Diw(ke, k1,2), i = 1,2,3, will denote
the partial derivative of v with respect to the ith component variable. Similarly, D;;u(ko, k1, 2)
will denote a second-order partial derivative of v with respect to the ith and jth components.
Sometimes we will use the notation D?v (ko, ky) to represent the Hessian matrix of the mapping
v(-,+, z), where z is held fixed.



The assumption then requires the existence of some constants 0<p<1and

&l
C > 0 such that the matrix norms 5F (o (- (@ (20,61) ,82) - ) €))) Cpt
0
2
and gﬂ?go(cp (- (@ (20,61) ,€2) - =) ,&0)|| < Cp® for every realization (€1, s E¢)
0
and ¢ > 0.

The value function W (ko, 7o), given in (2.1), is well defined and jointly con-
tinuous on K x Z [cf., Stokey and Lucas (1989)]. Moreover, for each fixed zo the
mapping W{-, zo) is concave, and satisfies the Bellman equation

W(kﬁ(), Zo) =s5up ’U(ko, kl, Z{]) + ﬁ fZ W(k], Zl)Q(Z(), le)
ki (2.2)

s. t. (ko,k1,20) € Q2

The optimal value W (kq, 2p) is attained at a unique point given by the policy
function k; = g(ko, z0). The policy function is also continuous. Furthermore, an
iterated substitution on the right-hand side of (2.2) shows that the set of optimal
contingency plans {k;, 2+ }¢>0 is a Markov process determined by the optimal policy
kppr = g(km Zt)-

For the purposes of a later development, we recall that the value function W
can be obtained as the unique fixed point of the following dynamic programming
algorithm. Let W be the space of bounded, continuous functions V' on the state
space K x Z endowed with the norm [|[V| = sup |V(k,z2)|. Define the (non-

z

{k,2)ERK X

linear) operator 1': W — W, given by
T(V)(ko, z0) =sup v(ko, k1, 20) + B [ V (k1. 21)Q(z0, d21)
k1 . (23)
s. f. (kg,k‘l, Z()) c Q

for V € W. It is well known that T is a contractive mapping on W with modulus
0< A<l ie |[TVy~TVi < BlVa— Vil for Vo, Vi € W. It follows that W
is the unique fixed point under T, and |W — V|| < 6" [W — V|| for Vi, = T"V,
where 7™ denotes the n-times composition of T'.
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Finally, we close these preliminaries with a discussion of the differentiability
of class C' of W. It follows that under the above conditions [e.g., see Stokey and
Lucas (1989)] at every interior point (ko, zp) the function W is differentiable with
respect to k, and the partial derivative is given by the familiar envelope condition

: 24

Di\Wiko, 20} = Dyv(ky, k1, z0) (2:4)
where k; is the optimal point. Moreover, a straightforward calculation allows us
to show that

2.5
Dzw(kmzn) = Yo ﬁt fzt [DSU(kt;kt+l»zt) . %ﬂ #t(zo,dzt) ( )
where again the right-hand side of (2.5) is evaluated at the optimal contingency
plan {k;,z}:>0. Hence, the function W is a C! mapping on int(K x Z). Conse-
quently, at interior points the optimal policy k; = g(ko, z0) can be characterized
by the first-order condition

Dg’U(k’O, kl,Zg) + ﬁfz DIW(kl,zl)Q(zo, dzl) =0 (26)
Under the foregoing assumptions one readily shows from a mere application of
the implicit function theorem to (2.6) that if W is differentiable of class C? then
g is a C" mapping. The converse result is not so straightforward as (2.5) involves
an infinite series of partial derivatives.

3. Theoretical Results

We begin this section with an analysis of the second-order derivatives of the value
function. Our method of proof yields a direct calculation of these derivatives in
terms of primitive data of the model. We then consider a numerical procedure to
compute the value function based upon a dynamic programming algorithm defined
over a discrete state space of mesh size h. Under the maintained assumptions,
we demonstrate that the computed value function W# converges quadratically to
the true value function W as h goes to zero. An analogous result invelving linear
convergence is obtained for the corresponding policy function g*. The constants
involved in these orders of convergence can be bounded from primitive parameters
of the model.



3.1. Second-Order Differentiability of the Value Function

*

In a discrete-time stochastic growth framework, the second-order differentiability
of the value function has been studied in Blume, Easley and O'Hara (1982) and
Gallego (1993). The assumptions imposed in Blume, Easley and O’Hara are fairly
strong for the present context. These authors postulate rather stringent separa-
bility and invertibility conditions over the stochastic process as well as smooth
density functions. Gallego (1993} considers a broader class of stochastic innova-
tions following the method of proof in Santos (1994). Here, random variables may
be discrete, or may not posses smooth density functions, allowing thus for event
trees and other commonly studied models with uncertainty. It should be stressed,
however, that all these papers study the differentiability of the value function
with respect to the endogenous state space K, and for the purposes of our present
analysis we need to establish the joint differentiability of W over the entire state
space K x Z. This latter problem is closely related to the joint differentiability of
W over a space of parameters [cf. Kehoe, Levine and Romer (1990) and Santos
(1992)]. In Part I of the Appendix, we indicate how the arguments in Santos
(1992) can be extended to validate the present results.

THEOREM 3.1: Under Assumptions (1)-(4) the value function W is a C*
mapping in ind(K x Z).

THEOREM 3.2: Under Assumptions (1)-(4) the policy function g is a C' map-
ping in (K x Z). Moreoger there is a constant L > 0 such that
Y20 B Ja D19 (ko 20)1” 0¥ (20,d2") < £

We shall now provide a direct method to bound the derivatives of these fune-
tions in terms of the underlying data of the model. As illustrated below, these
computations are useful for specific applications. It is shown in the Appendix
that the second-order own derivative of W with respect to the endogenous state
variable k is determined by the following quadratic optimization problem

2o DuW (ko, z0) - 30 = sup 3220 8" [5e (1o, Tugn) - DP0a, (kr, ketn) - (e, Te4a)] (20, d2")

{Wt}:zzn
(3.1
s. t. 2 =wlz,e), t=1,2,..

Here the maximization proceeds over all measurable functions {m }2g, 7, : 2471 —
R for t > 1 with mp = o fixed, the one-period objective D?u,, (ki k¢11) is the
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Hessian matrix of the mapping v(-,, z;) for z: fixed, and {k:, z;}:2¢ is the optimal
contingency plan to (2.1) for the initial value (ko, 20).

From this characterization, one readily proves [cf. Santos (1994)] that the op-
timal plan {7}, to maximization problem (3.1) determines the derivative of the
policy function with respect to kg. That is, &, = D1g"(ko, 20) - 7o for ¢ > 1, where
D1g'{(kq, z9) denotes the derivative of the function 9{g(...9(ke, 20), ), Z¢-2), %t 1)
with respect to ky for every possible realization (21,22, ..., zi-1). Given that
(£9,0,0,0,...) is a feasible solution to maximization problem (3.1), we obtain that

3.2
I DuW (ko, z0)]] < |1 Davlko, kr, z0)}) < I (32)

where L= sup  [[Dnv(ke, k1, 20)(. Moreover, if {7;}{% is an optimal solution
(ko,k1,20)ERR
to (3.1) with |Fo|| = 1, then in view of the asserted concavity of v(k, &', z) we must

have

o ~ ~ 3.3
Y20 B [ [Fewn - Feya] p'(z0,d2") < {: (3:3)

where 7, - 41 denotes the inner product multiplication at every possible value
of the random vector #;,;. Observe that (3.3) places an upper bound on the
exponential growth factor of the derivative 7, = D;g'(ko, 20) - 0. Indeed, this
inequality implies that

-ii (3.4)

iﬁt /zt |ID19t+l(ko,20)”2M(zn,dzt) <
t=0

Differentiation of DaW (kn, 20) in (2.5) with respect to ko yields

D12W (ko, 20)7 = DWW (ko, 20)
= 2268 [2((82) - (Darv(ke, ki, ) - Digt(ho, 20)

+D32U(k1; kt-l-] 3 zt) " DlgH—l(kﬂa zﬂ))]#t(zo; dzt)



Now, taking matrix norms we have

| D W (0, 20)" | = DWW (Ko, 20)1

5 Z?in ﬁt fz*

Bz
Bzq

| Dagv(ks, ker1, 22) || D1rg* (Ko, z0) || +

I Dsav(ke, k1, 2] | Dag*t (ko, o)l (20,d2°)

Ly}
< [1 N ﬂ%] o (3.5)

1-8%p
where the last inequality follows from Assumption 4 and condition (3.4) for
G = sup{||Ds1v| , | Dsyv||}. Similar upper bounds can be obtained for |\D,gl

and | Dy»W||. Observe from this analysis that in general variable z will have a
more pronounced effect on the second-order derivatives of the value function.

3.2. Accuracy Estimates

Our purpose now is to present a computational method of W via a discretization
of the state space, S = K x Z, by means of finite-element techniques. The compu-
tational procedure is based on iterating the Bellman equation (2.2), and parallels
some recent developments in the optimal control literature [e.g., Falcone (1987)].
Unlike the preceding literature, however, we shall establish the quadratic con-
vergence of the sequence of approximate value functions, and devise a numerical
scheme to implement the proposed method.

In the sequel we assume that the state space S is a polyhedron. This does
not entail much loss of generality for most economic applications. Let {S7} be
a family of simplices which conform a triangulation of S [ie., Uij = § and
int(S%) Nint(S7) = ¢ for every pair of simplices 5%, 57].° Let

h = sup; diam {S’}

3This kind of subdivision is not necessary for our results. For instance, rectangular subdivi-
sions may sometimes be more suitable to certain applications. Both types of subdivisions are
discussed in Brenner and Scott (1994).
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Let (k7,2%) be a generic vertex of the triangulation. Consider the space of piece-
wise affine functions

wh = {Vh : § — R | V" is bounded, continuous and DV" is constant in int (57) for each Sj}

Observe that W" is a closed subspace of W equipped with the norm ”V"[[ =
SUP (1 1 ye K x 2 V"(k,z)\ for V? € W
Define the mapping 7% : W — W", given by

Th(v)(kéa Zé) = S}:p 'U(kg: kla Zé) + /BIZ V(kl ? Z])Q(Zgr dzl)

_ _ (3.6)
5. t. (k%,k],z‘%) €N

for each vertex point (kj, z3) and V € W"

Observe that the maximization and integration operations in (3.6} are performed
exactly. Also, nodal values T"*(V)(k}, 23) for all vertex points (kg,z) yield a
unique extension to the whole domain S over the space of piecewise affine functions
compatible with a given triangulation {57}

The following equation will play a central role in our analysis.

Wh(kd, 23) = sup v(kd, Ky, 2d) + B [, Whky, 2:)Q(2, dz1)
1

o (3.7
8. t. (kf),kl,zﬂ) el )

for each vertex point (k3, 7))

This is the corresponding discretized version of Bellman’s functional equation
(2.2).

LEMMA 3.3: Under Assumptions (1)-(4) equation (8.7) has a unique solution
W in Wh.

PROOF: The proof is the standard one [cf., Stokey and Lucas (1989)]. One
immediately sees that 7" is a contraction mapping with modulus 0 < 8 < 1. By

11



a well known fixed-point theorem, equation (3.7) has a unique fixed point W*" in
Wh

LEMMA 3.4: Let W be the value function defined in (2.1). Let fy = ||D2W[|
Then under Assumptions (1)-(4) it must hold that ”TW T"W“

PROOF: The proof is also standard, and it is based upon an apphcation of
Taylor's theorem. We shall follow closely the arguments sketched in Johnson
(1987, Ch. 4). |

Note that by the definitions of T and T" we have that TW ki, 29) = W(ki, 2 =
T*W (k7 ,27) for every vertex point (k7,27), and that the function ThW is piece-
wise affine. Consider now an arbitrary interior point (k,z) in a given simplex
S¢ with nodal points {(k*, z )}f_im For convenience, let us temporarily use the
notation, z = {k,z) and z* = (k%,2?) for all . Then = can be uniquely ex-
pressed as & = Zi":"’ Ai(z)z for some set of non-negative weights, A’( ), such that
TH™ Xi(z) = 1. Also, T"W (z) = SI27 N(z)W(2*). Let = Ht) = af + t(z — z), for
0 <t < 1. Then by Taylor’s theorem

W (&) — W(z) = DW(z) - (& — ) + fn '@ = x) - DPW(EHE) - (oF — m)dt

It follows then from the above definitions that

Iim

Z Nz f o — ) DW((t)) - (z* — z)tdt

(lf Xi(z) |2* “2) (3.8)

Now, one readily sees that a non-necessarily tight, upper estimate for (3.8) is §h2
The result is thus established.

THEOREM 3.5: Let W be the fized point of equation (2.2) and W" be the
fized point of equation (3.7). Then under Assumptions (1)-(4) it must hold that

[w = < g

PROOF: Let T' and T" be as defined previously from (2.3) and (3 6), respec-

‘W(m) - ThW(:n)l =

(A

12



tively. Then
jw —w| = jrw - 7w
<|rw - W | + \T*W - W

< rw - 1w+ slw - w|

where use is made in these computations of the triangle inequality and of Lemma
3.3. Therefore,

[w - w| < 5 [Tw - 7w
Theorem 3.5 is now a direct consequence of Lemma 3.4.

COROLLARY 3.6: Let g(k?, z7) be the optimal policy for the original value func-
tion W at a verter point (k%,2%), and let g"(k?, 27) be the optimal policy for the ap-
prozimate value function W" at vertez point (k7,27). Then ”g(kj,zj) — g"(k?, z-”’)“ <
(E(%’_f-ﬁ—))g h, for every vertex point (k?,z7).

PROOF: Let (k?,z7) € S be a generic vertex point. Assume that ky = g(k?, 27)
and kI = g"(k?, 7). For (7, 27) fixed, let
f(k)y = v(k? k, 27) + B [, W(k,2')Q(z7,dz"). By Theorem 3.5, it must then hold
true that

fk1) — £(RY) < 725h° (3.9)

Likewise,

b= R < Fl) = 6D (310

as Df(k;) = 0, and by Aséumption 2 the function f(k) + %Hk)|2 is concave.
Tnequalities (3.9) and (3.10) combined together imply then that

2]
2

s = ) < ()

Since {(k?, 27) is an arbitrarily chosen vertex point in S, this proves the result.
Y P
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REMARKS:

1.

Inequalities (3.2)-(3.5) provide upper estimates for parameter v = | D*W|.
These estimates can be useful to bound the observed error in specific appli-
cations.

Constant m’){_ﬁj becomes unbounded for 8 = 1. This singularity seems to

be related to the fact that if the value of the approximation error in a single

period may be up to %hz (Lemma 3.4}, then the cumulative error over the
o : ¥ )

entire infinite horizon may extend up to ————h".

2(1 - 8)

Observe that in the above approximation, we have considered the space wh

of piecewise linear functions over a family {S7} of (I + m + 1)-dimensional

simplices. For certain applications, it may be more convenient to consider

piecewise multi-linear functions over rectangular subdivisions. One can show

that similar asymptotic results are also valid in this latter case.

. If W and g are differentiable to a higher order, then it is possible to estab-

lish higher orders of convergence under piecewise polynomials of a higher
degree.* Under regular assumptions, however, function W is not necessarily
a C* mapping [Araujo (1991) and Santos (1994)]. Moreover, if higher-order
derivatives become arbitrarily large, then more complex approximations do
not necessarily yield better estimates [e.g., Stoer and Bulirsch (1993, p.51)].

It should be emphasized that for each of the vertex points (k?, 27) the inte-
gration and maximization operations in (3.6) must be accomplished exactly.
If alternatively the maximization is carried out over a set of grid points {£/}
with mesh size h, then one can show from a suitable reformulation of Lemma

40f partlcular interest for certain applications is the approx1mat10n of function W{k,z } by
a C! mapping W(k, z) with W(k?,27) = W(k?, /) and DW (K7, z7) = DW (K7, 27) at all vertex
points {(k7, z7). Observe that in the deterministic case such derivatives are easily computed from
the one-period return function evaluated at the optimal solution [cf. eq. (24)]. Under this
type of Hermite interpolant, convergence may be of order h1 [Stoer and Bulirsch {1993, Th.
2.1.5.10)].
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3.4 that the additional error involved in the computed value function is also
of order h?, since the first-order derivative at a maximizer k, is equal to zero.
Likewise, if the integration is performed over a discretized space as an ap-
proximation for an underlying continuous-valued random variable, then the
additional error involved in this approximation will depend on the integra-
tion scheme.® Our analysis therefore should be useful for making reasonable
choices concerning discretizations of the state spaces K and Z, since the
involved approximation errors may have different asymptotic behaviors. It
also illustrates that commonly found computations which restrict the un-
certainty space Z to very few states as compared to the space of capitals
K le.g., Christiano (1990), Danthine, Donaldson and Mehra (1989), and
Dotsey and Mao (1992)] may obtain more accurate approximations for the
same computational cost by considering more balanced grids over the whole
space K X Z.

6. The linear convergence of Corollary 3.6 can readily be extended to any point
(k,z) in the domain K x Z.

4. A Numerical Analysis of Some Growth Models

We shall now discuss a numerical algorithm to implement our computational
approach in the context of some standard growth models. Most of our discussion
will focus on the error involved in the orders of convergence and related theoretical
aspects of our numerical procedure.

All data were generated using an DEC 2000 workstation, 300 ALPHA AXP
with 358.1 MFLOPS, coded in standard FORTRAN 77, which in a double pre-
cision floating-point arithmetic allows for a sixteen-digit accuracy. The resulting
programs constitute a package that we have named NIBS (Numerical Iterative
Bellman Scheme). Subject to the aforementioned upper bound, our algorithm is
in principle free from a fixed level of accuracy. Such level of accuracy is determined
by the following parameter values:

5For instance, if the integration over the discretized uncertainty space Z mimics the trape-
zoidal rule, then the error is of order h3 [cf., Press et al. (1992, p. 125)].
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h = mesh size

TOLW = Accuracy imposed in the iterative scheme: the program stops if
given two consecutive value functions W/ and W}, the difference ”W,i" - Wk, ” <

TOLW B
TOLI = Accuracy attained in integration
TOILM = Accuracy attained in maximization

Of course, in order to implement efficiently the numerical algorithm, judicious
choices of these parameters should be made in accordance with our theoretical
analysis of the error involved in these approximations. For example, it would not
be optimal to achieve an arbitrary high degree of accuracy in the maximization
process (POLM) for cases of a coarse discretization of the state space (large
h). In our particular examples, however, in order to compare different numerical
experiments, and analyze more neatly the evolution of the approximation error
stemming from changes in h, we have always fixed both TOLI and TOLM to an
eight-digit precision.

We would like to emphasize that the maximization and integration operations
are performed with the aid of standard, well-tested codes. These procedures are
explained in Part II of the Appendix. In our numerical experiments, all integrals
are computed numerically under the same methodology, since all integrations
involve a unique random variable. Regarding maximizations, however, we employ
two different methods depending upon the dimensionality of the problem. For one-
dimensional maximization we apply Brent’s algorithm, whereas for multivariate
maximization we use a version of the quasi-Newton method.

In order to effect the check for TOLW, the algorithm must provide at each
iteration the difference between two consecutive value functions. Of course, by
virtue of Lemma 3.3 —and modulo the approximation errors determined by both
TOLI and TOLM~ this difference must decrease in each iteration by the factor
0 < 4 < 1. This property is also embedded in our computations as an additional
way to test the code. For simplicity, in all our computations, TOLW has been
set equal to h?. Given the dynamic properties of our algorithm, this seems a
reasonable value.

For illustrative purposes our study has been restricted to three standard growth
models with closed form solutions. Example 1 considers a one-sector deterministic
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growth model. A stochastic version of this model is the content of Exampie 2.
Finally, in Example 3 the model is expanded to include leisure in the analysis.

Example 1. A One-Sector Deterministic Growth Model. If the sequence of
random variables {£;};>p is degenerate, then our framework reduces to a deter-
ministic growth model. Within this family of deterministic growth processes, we
now consider a well known example in which the value and policy functions have
closed form solutions. Such functional forms will serve as benchmark for our
computations. The optimization problem is written as

W ko) = méx{m} 2o Floger
s. t. g = Ak? - k‘t+1

ko fixed, 0 < f<1,0<a<1,A>0,andt=0,1,2,...

where ¢ and k are positive numbers. Under these conditions the system has a
unique interior steady state, k* > 0, which is globally stable. Such steady-state
value, k*, is the solution of the following equation

1

ﬁ — aAktafl (41)

As is well known [e.g., see Kehoe (1991, Example 5.2), and Manuelli and Sargent
(1987, Ch. 1)] the value function W (ko) takes the form W(ko) = B + Clnky,

where B and C are constants such that C =

T ab Likewise, the policy function

k1 = g(ko) takes the form, ki = a3Ak®. Moreover, these functions can be obtained
as the limiting solutions of the following iterative process. Let

Wn(k(]) = T[Wﬂ_l (kn)] = maXg, 10gC() + ﬁWn_l(kl) (42)

5. t. C[):Akg—k]

forn = 1,2, ... and Wy = 0. The aforementioned references also provide analytic
solutions for the sequence of functions {W,},>1 and {gn}n>1. Such functional
forms are useful to verify our computations as a way to test the computer code.
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But possibly the most exacting test of the whole exercise is to show that the
sequence of computed value functions {W/},> and {gh}n>1 from (3.6) behaves
asymptotically as predicted by the error analysis

We initially consider parameter values, A = 5, § = 0.95, a = 0.34. For such
values the stationary state, k* = 4.214. For the purposes of this exercise, the
domain of possible capitals, K, is restricted to the interval [0.1,10}. Under these
conditions it is then easy to check that Assumptions (1)-(3) are all satisfied.

Over the feasible interval of capital stocks, [0.1,10], we consider a uniform
grid of points k7 with step size h. In this simple univariate case our interpolations
vield concave, piecewise linear functions. As specified in (3.6}, we carry out the
numerical experiment under the iterative process Wi, = T"(W), starting with
an initial value W = 0. The exact maximization at vertex points &7 in (3.6) is
effected by Brent’s algorithm with TOLM = 1078, as reported in Part II of the
Appendix. The computer program is instructed to stop once two consecutive value
functions Wl | = Th(W}) satisfy the inequality ”W,’: = W,ﬁ"“ < TOLW = h*.
Since T" is a contractive operator with modulus 0 < 8 < 1, the fixed %)oint
Wh = TH{W") in (3.7) should then lie within a distance ”W" — W,’:“ < 1—}1—5

We start this numerical exercise with h = 107! and the initial condition
Wo = 0. In computing the approximate value function W" for h = 107! the
program stops after 99 iterations with a reported CPU time of 3 seconds. We
then proceed in the same manner with h = 10 2 and h = 107°. Figures 1(a)-
1(c) depict the observed error between the true and computed value functions,
eh(k) = ‘W(k') ~ W,ﬁ*’(k)l for h = 1077 with j = 1,2,3, where as specified above
the terminal iteration 7 is determined by the value TOLW = h?. Also, Table 1(a)
summarizes further relevant information concerning our numerical computations,
including the evolution of the error of the policy function.

Observe that the constant for the value function stemming from our numerical
computations takes values around 18, whereas the corresponding constant for the
policy function takes values around 3.6. Both functions converge as predicted by
our error analysis. The relatively small value for the error of the optimal policy
seems to be due to the simple analytical form of such function.

In order to compare these numerical estimates with our previous theoretical
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analysis we first decompose the error in the following form
ehlk) = [W k) — WER)| < [W(k) - Wh)| + W) - Wak)|  (43)

where W"* = T*(W") is the fixed-point given in (3.7). Thus, lW(k) - W"(k)l

is the error resulting from our numerical algorithm, and [W"(k) — W,’l"(k)l is the
error resulting from stopping the iteration process in finite time. Since optimal
solutions converge at a relatively fast rate to the steady-state value k* = 4.124,
an appropriate estimate of the value + referred to in Lemma 3.4 should be the
absolute value of the second-order derivative at the steady state, k*; that is,

|D?W (k*)| = 0.02828. Hence, -2-(1—7[-3—) — 0.2828. In situations where the value
function does not feature a close form solution, one can use instead our estimate
7 of the second-order derivative given in (3.2). At the given steady state such
~ Y
value, ¥ = 0.16697. Hence, ———— = 1.6697
21—
Therefore, the quantity 0.2828h? is an upper estimate for the term lW(k) —wh (k)l

in (4.3) (or 1.6897h? if we were to ignore the functional form of the value function).®

Likewise, as discussed above an upper estimate for the term lW"(k) - W,i‘(k)\ in

1
4.3) is the quantity ——h2 = 20h?. Hence, our upper bound for the observed
Y1~ 3 %

error et(k) is 21.6697, whereas the observed error is in fact around 18h%. Thus,
e?(k) falls in the range imposed by our theoretical analysis.’

This difference between the observed error and our upper estimates is some-
thing to be expected in practice, since our results are meant to bound the error on
a worst-case basis. Moreover, in some cases this difference may be considerably
large. Hence, for situations where the problem does not feature an analytic so-
lution, a more operational approach is to appraise the error numerically —instead
of using our upper estimates of the error [equations (3.2)-(3.5)]. This procedure
is suggested, for instance, in Bona and Santos (1994). One computes the value
function W from a very fine grid, and considers such computation as the true

81n the univariate case, a sharper version of Lemma 3.4 is available with ||[TW — ThW|| <
%h2; e.g., Stoer and Bulirsch (1993, Th. 2.1.4.1). Hence, in this case a better estimate,
[W (k) — W"(k)| < 0.0707h%.

7(Observe from the figures that the observed error el(k) decreases with k. This seems to be
due to the fact that the second-order derivative of the value function is decreasing in k.
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solution. Then one analyzes the behavior of the error for several values of h. If
the constants involved in the orders of convergence settle down around some given
values, then one may take these values as the effective constants for the problem
at hand.

We also considered further variations of the preceding exercise that we now
pass to summarize.

1. Discount factors ( close to 1. Our theoretical analysis suggests that as I§
approaches 1, the constants involved in the order of convergence may become
unbounded. For # = 0.99 and all the above parameter values, Figure 1(d)
displays the observed error of the value function for h = 1073, In this case,
the constant goes up to 96, which is a 5.4-fold iricrease with respect to the

preceding figures. This is roughly the ratio, = 5, predicted by our

1-0.55)
error analysis, upscaled by a further increase in the second-order derivative
of function W (since W(k) = B + Clogk with C = =%3). Hence, one
should expect these constants to become unbounded as 3 approaches unity.
Table 1(b) reports in an analogous way further information regarding this

numerical experiment with 8 = 0.99.

9. Higher-order approzimations. Instead of the space W" of piecewise linear
functions, one could focus on alternative finite-dimensional functional spaces
involving higher-order approximations. An approximation that seems suit-
able for our deterministic model is to interpolate over the space of piece-
wise polynomials of order 3, under the conditions that at each vertex point
k7 the operator T"(W(k’)) must satisfy (3.6) and additionally the result-
ing function W), is ¢! with derivative at every vertex point equal to
DW}, (k) = 52 log(Ak§ - kM) where k71! is the optimal choice at the
(n+1)-th iteration. Observe that if the stationary state k* is globally stable,
then turnpike theory entails that the value function is infinitely differentiable
[Araujo and Scheinkman (1977)). For the case § = 0.99, we found that this

approximation resulted in a saving of computer time.
3. Continuation Methods: In our previous iterated computational procedure,

all iterations are started with the initial condition Wy = 0, regardless of the
partition {S7}. The following continuation method turns out to be com-
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putationally faster while considering a nested sequence of finer intervals.®
Such procedure seems especially attractive for very fine subdivisions of the
state space or for high values for 3. The method goes as follows. Let h;
be the mesh size of the partition {S,’;i} for i = 0,1,...,n. Suppose that
ho > hy > ... > hy. Then, as before, start with the coarsest partition {Sf;n}
and compute the value function W™ from the above iterated method (3.6)
with Wo = 0. Next, choose W as the initial condition for computing Wwh,
And follow the same procedure for subsequent refinements: pick W"-1 as
the initial choice for computing W™, fori = 1,2, ..., n.

For the same level of accuracy, this method reduces the computational bur-
den, since earlier iterations are performed over coaser grids with less com-
putational cost. Furthermore, if estimates of the approximation errors are
available, then one can derive more efficient algorithms over these successive
approximations. For instance, by Corollary 3.6 the search for the optimal
policy can be restricted to a smaller region while proceeding with finer parti-
tions. For the example under study, Table 1{c) replicates the computations
of Table 1(b) under the proposed continuation method. It can be seen that
in this case with 3 = 0.99 this iterative procedure leads to about a twenty-
five per cent saving of CPU time.

Example 2: A One-Sector Stochastic Growih Model. We next consider a
stochastic version of the preceding model in which the value and policy functions
also have a closed form solution. The problem is written as

W (ko, 20) = maxgx,} 2220 B f5:[log e u (2o, dz*)
8t = ZtAk,'? - kt+1
Inzg=phnz_q1+e

ko and zo fixed, 0 < < 1,0<p<1,0<a<landt=0,1,2,..

where £, is an i.i.d. process with zero mean. Under these conditions the value
function W has an analytical form given by W(ke,z) = B + Clnkg + Dln 2y,

8 Complexity properties of this method have been studied in Chow and Tsitsiklis (1991).
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o 1
and D = Also, as previously the optimal

Y; (L= aB)(L_pp)
policy is a constant fraction of total production, ki1 = afBzAky.

We fix parameter values, A = 5, § = 0.95, a = 0.34, p = 0.90. Also, we
restrict the feasible domain so that k € [0.1,10], ¢ € [-0.032,0.032], and z is
such that logz € [—0.32,.32]. As explained in the Appendix, we assume that the
random process & comes from a normal distribution, where the density has been
rescaled in order to get a cumulative mass equal to unity. As in Prescott (1986)
we assume a standard deviation o, = 0.008. Observe then that the end-points of
the domain of variable £ are four standard deviations away from the mean.

where C =

One can again check that under these restrictions Assumptions (1)-(4) are
satisfied. Indeed, in this simple case one can show that the model has a globally
stable invariant distribution. As the random shock has a small variance, all paths
eventually fluctuate around the point (k*,z) = (4.214,1), where k* is the state
value of the deterministic model and Z is the unconditional mean of the random
process. Consequently, an appropriate estimate for y of Lemma 3.4 should be
the matrix norm of the second-order derivative of W at the point (k*, Z). That
is, §D*W (k*, )| = v = 10.1869. Hence, for given h > 0 the observed error for
the computed value function stemming from our interpolation procedure must be

B Y gy = 101.869h*. Asin the preceding example, to this

estimate we should add the other component of the observed error concerning the
fact that the iteration process is stopped in finite time.

bounded above by

Over the feasible domain of state variables we set out a uniform grid of ver-
tex points (k7,27) with mesh size h. Our numerical procedure then follows the
iterative process specified in (3.6) with an initial value Wo = 0, and where the
integration in (3.6) is carried out under Simpson’s rule (see the Appendix) with
an eight-digit accuracy. Again, the one-dimensional maximization problem is
eflected following Brent’s algorithm. The iterative process stops once two consec-
utive value functions satisfy the given inequality uW,': ' W,,?“ < h%

Figures 2(a)-2(c) portray the observed error e;(k, z) = lW(k,z) - W,f(k,z)l
for several values for h. Likewise, Table 2(a) presents further details of the nu-
merical experiment. It should be observed that the error term ek(k,z) is al-
ways bounded by 21h%. Hence, the constant stemming from our computations is
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bounded above by 21, whereas our estimate of the observed error,

Wik, 2) ~ Wik, 2)| < |W(k,2) - Wk, 2)| + |[WP(k, 2) = Wi(k, 2)|
< 101.869h% + 20h% < 121.869A%

We again emphasize that this substantial difference is a result to be expected
in particular applications, since these estimates are by construction rough upper
bounds of the maximum approximation error over the entire infinite horizon.

As in the preceding example, we considered alternative numerical experiments
for several values for 3, and replicated the original computations under the con-
tinuation method. Table 2(b) reports the corresponding numerical results for
discount factor 8 = 0.99. As it is to be expected, the constant involved in the or-
der of convergence for the value function is now five times larger. Likewise, Table
2(c) replicates the computations of Table 2(b) under the continuation method. It
can be seen that the required CPU time gets down roughly to one half of that of
the original experiment.

Example 3: A One-Sector Stochastic Growth Model with Letsure: The model
is extended now to include work and leisure. In reduced form, the optimization
problem is written as

W(kﬂ, 20) = max %log o+ %log lo + ﬁfZ W(kl,zl)Q(zg, dzl)
s. t. cop = ZoAkg(l - l())l_a — kl

logzl = plog zo + &1

where = is again the i.i.d. process of Example 2. Under these conditions, the value
of leisure, {, remains constant over the optimal solution, independently of the state
variable (k,z). Hence, the value function W takes on the same functional form
as in the previous example with the same values for constants C' and D). Hence,
the second-order derivatives of this function remain unchanged.

For the purposes of the numerical maximization, the problem involves leisure as
an additional decision variable. Hence, Brent’s algorithm is not longer suitable for
our purposes. The one-period maximization step in now effected by the ZXMWD
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subroutine from IMSL.? As previously, Figures 3(a)-3{c) illustrate the observed
error involved in our numerical procedure. Also, Table 3 reports further relevant
details of our numerical experiment,

It should be noticed that the observed error €f(k, z) is of the same magnitude
as that of our previous example. That is, in both stochastic examples, ef(k,z) <
21h2. This result may come as no surprise, given that both value functions have
identical second-order derivatives.

In addition to the analysis of the error, we have also examined the accuracy
of quadratic approximations in this class of models. This is a topic of particular
concern in the business cycles literature. As shown in (3.1), the second-order
derivative Dy, W {ko, zo) can be characterized as the value function of a quadratic
optimization problem. Moreover, the derivative of the policy function D;g(ko, z0)
is defined by the linear decision rule of the quadratic model. On the other hand,
the remaining partial derivatives of the value and policy functions depend in a
nonlinear way on the uncertainty component [e.g., see equations {(6.3) and (6.6)
below]. Hence, we should expect solutions of the quadratic model to be good
approximations of the non-linear dynamics for small stochastic perturbations near
a deterministic steady-state. However, if these stochastic shocks are large then
accuracy is no longer guaranteed.'®

We should also point out that the usual quadratic approximations found in the
literature consider the matrix of second-order derivatives D*v(ky,ki41,2:) as the
one-period objective function, whereas (3.1} shows that the right approximation
. is defined instead by the matrix of derivatives D?v,,(k;, kiy1) with z; held fixed.
For large stochastic shocks both quadratic approximations may yield different
solutions.

For the above example, the variance of the stochastic innovation is small.
Hence, the quadratic approximation should mimic reasonably well the invariant
distribution of the non-linear model with or without physical capital depreciation.
For convenience of the analysis, our computations will be restricted to the above
model with full physical capital depreciation, although similar results are available
for cases of more realistic calibrations of capital depreciation.!! As it is typical in

91 order to implement this subroutine, all functions are rewritten so as to depend on I,
although for some functions such dependence is merely fictitious.

10jydd (1991) has made a similar point, but without a formal derivation of these derivatives.

111y cases where the value function has no analytic form comparisons were made with respect
to the numerical solutions of our algorithm for arbitrary accuracy levels.
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the business cycles literature, we consider the full matrix of second-order deriva-
tives, D20(ky, kys1,2.), as the one-period objective of the quadratic model [instead
of the correct approximation (3.1)].

Table 4 reports the standard derivations and correlation coefficients for phys-
ical capital, k, consumption, ¢, work, u = 1 — [, and output, y = Ak*u'~®. These
moments have been obtained from ten-thousand draws of the i.i.d. random pro-
cess {&;} that enabled us to construct a random path for state variable z. For the
calibrated standard deviation of the stochastic innovation, these computations
confirm the accuracy of the second-order moments obtained from the quadratic
approximation. Also, we have checked that both models practically generate the
same optimal paths, and so they yield similar predictions concerning the quanti-
tative behavior of the level variables. Of course, such accuracy is not expected to
hold for larger values of the standard deviation of the i.i.d. process {:}.

5. Concluding Remarks

In this paper we have considered a standard class of models of economic growth.
Via a discretized version of the dynamic programming algorithm, we have derived
error bounds for the computed solutions. We have shown that the approximate
value function converges quadratically to the true value function and that the
approximate policy function converges linearly to the true policy function, as the
mesh size of the discretization converges to zero. Also, with the aid of well-
tested subroutines we have implemented numerically our computational method
corroborating that the observed approximation error evolves asymptotically as
predicted by our theoretical analysis.

Derivation of error bounds is a basic topic of theoretical numerical analy-
sis. This topic is not as yet rooted in the economic literature, and relatively
little is known about the accuracy properties of most of the algorithms used by
economists. To the best of our knowledge, our study provides the first rigorous
analysis of error bounds for the standard class of neoclassical growth models. This
analysis guarantees arbitrarily accurate approximations, and should be important
to settle controversial issues regarding subtle properties of a given solution and to
appraise the accuracy of alternative numerical methods. Likewise, as illustrated
in Section 4 these results are also useful for testing the computer code and for
devising efficient computational procedures.
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Although our algorithm has some desired accuracy properties, it may be rel-
atively costly to implement in certain economic situations. For instance, for the
simple class of models discussed in Section 4, most of the methods considered in
Christiano and Fisher {1994), Judd (1992) and Taylor and Uhlig (1990) seem to
provide accurate solutions at a much lower computational cost. We would like to
emphasize that this somewhat controversial point does not undermine the rele-
vance of our results. First of all, for the basic models implemented in this paper
our algorithm can be effected in a reasonable computing time; in addition, tech-
nological developments in data storage and computation will facilitate the use of
more reliable methods in a near future. Second, for large-scale models where our
numerical scheme may become currently infeasible, it remains to be shown that
the aforementioned algorithms will provide reasonable numerical solutions. In this
research endeavor, our analysis of the error should be of guidance for conjecturing
sensible approximation procedures for the advancement of faster algorithms in
the simulation of more complex models. Third, as stressed in Rust (1994), recent
developments in complexity theory suggest that if as in this paper comparisons
are made on a worst-case error basis (the standard practice in numerical anal-
ysis), then it is not possible to circumvent the “curse of dimensionality”. This
implies that, unless specific properties of the model are embedded in the numeri-
cal scheme, one must face the decision of using reliable, costly algorithms, or else
resorting to fast, ad hoc procedures that offer no guarantee about the accuracy of
the solution.’? )

The numerical implementation of our algorithm has been achieved by standard,
well-tested procedures, which enhance the applicability of our results. In terms
of computational costs and other considerations, our method seems to fare well
as compared to similar, rougher procedures found in the economic literature such
as those devised by Christiano (1990) and Tauchen (1990). As it is customary
at the initial stages of research of this nature, there should be wide room for
further improvements with substantial savings in computing time. In this sense,
our numerical scheme should be taken as a first attempt to vindicate the feasibility
of the proposed algorithm.

The analysis of this paper has been restricted to a class of convex economies
where optimal solutions may be thought as competitive allocations. These models
are the simplest to study. It remains as a challenge for future economic research

1275 a matter of fact, Chow and Tsitsiklis (1991) argue that, among the class of accurate
methods, value-function iterated algorithms with continuation are roughly optimal.
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the derivation of an analogous theory of error for models with money, externalities,
adjustment costs, taxes, and other types of frictions where the equivalence between
optimal and competitive solutions is not guaranteed. Incidentally, such a research
program may entail the study of accuracy properties of faster, more operational
algorithms.
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6. Appendix

This appendix is made up of two parts. In Part I we indicate how the existing
results for deterministic models can be extended to substantiate the second-order
differentiability of the value function in our stochastic framework. In Part 1I
we describe in some detail the algorithms used for numerical integration and
maximization.

PART I

Second-Order Differentiability of the Value Function

Qur purpose now is to provide proofs of Theorems 3.1 and 3.2. OQur method
of proof is based upon the differentiability analysis of Santos (1992, 1994). Since
most of this analysis seems to carry over to the stochastic case, we shall only
sketch key modifications to the previous method of proof in order to validate the
present results.

The proofs of Theorems 3.1 and 3.2 follow from a series of lemmas that estab-
lish existence and continuity of the partial derivatives.

LEMMA A.l: The second-order partial derivative D \W (ko,20) exists and is
jointly continuous on int{ K x Z). Furthermore, this derivative can be characterized
by the following quadratic opiimization problem

Q0
EO'DHW(’CU, Zo)‘ib‘o ={31;P Zﬁt fzt [(7&,7%“) : Dzvzg(kt,kHl) . (ﬂ'a,'ﬂ'nﬂ)] #t(zo,dzt)
®rrez0 =0
(6.1)

As in Section 3, here the maximization proceeds over all measurable functions
{m )20, T 0 20 — R for ¢ > 1 with mg = o fixed, the one-period objective
D?u, (kg kyy) is the Hessian matrix of the mapping v(:, -, %) for z; fixed, and
{k,, 2,}2°, is the optimal contingency plan to (2.1) for the initial value (ko, 20)-
For this stochastic model, a formal proof of the existence of the derivative
D1 W (ko, 20) satisfying (6.1) is found in Gallego (1993). As discussed in Santos
(1992) such derivative must be continuous in (ko, 2o), since the value function cor-
responding to the optimization problem (6.1) varies continuously with the vector
of initial conditions (kp, z9). These considerations suffice to establish the lemma.
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From this characterization, one readily proves [cf. Santos (1994)] that the op-
timal plan {7,}%, to maximization problem (6.1) determines the derivative of the
policy function with respect to ko. That is, 7 = Di1g* (ko,20) - W for t > 1, where
Dyg'(ko, z0) denotes the derivative of the function g(g(.--g(ko, z0), -.), Ze-2), Zt-1)
with respect to ko for every possible realization (21,2, ..., Z—1)- As illustrated in
Section 3, these results imply that

g (6.2)

ik f D19+ (ko, 20| 1t (20,d2")
t=0

where L= sup | Duv(ko, k1, 20)| -
(ko,k1,z0)E2

LEMMA A.2: The cross-partial derivatives Di1aW (ko, 20) and Dot W (ko, zg) ez-
ist and are jointly continuous on int (K x Z). Furthermore, these dertvatives can
be computed by the expression

DWW (ko, 20)T = DnW (ko, 20)
- 6.3
= Zﬁtft[(g_g) (D31U(ktukt+1:zt) Dlgt(ko, Zo)-i- ( )

Dsav(ks, ki1, Zt) - Dlgt"'l(ko, 20))lu‘(20, dzt)

0z 0
where —a——t- denotes the derivative F (@ (- (@ (20,€1) ,€2) - ) , &) for every pos-
Zo 20

sible realization (ey,...,€;) and t > 0, and the righi-hand side of (6.3) is evaluated
at the optimal contingency plan {k¢, 2},
PROOF: Let us consider the function

625

Dz ko,Z() Zﬁtf lD3U kt,kt+1,zt) g

0

]w(zo,dz‘) (64)

Then by Assumptions 2 and 4 the sequence {DQWS(kﬂ, ZO)}S>1 converges uni-
formly to DyW (Ko, z0) as defined in (2.5). Now, differentiating (6.4) with respect
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to ky we obtain

Dy W5 (ky, 2) = Zﬂt/ (%)'(DSIv(ktakt+lgzt)' (6.5)

D1g*(ko, 20) + Dagv(ke, ka1, 20) - D1g** (Ko, 20))}ut(20,d2")

Observe that Dy W3 (kg, 29) varies continuously with (kg, o). Moreover, under the
maintained assumptions and by virtue of (6.2} the sequence {D21W5(k0, zo)}s>1

converges uniformly to Dy W (ko, 20) as defined in (6.3) [¢f. (3.5)]. Hence, DaiW (ko, 20)
is well defined, jointly continuous, and can be computed by expression (6.3).
In order to prove the existence of D3W (ko, z) at every interior point (ko, 2o),
the standard argumentation to establish the symmetry of the cross-partial deriva-
tives [e.g., Marsden and Tromba (1981}] suffices to show that D1aW kg, z0)T =
Dy W (ko,20) at every interior point (ko,2p). This completes the proof of the
lemma.
Proor OF THEOREM 3.2: Let F(kn,k;, ZD) = D2U(I‘CO, k1, ZQ)+ﬂ L D1W(k1,z1)Q(zg,dzl).

Observe that, under the maintained assumptions and the previous results, func-

tions Dyv(ko, k1, z0) and D1 W (ky, z1) are of class C! over the interior of their do-

mains. Moreover, from a simple application of the bounded convergence theorem

[e.g., Stokey and Lucas (1989, Ch. 7)] one can show that f DWW (ky, z1)Q{20,d21)
z

is C! as a function of k;. Therefore, function F' must also be of class C!. Then, by
the asserted concavity of v and the concavity of W on ky, the implicit function
theorem implies that the optimal policy k; = g(ko, zo) is a C! mapping.

To complete the proof of Theorem 3.2, we need to show that

Zﬁ!] ” Dyg'(ko, z0) u (20,d2") < é, for some constant I, > 0. This is, how-

ever, expression (3.4). The proof is complete.
LEMMA A.3: The second-order partial derivative DoeW (ko, 20) exists and is
jointly continuous on int{ K x Z). Furthermore, this derivative can be computed
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by the expression

2

DpW (ko, z0) = Zﬁt /Zt [DSU(kt,kt+1,Zt) : %22" + (%’5) : (D31'U(kt:kt+la zt)-
=0

24

Dggt(kg, Zu) -+ Dszv(kt, kt-!,-l, Zt) . Dggt+l(k0, Z(]) + D33’U(k;, kt+1; Zt) . (%)]#%Z{),dzt)
(6.6)
Oz 0z
where B and —- Bzo are the previously defined derivatives, and the right-hand side
of (6.6) is evaluated at the optimal contingency plan {k;, 2 };20-

PROOF: The proof follows the same lines as that of the preceding lemma. After
differentiating (6.4) with respect to zp and taking the limit we obtain expression
(6.6). We then have to prove that this latter expression is uniformly bounded.
The boundedness of the first term in (6.6) follows from Assumptions 2 and 4.
Moreover, as discussed in Santos (1992), an upper estimate for the second term

may be obtained from the fact that

Ozi_g
Dsg*(ko, 20) = ZDIQ (ke-si1, 21—a41) - Dagl(Ke—sy 2e-s) - 3‘;0

for t = 1,2, ..., and every optimal realization {k;, 2:}3°o. The proof is complete.
Finally, we note that Theorem 3.1 is a simple consequence of Lemmas (A.1)-

(A.3).

PART I1

Numerical Integration and Maximization

In this last part, we discuss the algorithms employed for the integration and
maximization of our functions. For stochastic objectives, we have first integrated
out over the random variable, and then proceeded to the numerical maximiza-
tion. All optimization problems considered so far involve a univariate stochastic
process, and in consequence the same numerical scheme has been followed in all
our integrations. Regarding maximizations, algorithms for functions in several
variables are usually inefficient for one-dimensional problems. Accordingly, a dis-
tinction has been made between univariate maximization (Examples 1 and 2) and
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multivariate maximization (Example 3). As already emphasized, our integration
and maximization procedures follow standard practice in numerical analysis. (All
subroutines may be found in commonly used libraries such as IMSL and NAG.)
For a theoretical discussion of these methods, the reader is referred to Gill, Murray
and Wright (1981), Kahaner, Moler and Nash (1989), and Press et al. (1992).

Integration

To avoid issues related to the evaluation of indefinite integrals, the i.i.d. pro-
cess {£;} has been restricted to a compact domain [a, b]. It should be pointed out
that in our examples mean-preserving changes of these interval values will alter
the domain of -definition of the value and policy functions but not their functional
forms. In other contexts, this boundedness assumption may be viewed as an ap-
proximation of an underlying random process defined over an unbounded domain.
In most circumnstances, it is then plausible to obtain a good estimate of the error
stemming from such an approximation.

In all our computations, we have posited the same density functlon for the
stochastic process {£,}. The density function has been defined as follows

_ [z f(s)ds
o(x) = fa f(s)ds

0 otherwise

for z € [a, ]

where f(z) is the density function of a normal distribution with zero mean and
standard deviation equal to 0.008. Such a small standard deviation concentrates
most of the mass around the mean, and complicates the process of numerical
integration. The boundary values of the interval [a, ] have been set to a = —0.032
and b = 0.032 so as to encompass in each side four standard deviations from the
mean. Hence, for parameter value p = 0.9, the domain of z is restricted such that
logz lies in the interval of values [—0.32,0.32].

All our integrations have been performed under the subroutines gsimp and
girap as specified in Press et ol (1992, Sec. 4.2). As argued in this treatise, these
subroutines are fairly efficient for the integration of relatively simple problems.
For each given z, our task is to compute the conditional expectation over the
stochastic innovation. This calculation is implemented by the corresponding rou-
tines via an N-stage refinement of an extended trapezoidal rule [op. cit., equation
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(4.1.11)]. This rule allows for successive subdivisions of existing panels in order
to benefit from previous functional evaluations. Thus, if Sy is the integral evalu-
ation obtained from N equally spaced points, then these values can also be used
to compute Syy. Moreover, as illustrated in Press et al. (1992, p. 133) Simpson’s

4 1 )
rule can be defined as SV = =Son — ESN’ and for sufficiently smooth functions

this substraction will cancel out the leading error term.

These routines have embedded an automatic quadrature algorithm, which com-
putes a numerical estimate of the approximation error for two successive evalu-
ations SN and S?V. In all our numerical exercises the algorithm is supposed to
stop once such an approximation error is less than or equal to 1078, This is the
value assigned to TOLI.

As discussed in Kahaner, Moler and Nash (1989, p. 155), it is usually more
costly to estimate the integration error than to perform integral evaluations.
Hence, this type of algorithm is sometimes implemented at the initial stages of
a project. In our exercises, the required level of accuracy guarantees that the
integration error is negligible as compared to the approximation error stemming
from the piecewise linear interpolation of our functions over all considered grids
of mesh size h > 1073

Maximization

Techniques for solving maximization problems are generally similar to those of
finding zeroes of non-linear equations. In our case, all our functional interpolations
generate kinks at the nodal values, and hence our analysis has been restricted
to algorithms suitable for non-smooth optimization. Also, by a straightforward
substitution of the constraints into the objectives, our problems fall into the class
of unconstrained maximization. As our objectives are strictly concave over the
decision variables, these functions contain a unique maximum.

(1) Univariate mazimization. For the process of univariate maximization, we
have initially bracketed the mazimum. That is, in some very simple way we select a
triplet of points a < b < ¢ such that f(b) is greater than both f(a) and f{c). (This
guarantees the existence of a maximum inside the chosen interval. Moreover, by
the strict concavity of the objective such solution is the desired global maximum.)

Once the maximum has been bracketed, we have followed a searching process
that exploits regularity properties of our functions. As already pointed out, the
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derivatives are not well defined at vertex points; accordingly, it seems safest to
consider routines that are safeguarded by functional evaluations (instead of those
just based on first-order derivatives). We should remark, however, that these kinks
cannot be arbitrarily large since following the line of argumentation in Montruc-
chio (1987) one can show that exact maximization for all initial conditions of the
domain should yield at each stage value functions with bounded curvature. Con-
sequently, as a first approach to the problem it may be reasonable to assume that
the objectives are smooth.

This is the strategy followed by Brent’s method [cf., Press et al. (1992, Sec.
10.2)]. The method proceeds along the following steps.

(a) Smooth approzimation. The routine selects three given function values, and
constructs a parabolic approximation. Then it quickly determines the maximum of
the parabola. If this maximum point falls within certain limits (i.e., the maximum
is cooperative), then this value is added in the next iteration for a subsequent
parabolic approximation until a desired level of accuracy is achieved. Convergence
to the true maximum is of order 1.324.

(b) Golden-section search. If the parabolic approximation is not a reasonable
one, then the routine switches to a more reliable but slower method called golden-
section search. This procedure is analogous to the familiar method of bisection
for finding the zeroes of a univariate function. Given at each stage a bracketing
triplet of points, golden-section search tries a point that is a fraction 0.38197
into the largest of the two intervals from the central point of the triplet. With
the four points now available, the procedure then selects a new bracketing triplet.
Following this iterative process, the interval of search is eventually reduced at each
stage by 1 — 0.38197 = 0.61803, which corresponds to the rate of convergence of
this method.

We have implemented this routine as specified in Press et al. (1992, Sec. 10.2),
where this maximization procedure is discussed. In all our examples TOLM has
been set to 10~ %, which means that the computed maximum should be within such
distance from the true one. This level of accuracy then implies that the computed
value for the objective must be {up to a constant) within a 107*® distance from
the trie one.

The above method falls into the class of the so-called safequarded procedures,
which combine fast algorithms with slower, more reliable ones. Press et al. (1992,
Sec. 10.3) discuss another method of this nature which seems appropriate for
univariate concave optimization. The method proceeds as follows. Given a brack-
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eting triplet of points a < b < c, one determines the direction of the derivative
at the intermediate point, b. This information then defines the next interval of
search, which would be either [a, 8] or [b, ¢|. The value of the derivatives of the two
chosen points can then be used to produce another intermediate point by some
root finding procedure such as the secant method. If this method yields values
beyond certain limits, then one bisects the interval under consideration.

Of course, in order to implement this latter safeguarded procedure, concavity
and smoothness properties of the univariate problem are essential. In the unidi-
mensional case, concavity is always preserved by piecewise linear interpolations.
Regarding differentiability, we could compute for instance one-side derivatives,
or else resort to higher-order interpolations preserving first-order differentiability.
Since Brent’s method seems efficient for all cases studied, we have refrained from
consideration of this latter alternative.

(2) Multivariate mazimization. There are also here a host of algorithms, the
usefulness of which depends on the dimensionality, concavity and smoothness
properties of the optimization problem. Given our interpolation procedure, the
derivatives are not well defined at the edges of the subdivisions. For reasons
pointed out above, these kinks cannot be arbitrarily large. Hence, we should
expect that our functions are approximately smooth. Also, since there is only
one endogenous state variable, all our objectives are concave over the decision
variables.

Two popular methods in multivariate (non-smooth) optimization are conjugate-
gradient and quasi-Newton methods. Their convergence properties are somewhat
involved.

Conjugate-gradient methods construct a sequence of searching directions which
satisfy certain orthogonality and conjugacy conditions so as to improve at each
stage the search for a maximum. Conjugate-gradient methods do not require
knowledge of the Hessian matrix, and hence their applicability extends to large-
scale problems.

Quasi-Newton methods exploit information on the slope and curvature of the
objective function. This is the methodology that we have followed, and it seems
appropriate for the problem at hand. Of course, a general method for non-smooth
functions may be highly inefficient when applied to smooth optimization problems
[Gill, Murray and Wright (1981, p. 93}].

As suggested in this latter monograph, we have computed the gradient using
forward-differences, and when this formulation has not been sufficiently accurate
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we have employed central differences. Double precision has been implemented in
these calculations, since inaccuracies in the computation of the gradient may stop
the algorithm at an undesired solution.

Regarding second-order differentiation, quasi-Newton methods try to estimate
the curvature of the function without explicitly computing the Hessian matrix.
Thus, one starts each iteration with a matrix By which reflects known second-order
information, and which is supposed to be an approximation of the true Hessian
if the function is sufficiently smooth. (At the initial stage one usually starts with
By equal to the identity matrix, and in such case the algorithm reduces to the
steepest-descent method.)

Given a matrix By, the search direction, pg, is the solution to

By - pr = ~gx

where g;, is the gradient vector. Then the new Hessian estimate By is updated
by the Davidon-Fletcher-Powell formula. For this implementation, we have used
the ZXMWD routine (IMSL Technical Manual). Again, in all our computations
the accuracy parameter value, TOLM, has been set to 1072
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No. of vertex | Mesh size | No. of | CPU time | Max. observed | Max. observed
points iterations etror in g error in W
100 107! 09 3 43 x 1072 1.8 x 1071
1000 1072 189 65 3.7x107? 1.7 x 1072
10000 1073 278 893 36x107* 1.8 x 1073

Table 1(a): Example 1.

A =58 =1095 a=0.34; without continuation.

No. of vertex | Mesh size | No. of | CPU time | Max. observed | Max. observed
points iterations error in g error in W
100 1077 500 16 4.1 x 1072 9.6 x 1071
1000 102 958 324 36 %1072 0.6 x 1072
10000 1073 1416 4471 36x101 9.6 x 107°
Table 1(b): Example 1. A =5, = 0.99,a = 0.34; without continuation.
No. of vertex | Mesh size | No. of | CPU time
points iterations
1000 1072 460 171
10000 107? 919 3251
Table 1(c): Example 1. A = 5,8 = 0.99,a = 0.34; with the continuation
method.
No. of vertex | Mesh size | No. of | CPU time | Max. observed | Max. observed
points iterations error in g error in W
3 x 43 0.3872 45 3 9.91 x 1072 2.88
9 x 143 107! 96 77 3.03 x 107? 2.1 x 1071
33 x 500 0.0282 148 1961 8.9 x 1073 1.48 x 1072
Table 2(a): Example 2. A = 5,3 = 0.95, a = 0.34, p = 0.90; without continu-
ation.
No. of vertex | Mesh size | No. of | CPU time | Max. observed | Max. observed
points iterations error in g error in W
3 x 43 0.3872 16 223 10~ 15.42
9 x 143 1071 485 487 3.056 x 1072 111
33 x 500 0.0282 749 9964 87 x 1073 7.6 x 1072

Table 2(b}: Example 2. A= 5,3 = 0.99,a = 0.34, p = 0.90; without continu-

ation.
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No. of vertex | Mesh size | No. of | CPU time
points iterations
9 x 143 107! 52 46
33 x 500 0.0282 54 710

Table 2(c): Example 2. A=5,4 = 0.95, = 0.34, p = 0.90; with the continu-

ation method.

No. of vertex | Mesh size | No. of | CPU time | Max. observed | Max. observed
points iterations error in g error in W
3x43 0.3872 11 21 1.2 x 107! 2.42
9 x 143 1071 57 1041 3.6 x 1072 0.209

33 x 500 0.0282 109 25206 1.06 x 1073 1.46 x 1072

Table 3: Example 3. A = 10,5 = 0.95,a = 0.34, p = 0.90; without continua-

tion.
a(k) alc) | olu)
a(y) ) 20 | 7 corr(k,y) | corr(c,y)

Exact solution | 1.3535 | 0.9974 { 1.1086 0 0.8389 0.9723

Quadratic 1.3537 | 0.9970 | 1.1084 | 0 0.8394 0.9724
approximation

Table 4: Standard deviations, ¢(i), and correlation coefficients, corr(i, j), for

i1j = k,C,U,y.
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FIGURE 1({a).- Observed error el(k) = ‘W(k) - W,{f(k)‘ ,
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h =101, A=99, §=0.95, for the deterministic growth

model of Example 1. .
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FIGURE 1(c).- Observed error el(k) = ‘W(k) — W,'f(k)‘ ;
h=10"3%n=278 0= 0.95, for the deterministic growth

model of Example 1.
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FicURE 1(b).- Observed error et (k) = ‘W(k) — W,{'(k)l .
h=10"% @ = 189, = 0.95, for the deterministic growth
model of Example 1. '
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FIGURE 1(d).- Observed error e} (k) = |W (k) — Wh(k)|
h=107% # = 1416, 8 = 0.99, for the deterministic growth
model of Example 1.
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FIGURE 2(a).- Observed error ei(k) = |W (k) - W2(k)|, h = 0.3872, 7 = 45,
for the deterministic growth model of Example 2.

FIGURE 2(b).- Observed error ef(k) = |W (k) — W2(k)|, h = 107", 7 = 96.
for the deterministic growth model of Example 2.
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FIGURE 2(c).- Observed error ch(k) = [W (k) — Wi (k)| h = 0.0282, 7 = 148,
for the deterministic growth model of Example 2.

FIGURE 3(a).- Observed error ei(k) = W (k) - Wi(k)|, h=03872, & = L1
for the deterministic growth model of Example 3.



FIGURE 3(b).- Observed error eh(k) = [W(k) — Wh(k)|, h = 107", & = 57,
for the deterministic growth model of Example 3.

FIGURE 3(c).- Observed error (k) = W (k) — Wh(k)|, h = 0.0282, 7 = 109.
for the deterministic growth model of Example 3.
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