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Management in complex social and economics networks includes elements 
of cooperative behavior or full cooperation between agents involved in 
decision making process. The most appropriate mathematical tool for 
modeling in this case is the mathematical theory of cooperative games. 
Unfortunately the classical cooperative game theory considers cooperation 
as one-shot interaction between the decision makers and for this reason can 
not be used for modeling of dynamic interactions arising in long term 
strategic management. The theory of cooperative differential games is the 
most adequate tool for modeling strategic management development on a 
given time interval. The use of this theory from the beginning poses the 
problems connected with dynamic stability (time-consistency) of optimal 
cooperative solutions. The consideration of optimality principles taken 
from the classical cooperative game theory shows the time-inconsistency 
and thus non applicability of these principles in strategic management. In 
this paper the methods of construction of time consistent solutions is 
proposed for the problems of strategic management in social and economic 
networks. The authors tried to present a rather complicated material on 
acceptable level. Theory is illustrated with a number of examples and a 
more comprehensive analysis of joint venture. 
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INTRODUCTION 

Advances in technology, communications, industrial organization, 

regulation methodology, international trade, economic integration and po-

litical reform have created rapidly expanding social and economic net-

works incorporating cross-personal and cross-country activities and inter-

actions. From a decision- and policy-maker's perspective, it has become in-

creasing important to recognize and accommodate the interdependencies 

and interactions of human decisions under such circumstances. The strate-

gic aspects of decision making are often crucial in areas as diverse as trade 

negotiation, foreign and domestic investment, multinational pollution 

planning, market development and integration, technological R&D, re-

source extraction, competitive marketing, regional cooperation, military 

policies, and arms control. 

Game theory has greatly enhanced our understanding of decision 

making. As socioeconomic and political problems increase in complexity, 

further advances in the theory's analytical content, methodology, tech-

niques and applications as well as case studies and empirical investigations 

are urgently required. In the social sciences, economics and finance are the 

fields which most vividly display the characteristics of games. Not only 

would research be directed towards more realistic and relevant analysis of 

economic and social decision-making, but the game-theoretic approach is 

likely to reveal new and interesting questions and problems, especially in 

management science. 

The origin of differential games traces back to the late 1940s. Rufus 

Isaacs modeled missile versus enemy aircraft pursuit schemes in terms of 

descriptive and navigation variables (state and control), and formulated a 

fundamental principle called the tenet of transition. For various reasons, 
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Isaacs's work did not appear in print until 1965. In the meantime, control 

theory reached its maturity in the Optimal Control Theory of Pontryagin et 

al. (1962) and Bellman's Dynamic Programming (1957). Research in dif-

ferential games focused in the first place on extending control theory to in-

corporate strategic behavior. In particular, applications of dynamic pro-

gramming improved Isaacs' results. Berkovitz (1964) developed a variation 

approach to differential games, and Leitmann and Mon (1967) investigated 

the geometry of differential games. Pontryagin (1966) solved differential 

games in open-loop solution in terms of the maximum principle. 

First paper about differential games in Soviet Union appeared in 

1965 [Krasovsky, 1966; Petrosjan, 1965; Pontryagin,1967]. 

Research in differential game theory continues to appear over a large 

number of fields and areas. Applications in economics and management 

science are surveyed in Dockner et al. (2000). In the general literature, 

derivation of open-loop equilibria in nonzero-sum deterministic differential 

games first appeared in Petrosjan, Murzov (1967); Case (1967, 1969) and 

Starr and Ho (1969a, 1969b) were the first to study open-loop and feed-

back Nash equilibria in nonzero-sum deterministic differential games. 

While open-loop solutions are relatively tractable and easy-to-apply, feed-

back solutions avoid time inconsistency at the expense of reduced intracta-

bility. In following research, differential games solved in feedback Nash 

format were presented by Clemhout and Wan (1974), Fershtman (1987), 

Jorgensen (1985), Jorgensen and Sorger (1990), Leitmann and Schmiten-

dorf (1978), Lukes (1971a, 1971b), Sorger (1989), and Yeung (1987, 1989, 

1992, 1994). 

Cooperative games suggest the possibility of socially optimal and 

group efficient solutions to decision problems involving strategic action. 

Formulation of optimal behavior for players is a fundamental element in 

 5



this theory. In dynamic cooperative games, a stringent condition on coop-

eration and agreement is required: In the solution, the optimality principle 

must remain optimal throughout the game, at any instant of time along the 

optimal state trajectory determined at the outset. This condition is known 

as dynamic stability or time consistency. In other words, dynamic stability 

of solutions to any cooperative differential game involved the property 

that, as the game proceeds along an optimal trajectory, players are guided 

by the same optimality principle at each instant of time, and hence do not 

possess incentives to deviate from the previously adopted optimal behavior 

throughout the game. 

The question of dynamic stability in differential games has been rig-

orously explored in the past three decades. Haurie (1976) raised the prob-

lem of instability when the Nash bargaining solution is extended to differ-

ential games. Petrosjan (1977) formalized the notion of dynamic stability 

(time consistency) in solutions of differential games. Kydland and Prescott 

(1977) found time inconsistency of optimal plans (Nobel Prize 2005). Pet-

rosjan and Danilov (1982) introduced the notion of "imputation distribu-

tion procedure" for cooperative solution. Tolwinski et al. (1986) investi-

gated cooperative equilibria in differential games in which memory-

dependent strategies and threats are introduced to maintain the agreed-

upon control path. Petrosjan (1993) and Petrosjan and Zenkevich (1996) 

presented a detailed analysis of dynamic stability in cooperative differen-

tial games, in which the method of regularization was introduced to con-

struct time-consistent solutions. Yeung and Petrosjan (2001) designed 

time-consistent solutions in differential games and characterized the condi-

tions that the allocation-distribution procedure must satisfy. Petrosjan 

(2003) employed the regularization method to construct time-consistent 

bargaining procedures. Petrosjan and Zaccour (2003) presented time-
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consistent Shapley value allocation in a differential game of pollution cost 

reduction. 

In the field of cooperative stochastic differential games, little re-

search has been published to date, mainly because of difficulties in deriv-

ing tractable time-consistent solutions. Haurie et al. (1994) derived coop-

erative equilibria in a stochastic differential game of fishery with the use of 

monitoring and memory strategies. In the presence of stochastic elements, 

a more stringent condition – that of subgame consistency – is required for a 

credible cooperative solution. In particular, a cooperative solution is sub-

game-consistent if an extension of the solution policy to a situation with a 

later starting time and any feasible state brought about by prior optimal be-

havior would remain optimal. 

As pointed out by Jorgensen and Zaccour (2002) conditions ensuring 

time consistency of cooperative solutions are generally stringent and in-

tractable. A significant breakthrough in the study of cooperative stochastic 

differential games can be found in the recent work of Yeung and Petrosjan 

(2004). In particular, these authors developed a generalized theorem for the 

derivation of an analytically tractable "payoff distribution procedure" 

which would lead to subgame-consistent solutions. In offering analytical 

tractable solutions, Yeung and Petrosjan’s work is not only theoretically 

interesting in itself, but would enable hitherto insurmountable problems in 

cooperative stochastic differential games to be fruitfully explored. 

When payoffs are nontransferable in cooperative games, the solution 

mechanism becomes extremely complicated and intractable. Recently, a 

subgame-consistent solution was constructed by Yeung and Petrosjan 

(2005) for a class of cooperative stochastic differential games with non-

transferable payoffs. The problem of obtaining subgame-consistent coop-

erative solutions has been rendered tractable for the first time. 
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Stochastic dynamic cooperation represents perhaps decision-making 

in its most complex form. Interactions between strategic behavior, dynamic 

evolution and stochastic elements have to be considered simultaneously in 

the process, thereby leading to enormous difficulties in the way of satisfac-

tory analysis. Despite urgent calls for cooperation in the politics, environ-

mental control, the global economy and arms control, the absence of for-

mal solutions has precluded rigorous analysis of this problem. 

1. COOPERATIVE SOLUTIONS 

 

It is essential to begin with basic definitions. Since the main subject 

of the paper is game theory applications in management studies, corre-

sponding models and solutions will be considered. 

In general we treat cooperative solution as solution of participants 

(players) joined by will to make decision about actual problem. Suppose 

that such decision requires players’ behavior coordination guarantied by an 

agreement. Thus, cooperation means any coordinated agreement of parties 

involved. Consideration of time consistency problems is directly connected 

with cooperative solutions in such general context. 

Cooperative decision problems appear in various fields of manage-

ment and management science. Note the problem of signing of contract as 

a result of a given agreement. In strategic management, this could be 

merger and takeover, strategic alliance agreements and other type’s inter-

firm cooperation. In financial management – long term investment deci-

sions. On a firm level this is a long term agreement between owners and 

managers about profit distribution. There are many other examples. At the 

same time cooperative solutions are possible in legal contracts or agree-
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ment forms with legal or not, obvious or secret aims. More complicated 

cooperative agreement forms are possible also. 

In analyzing cooperative decision making some important aspects are 

usually considered. Firstly, what are participants’ motivations to make co-

operative decision? If such motivations exist, are they sufficient? Often 

categories of utility and equity of coordinated agreement serve as such mo-

tivation. Secondly, what coordinated agreement is to be chosen as optimal 

(what optimality principle is to be chosen)? How to choose optimal solu-

tion (what is algorithm of decision making)? Thirdly, how to realize the 

cooperation solutions? In this paper we will be interested in behavior of 

cooperative solutions in time, so the third question of decision making will 

be a key problem. 

Cooperative solutions in general are divided to static and dynamic. In 

static case solution is made once, instantaneously realized and players get 

the outcomes right away. In spite of seeming simplicity of such an ap-

proach, classic game theory deals with static models. However, manage-

ment and management science deals with control, and therefore – with 

processes evolving in time (with conflict processes in our case). To under-

stand cooperative solution concept, it is necessary to begin with considera-

tion of static game. 

Game in normal form  is defined as: Γ

 

, 
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where  is the set of players,  – the set of strategies 

( ),  – the payoff function of player . 

What is the solution of the game ? The answer to the 

question is given by concepts (principles) of optimality, formulated in the 

definitions below. In general the solution is the set of - tuples 

of strategies , satisfying required optimality conditions. Nash 

equilibrium is most widespread optimality concept in nonzero sum game 

theory. 

Definition 1. [Nash, 1951] The - tuple of strategies 

 is called Nash equilibrium if for all  and 

 the following inequalities holds 
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. 

 

Nash Equilibrium (NE – solution) is cooperative solution in general, 

because the choice of such solution requires coordinated players’ behavior. 

If there is more than one NE – solution, the following notice is especially 

important. In such case players also have to agree what NE – solution they 

would realize, since the payoffs in different NE – solutions are different in 

general. 

 

Definition 2. The - tuple of strategies  is 

called Pareto optimal if there is no such - tuple of strategies 

 that the following inequalities hold for all : 
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and for at least one : 

 

. 

 

There may be many Pareto optimal solutions with different payoffs 

for players. This is the reason why Pareto optimal solution (PO - solution) 

is also a cooperative solution, because choosing such solution requires co-

ordinated players’ behavior and contains the property of group rationality. 

Typical representative of Pareto optimal solution is Nash bargaining 

solution. Nash bargaining solution  is the solution of the opti-

mization problem [Nash, 1950]: 

 

 

 

subject to  

 

. 
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Here  is given “reference solution”, defining the “status 

quo” point , . Nash bargaining solution (NB - solu-

tion) is cooperative solution which selects a special Pareto optimal solu-

tion. 

Another representative of Pareto optimal solution is Kalai-

Smorodinskiy bargaining solution. 

Kalai-Smorodinskiy bargaining solution  is the solution 

of the following optimization problem [Kalai, Smorodinskiy, 1975]: 

 

 

subject to 

 

, 

, 
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where  is given “reference solution”, defined by the “status 

quo” point ,  and by “ideal” point , 

 . 

Usually it is not possible to obtain ideal point  in any so-

lution (else, this point would be optimal solution), i. e. it doesn’t belong to 

the set of feasible estimates. Geometrically Kalai-Smorodinsky solution is 

defined intersection point of the line segment connecting “status quo” and 

“ideal” points with the set of feasible estimates. Note that Kalai-

Smorodinsky bargaining solution (KS - solution) is cooperative solution in 

general as special case of Pareto optimal solutions. 

All mentioned above optimality principles are strategic in sense that 

they are constructed on based of coordinated or joint strategy choice. 

Consider now a special type of cooperative solution. Such coopera-

tive solution concept assumes two-stage cooperation: selection of 

- tuple of strategies, which maximize the sum of players’ pay-

offs, and allocation of the aggregate maximal cooperation payoff. 
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Recall, that the cooperative game in characteristic function form is 

defined as a system: 

 

, 

 

where  is the set of players, 

 is characteristic function, possessing 

the superadditivity property: 

 

 

 

The characteristic function value  is often interpreted as 

maximal guarantied payoff of coalition , . From the 
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superadditivity property of characteristic function we have , 

when . Therefore it is advantageous to create maximal coali-

tion  to obtain maximum possible aggregate payoff 

 during game evolution. 

Let  be a cooperative game, constructed on the game 

  structure (with transferable payoffs), where players play ac-

cording to some accepted in advance optimality principle [Petrosjan, Zen-

kevich, 1996]. Then, as mentioned above, the value  is inter-

preted as maximal guarantied payoff of coalition , i.e. maxi-
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mum payoff of coalition  in worst case, when other players cre-

ate coalition  to play against the coalition . 

The agreement about how exactly realize cooperation and share the 

gain of joined cooperative payoff is optimality principle of cooperative 

game solution. In particular, a solution of cooperative game is  

• Agreement about the cooperative - tuple of strate-

gies, oriented on receiving maximal cooperative payoff 

• Method for share of aggregate maximal payoff between par-

ticipants. 

The set of all allocations of maximal aggregate payoff is called impu-

tation set. Denote  player’s  payoff under coopera-

tion, when aggregate cooperation payoff is . 

Vector (aggregate payoff allocation) 

 

, 
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is called imputation in game , if the following conditions are 

satisfied: 

 

(i) , , 

(ii) , 

where  is the value of characteristic function computed for sin-

gleton coalition . 

The condition  guaranties individual rationality, i.e. every 

player obtains at least as much as the maximal payoff in case she plays 

against all other players. The condition  guaranties Pareto op-

timality for the imputation and therefore group rationality. 
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Denote imputation set in game  by . Coop-

erative optimality principle  in the game  is a fixed 

subset  of imputation set . If optimality principle 

 is chosen, then the imputation  is called optimal 

according to given optimality principle .  

Definition 3. The imputation  belongs to the core of 

game , if for every coalition  the following ine-

qualities are satisfied: 
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The core is denoted by . The sense of cooperative solu-

tion from the core is obvious: if the imputation from the core is chosen, 

then every coalition of players gets at least as much as he could get playing 

independently. 

Definition 4. [Shapley, 1953]. The imputation  

 

 

 

is called Shapley value, if it is obtained as 

 

 

 

There exist many others cooperative optimality principles, for exam-

ple: Neyman-Morgenshtern solution, N-core, nucleus. In all cases they are 

some subsets of the game imputation set. 

2. TIME CONSISTENCY OF COOPERATIVE SOLUTION PROB-
LEM. 

 
In previous section we considered static concepts of cooperative so-

lutions. However, management and management science deals with con-

trol, and therefore – with processes (with a conflict evaluation of a large 
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system in time). Control is chosen at initial moment and realized on a 

given time interval. 

 

2.1 Dynamic stability (time consistency) of optimal control problems. 

 

Illustrate the time consistency property of optimal control on a clas-

sical example. 

Let  is a given point which defines in some sense “ideal” 

state of the system under consideration. Consider the following classical 

management (control) problem. Let  

 

  (1) 

 

be the system of differential equations, where  is state variable, 

 control (management) variable which is selected continuously 

at each time instant . 
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The system develops on a given time interval . The aim 

of the management is to bring the initial point  (initial state of 

the system) as close as possible to a given point  at the terminal 

moment . Mathematically this means that the aim of the man-

agement is to find such an open-loop control which minimizes the distance 

 between the terminal point  and the point 

. 

Construct the reachability set of the system (1) denoted by 

 from the initial state  at the terminal moment 

.  is the set of such points  which can 
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arise exactly at the terminal moment  when all possible open-

loop controls are used from the initial position  according to 

the system (1). 

Denote our minimization problem by  to underline the 

dependence of the problem from the initial condition  and the 

duration of the process . 

For simplicity reasons suppose that the point  does not 

belong to , i.e. . 
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This means that the point  can not be reached from the 

initial state  during the time . The optimality prin-

ciple in this optimal management problem is to minimize the distance be-

tween the point  and the point . 

It is clear that the “optimal motion” or “optimal trajectory” has to 

bring the initial point  to the point  ( ) – 

the closest point of the reachability set  to the point 

. Denote by  the trajectory connecting  

and  realized under optimal (fixed) open loop control 

, i.e. 
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Suppose that the process is evaluating along the trajectory 

 as shown on the fig.1. Consider an intermediate time instant 

 and suppose that at this time instant we want to check will the 

point  remain the closest to the point  in the sub-

problem  with the initial condition  on the optimal 

trajectory and duration ? It is evident that the answer will be 

“yes”. This means that the continuation of the optimal motion along 

 on the time interval  will remain optimal in the 

subproblem  (see fig.1). This means time consistency or dy-
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namic stability of the optimal trajectory . This was first formu-

lated by R. Bellman (1957) and lies in the bases of dynamic programming. 

Time consistency nearly always holds in the classical optimal control prob-

lems. 

At the same time we can see that in this case a stronger condition 

holds (this was not mentioned by R. Bellman). In the subproblem 

 a new optimal trajectory  and a corresponding op-

timal control  can arise leading from the initial point 

 in the subproblem to the point . It is interesting to 

mention that the open-loop control of the form 
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transfers the point  to the point  in the problem 

 and thus is optimal in the problem . 

 

 
 

Fig. 1 Dynamic stability of optimal control 

 

So, we get that any optimal prolongation in the subproblem 

 together with initially selected optimal motion on the time-

interval  in  is also optimal in . This 

property we call “strong dynamic stability”. 

The notion of strong dynamic stability was first introduced practi-

cally simultaneously and independently by L. Petrosyan (1979) and S. 

Chistyakov (1981).  

2.2 Time consistency (dynamic stability) of Pareto optimal solutions in 

multycriterial control problems. 
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As in the previous section the management is described by the sys-

tem of differential equations 

 

 

 

Here as in the previous case  is the state variable and 

 control variable selected by the manager continuously at each 

time-instant  from a given set . 

The system develops on the time interval . The difference 

with the previous problem is in the fact that in this case the quality of the 

management is evaluated by a number of parameters (in the previous opti-

mal control problem the quality of the management was evaluated only by 

one single parameter – the distance from a given fixed point ). 

The aim of the management in this case is to bring the initial point 

 28



 as close as possible to a finite number of fixed points 

. Mathematically the problem is to minimize the vector criteria  

 

, 

 

where  and  is the terminal state of the management 

process. 

Since we have here a multycriterial optimization problem, as opti-

mality principal we have to consider a Pareto optimal set. 

As before let  be the reachibility set of the system (1) and 

denote our optimization problem by  to underline the depend-

ence of the problem from the initial condition  and duration 
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. Denote by  the convex hull of the points 

. For simplicity reasons suppose that 

 

 

 

It can be shown that the set of all Pareto optimal trajectories coin-

cides with those with endpoint on the projection of the convex hull 

 on the reachibility set. 

Denote by  a trajectory connecting the initial state 

 with the some fixed point  on the projection 
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 of the convex hull on the reachibility set , and let 

 be the corresponding open-loop control. 

We shall call  optimal trajectory. It is clear that in our 

problem we may have an infinite number of optimal trajectories with non 

comparable outcomes in the sense of the different values for distances to 

the aim-points, since in general the projection of the set  on 

 is closed and may contain infinite number of points.  

Consider now an intermediate time instant  and ask our-

selves will the continuation of the optimal trajectory  be opti-

mal in subproblem  starting in the state  on the op-
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timal trajectory with duration . By other words: will the point 

 remain Pareto-optimal in the subproblem . 

 

 
Fig. 2 Strong dynamic instability for Pareto optimal solution 

 

As in an optimal control problem considered in the previous section 

the answer will be “yes”, thus the prolongation of the optimal trajectory in 

the subproblem remains optimal (Pareto-optimal) in this subproblem.  

In the same time as it is seen from the fig. 2 the Pareto optimal set in 

problem  coincides with the arc  (projection of the 

set  on the reachibility set ) and differs from the 

Pareto-optimal set in the subproblem which coincides with the arc 
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 (projection of the set  on the reachibility set 

). 

But both sets have one point in common. Thus we see that in the 

subproblem  there are new optimal (Pareto-optimal) trajecto-

ries with endpoints out of the Pareto-optimal set of the previous problem 

. 

Consider the following open-loop control 

 

 

 

where  is the segment of the optimal Pareto-optimal control in 

the problem  and  is the Pareto-optimal control in 
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the subproblem  which transfers the initial point  in 

the subproblem to the point .  

Since the point  does not belong to the arc  

the open-loop control is not Pareto-optimal in the problem  . 

And we come to the conclusion that not any Pareto-optimal prolon-

gation in the subproblem  with initial conditions on the Pareto-

optimal motion in the previous problem (problem ) is Pareto-

optimal in . 

This means that Pareto-optimal solutions in general are not strongly 

dynamic stable or strongly time-consistent. 

We see that by transition to multycriterial control problems we loose 

strong time consistency of optimal solutions. This arise difficulties in the 

practical implementation of optimal solutions in multycriterial control 
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problems, because in some intermediate time instant the manager can 

change to another Pareto-optimal solution (considering this solution for 

some reason as more attractive) and loose Pareto-optimality of the hole 

process. This implies instability in long term management and is unaccept-

able for practical use. 

 

2.3 TIME INCONSISTENCY OF SPECIALLY SELECTED COOPERATIVE 

SOLUTION  

 

The problem of choosing specific Pareto optimal solution is more 

complicated, than in the case considered above. Most of optimality princi-

ples (even in non-game theoretical problems), determining the choice of 

specific Pareto optimal solution from the set of all Pareto optimal solutions 

are not only strongly dynamically unstable (not strongly time-consistent), 

but even dynamically unstable (time-inconsistent). 

There are a number of approaches to choose a specific Pareto optimal 

solution from the set of all Pareto optimal solutions. Unfortunately, most 

complicated and well-defined of them are dynamically unstable (time-

inconsistent). Illustrate it with an example. Consider the choice of Pareto 

optimal solution according to Kalai-Smorodinsky bargaining procedure. 

Pareto optimal solution chosen in such way, as we noticed earlier, is called 

Kalai-Smorodinsky solution, or  - solution. 

Now we suppose that the long term management process depends 

from the decisions made by different agents (players). Thus we shall con-

sider the case when the right side of the differential equations (1) depend 
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upon a number of parameters each one of them under control of corre-

sponding agent (player) acting in his own interests. So we have the motion 

equations 

 

 , (2) 

 

where the parameters (control variables)  are chosen continu-

ously in time by players. 

For simplicity we shall suppose that each of the players  

is interested in a payoff which has the form 

 

, 

 

where  is the solution of the system (2) corresponding to the 

choice of controls as functions of current state and time  
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(strategies, feedback controls) and initial condition . As a result 

we have a differential game, which we shall denote by . 

Denote by  the set of all possible values of vectors  

 

 

 

for all possible - tuples of strategies chosen by 

players. 

Let  be the Pareto frontier of the set . There 

are different ways for selection of a particular Pareto optimal point from 

the whole Pareto frontier. In this selection the so-called “status quo” plays 

an important role. Usually the status-quo point is vector with components 

, where each  is equal to the maximal payoff the 
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player  can get in the worst case, when all other players are 

playing against him (not for themselves). Let 

 

. 

 

be the status-quo point. It is clear that this point depends from the initial 

state of the system  and duration of the process . 

Denote by 

 

. 

 

The point 

 

 

 

is called “ideal” point and has the meaning of maximal possible gains of 

the players. In general we have 
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otherwise the ideal point will be the “solution” of the problem.  

To define the KS-solution, draw a line segment connecting the 

status-quo point and the ideal point. Since the ideal point does not belong 

to the set , exist a point on the intersection of the set 

 and this line segment closest to ideal point (we suppose that 

the set  is closed and bounded). This point is called 

- solution. If the set  is convex the  so-

lution is always Pareto optimal. It is easy to see that even in the simplest 

cases the - solution is not time-consistent (dynamic stable). For 

the illustration of this property consider the following very trivial example. 

Suppose that the system (2) has the form 
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, 

 

 

 

Show the time inconsistency of the  – solution. Here the 

status-quo point in the problem  is equal to  and 

corresponds to the initial state of the system . The ideal point is 

, since . The reachibility set  is a circle 

with the center  and radius 4. The optimal trajectory (leading to 
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-solution) corresponds to the motion along the line segment 

from the initial point  in direction to the point  until 

the intersection with the circumference of the circle . This 

point of intersection defines the - solution of the problem 

 (see fig.3).  

On this figure we see that the - solution in a subproblem 

 with the initial conditions on the optimal trajectory is different 

from the  solution of the previously considered problem 
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Fig. 3  Time inconsistency of - solution 

 

This implies time inconsistency (dynamic instability) of -

solution.  

It is necessary to mention that not only -solution is time-

inconsistent, but so are all nontrivial bargaining solutions based on the se-

lection of status-quo points. This is also true for Nash bargaining solution. 

 

3. REGULARIZATION OF COOPERATIVE OPTIMALITY PRINCI-

PLE. 

 

Previous considerations imply that the majority of cooperative solu-

tions are not time-consistent. Therefore, there are serious difficulties for 

their practical implementation and ultimately it is not possible to get stable 

solution results. Only classical optimal control solutions and Nash equilib-

rium with constant discount rate are dynamically stable (time-consistent). 
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Is there a way out of this problem? Yes. We shall explain this in the case of 

cooperative differential game. 

 

3.1 Definition of cooperative differential game 

 

We begin with the basic formulation of cooperative differential 

games in characteristic function form and the solution imputations. 

 

Consider a general -person differential game in which the 

state dynamics has the form: 

 

 ,  (3) 

 

The payoff of player  is: 

 

  (4) 

for  
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where  denotes the state variables of game, and  is 

the control of Player , for . In particular, the play-

ers' payoffs are transferable. A feedback Nash equilibrium solution can be 

characterized if the players play no cooperatively. 

Now consider the case when the players agree to cooperate. Let 

 denote a cooperative game with the game structure of 

 in which the players agree to act according to an agreed upon 

optimality principle. The agreement on how to act cooperatively and allo-

cate cooperative payoff constitutes the solution optimality principle of a 

cooperative scheme. In particular, the solution optimality principle for a 

cooperative game  includes 

 

(i) an agreement on a set of cooperative strategies/controls, and  

(ii) a mechanism to distribute total payoff among players. 

 

The solution optimality principle will remain in effect along the co-
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operative state trajectory path . Moreover, group rationality re-

quires the players to seek a set of cooperative strategies/controls that yields 

a Pareto optimal solution. In addition, the allocation principle has to satisfy 

individual rationality in the sense that neither player would be no worse off 

than before under cooperation. 

To fulfill group rationality in the case of transferable payoffs, the 

players have to maximize the sum of their payoffs: 

 

  (5) 

 

subject to (3). 

A set of optimal controls  is possible to be found using 

Pontryagin's maximum principle or Bellman equation. Substituting this set 

of optimal controls into (3) yields the optimal trajectory , 

where  

 

  . (6) 
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For notational convenience in subsequent exposition, we use 

 and  interchangeably. 

We denote 

 

 

 

by . Let  and  stands for a characteristic 

function reflecting the payoff of coalition . The quantity 

 yields the maximized payoff to coalition  as a rest 

of the players form a coalition to play against . 

Calling on the superadditivity property of characteristic functions, 

 for . Hence, it is advantageous for the players to 
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form a maximal coalition and obtain a maximum total payoff 

that is possible in the game. 

One of the integral parts of cooperative game is to explore the possi-

bility of forming coalitions and offer an "agreeable" distribution of the total 

cooperative payoff among players. In fact, the characteristic function 

framework displays the possibilities of coalitions in an effective manner 

and establishes a basis for formulating distribution schemes of the total 

payoffs that are acceptable to participating players. 

We can use  to denote a cooperative differential game in 

characteristic function form. 

 

Denote 

 

 

 

an arbitrary imputation,  – core,  Shapley value in 
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the game . 

 

3.2 IMPUTATION IN A DYNAMIC CONTEXT. 

 

In dynamic games, the solution imputation along the cooperative tra-

jectory  would be of concern to the players. Now we focus our 

attention on the dynamic imputation brought about by the solution optimal-

ity principle. 

Let an optimality principle be chosen in the game . The 

solution of this game constructed in the initial state  based on 

the chosen principle of optimality contains the solution imputation set 

 and the conditionally optimal trajectory  which 

maximizes 

 

. 
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Assume that .  

 

Definition 5. Any trajectory  of the system (3) such that 

 

 

 

is called a conditionally optimal trajectory in the game . 

 

Definition 5 suggests that along the conditionally optimal trajectory 

the players obtain the largest total payoff. For exposition sake, we assume 

that such a trajectory exits. Now we consider the behavior of the set 

along the conditionally optimal trajectory . At time 

 with state , we define the current subgame 

 49



 with characteristic function  and the set of imputa-

tions . 

Consider the family of current games 

 

, 

 

and their solutions  generated by the same principle of optimal-

ity that yields the initially solution . 

Obviously, the set  is the solution of current game 

 at the moment  and consist of single imputation  
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3.3 Principle of Dynamic Stability 

 

Formulation of optimal behaviors for players is a fundamental ele-

ment in the theory of cooperative games. The players' behaviors satisfying 

some specific optimality principles constitute a solution of the game. In 

other words, the solution of a cooperative game is generated by a set of op-

timality principles (for instance, the Shapley value (1953), the von Neu-

mann Morgenstern solution (1944) and the Nash bargaining solution 

(1953)). For dynamic games, an additional stringent condition on their so-

lutions is required: the specific optimality principle must remain optimal at 

any instant of time throughout the game along the optimal state trajectory 

chosen at the outset. This condition is known as dynamic stability or time 

consistency. Assume that at the start of the game the players adopt an op-

timality principle (which includes the consent to maximize the joint payoff 

and an agreed upon payoff distribution principle). When the game pro-

ceeds along the "optimal" trajectory, the state of the game changes and the 

optimality principle may not be feasible or remain optimal to all players. 

Then, some of the players will have an incentive to deviate from the ini-

tially chosen trajectory. If this happens, instability arises. In particular, the 

dynamic stability of a solution of a cooperative differential game is the 

property that, when the game proceeds along an "optimal" trajectory, at 

each instant of time the players are guided by the same optimality princi-

ples, and yet do not have any ground for deviation from the previously 
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adopted "optimal" behavior throughout the game. 

The question of dynamic stability in differential games has been ex-

plored in the past three decades. Haurie (1976) discussed the problem of 

Stability in extending the Nash bargaining solution to differential games. 

Petrosyan (1977) formalized mathematically the notion of dynamic 

stability in solutions of differential games. Petrosyan and Danilov (1979 

and 1982) introduced the notion of "imputation distribution procedure" for 

cooperative solution. Tolwinski et al. (1986) considered cooperative equi-

libria in differential games in which memory-dependent strategies and 

threats are introduced to maintain the agreed-upon control path. Petrosyan 

and Zenkevich (1996) provided a detailed analysis of dynamic stability in 

cooperative differential games. In particular, the method of regularization 

was introduced to construct time-consistent solutions. Yeung and Petro-

syan (2001) designed a time-consistent solution in differential games and 

characterized the conditions that the allocation distribution procedure must 

satisfy. Petrosyan (2003) used regularization method to construct time-

consistent bargaining procedures. 

Let there exist solutions ,  along 

the conditionally optimal trajectory . If this condition is not sat-

isfied, it is impossible for the players to adhere to the chosen principle of 

optimality, since at the very first instant , 
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, the players have no possibility to follow this prin-

ciple. Assume that at time to when the initial state  is the play-

ers agree on the imputation 

 

 

 

This means that the players agree on an imputation of the gain in 

such a way that the share of the  player over the time interval 

is equal to  . If according to  player 

is supposed to receive a payoff equaling  over the 

time interval  then over the remaining time interval 
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 according to the  player  is supposed 

to receive: 

 

 

 . (7) 

 

For the original imputation agreement (that is the imputation 

) to remain in force at the instant , it is essential 

that the vector 

 

  (8) 

 

and  is indeed a solution of the current game . If 

such a condition is satisfied at each instant of time 
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along the trajectory , then the imputa-

tion  is dynamical stable. 

Dynamic stability or time consistency of the solution imputation 

 guarantees that the extension of the solution policy to a sit-

uation with a later starting time and along the optimal trajectory remains 

optimal. Moreover, group and individual rationalities are satisfied through-

out the entire game interval. 

A payment mechanism leading to the realization of this imputation 

scheme must be formulated. This will be done in the next section. 

 

3.4 PAYOFF DISTRIBUTION PROCEDURE 

 

A payoff distribution procedure (PDP) proposed by Petrosyan (1997) 

will be formulated so that the agreed upon dynamically stable imputations 

can be realized. Let the payoff Player  receives over the time 

interval  be expressed as: 
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  (9) 

 

where 

 

, for  

 

Therefore 

 

  (10) 

 

This quantity may be interpreted as the instantaneous payoff of the 

Player  at the moment . Hence it is clear the vector 

 prescribes distribution of the total gain among the members of 

the coalition . By properly choosing , the players 
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can ensure the desirable outcome that at each instant  there will 

be no objection against realization of the original agreement (the imputa-

tion )) as shown on fig 4, i.e. the imputation  is dy-

namic stable. 

Cooperative differential game  has dynamically stable 

solution , if all imputations  are dynamically stable. 

Conditionally optimal trajectory, on which dynamically stable solution of 

the game  exists, is called optimal trajectory. 

We have proved under general conditions that the proce-

dure ,  (PDP) leading to dynamic stable cooperative 

solution exist and realizable [Petrosjan, Zenkevich, 1996]. 
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Fig. 4  Dynamically stable cooperative solution. 

 

4. A DYNAMIC MODEL OF JOINT VENTURE 

Consider a dynamic joint venture in which there are  

firms. The state dynamics of the  firm is characterized by the 

set of vector-valued differential equations: 

 

 , (11) 

 

where  denotes the state variables of player , 

 is the control vector of firm . The state of firm i 

include its capital stock, level of technology, special skills and productive 
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resources. The objective of firm  is: 

 

, 

 

where  is the discount factor,  the instantaneous 

profit, and  the terminal payment. In particular,  

and  are positively related to the level of technology 

. 

Consider a joint venture consisting of a subset of companies 

. There are  firms in the subset . The 

participating firms can gain core skills and technology that would be very 

difficult for them to obtain on their own, and hence the state dynamics of 
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firm  in the coalition  becomes 

 

 , ,  (12) 

 

where  is the concatenation of the vectors  for 

. In particular,  for . Thus positive ef-

fects on the state of firm  could be derived from the technology 

of other firms within the coalition. Again, without much loss of generaliza-

tion, the effect of  on  remains the same for all pos-

sible coalitions  containing firms  and . 

 

4.1. COALITION PAYOFFS 
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At time , the profit to the joint venture becomes: 
 

 (13) 

 

To compute the profit of the joint venture  we have to 

consider the optimal control problem  which maximizes (13) 
subject to (12).  

For notational convenience, we express (12) as: 
 

 , , (14) 
 

where  is the set of  for , ; 

 is a column vector containing  for . 
Using Bellman's technique of dynamic programming the solution of 

the problem  can be characterized as follows. 
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Using the dynamic programming approach, it is possible to describe 

the solution at the following form. Denote  firm’s  

optimal control (in terms of maximizing the coalition  payoff). 

In the case when all the  firms are in the joint venture, 

that is , the optimal control is 

 

 
 

The dynamics of the optimal state trajectory of the grand coalition 

can be obtained as: 

 

, 
 

which can also be expressed as 
 

 , . (15) 
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Let  denote the solution to (15). The optimal trajectories 

 characterizes the states of the participating firms within the 

venture period. We use  to denote the value of  at 

time . 
 
Consider the above joint venture involving n firms. The member 

firms would maximize their joint profit and share their cooperative profits 

according to the Shapley value (1953). The problem of profit sharing is in-

escapable in virtually every joint venture. The Shapley value is one of the 

most commonly used sharing mechanism in static cooperation games with 

transferable payoffs. Besides being individually rational and group ra-

tional, the Shapley value is also unique. The uniqueness property makes a 

more desirable cooperative solution relative to other solutions like the Core 

or the Stable Set. Specifically, the Shapley value gives an imputation rule 

for sharing the cooperative profit among the members in a coalition as: 

 

 , , (16) 
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where  is the relative complement of   in 

,  is the profit of coalition , and 

 is the marginal contribution of firm  to the coali-

tion .  
To maximize the joint venture’s profits the firms would adopt the 

control vector  over the time  interval, and the cor-

responding optimal state trajectory  in (15) would result. At 

time  with the state , the firms agree that firm 

’s share of profits be: 
 

 , (17) 
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However, the Shapley value has to be maintained throughout the 

venture horizon . In particular, at time  with the 

state being  the following imputation principle has to be main-
tained: 

 

 , (18) 

 

where  and . 
 

Note that , as specified in (18) satisfies the basic proper-

ties of an imputation vector. 

Moreover, if condition (18) can be maintained, the solution optimal-

ity principle - sharing profits according to the Shapley value - is in effect at 

any instant of time throughout the game along the optimal state trajectory 

chosen at the outset. Hence time consistency is satisfied and no firms 

would have any incentive to depart the joint venture. Therefore a dynamic 

imputation principle leading to (18) is dynamically stable or time-

consistent. 

Crucial to the analysis is the formulation of a profit distribution 

mechanism that would lead to the realization of condition (18).  
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4.2. TRANSITORY COMPENSATION 
 
In this section, a profit distribution mechanism will be developed to 

compensate transitory changes so that the Shapley value principle could be 

maintained throughout the venture horizon. First, an imputation distribu-

tion procedure (similar to those in Petrosyan and Zaccour (2003) and Ye-

ung and Petrosyan (2004)) must be now formulated so that the imputation 

scheme in condition (18) can be realized. Let  denote the pay-

ment received by firm  at time  dictated by 

. In particular, 

 

 

 

 . (19) 
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The following formula describes the rule  for distribution 

Shapley value in the time, providing time consistency of Shapley value. 

 

 

 

 

 , (20) 

 

or  
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, 

 

where  is a column vector containing , . 

 

The vector  serves as a form equilibrating transitory 

compensation that guarantees the realization of the Shapley value imputa-

tion throughout the game horizon. Note that the instantaneous profit 
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 offered to Player  at time  is condi-

tional upon the current state  and current time . One 

can elect to express  as . Hence an instantaneous 

payment  to player  yields a dynamically stable so-

lution to the joint venture. 

4.3. An Application in Joint Venture 
 
Consider the case when there are 3 companies involved in joint ven-

ture. The planning period is . Company  profit is 

 

, (21) 
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where  ,  and  are positive 

constants,  is the discount rate,  is the level of tech-

nology of company  at time , and  is its 

physical investment in technological advancement. The term  

reflects the net operating revenue of company  at technology 

level  and  is the cost of investment,  

gives the salvage value of company 's technology at time 

. 

The evolution of the technology level of company  fol-
 70



lows the dynamics: 

 

 , , (22) 

 

where  is the addition to the technology brought about by 

 amount of physical investment, and  is the rate of 

obsolescence. 

Consider the case when all these three firms agree to form a joint 

venture and share their joint profit according to the dynamic Shapley. 

Through knowledge diffusion participating firms can gain core skills and 

technology that would be very difficult for them to obtain on their own. 

The evolution of the technology level of company  under joint 

venture becomes: 
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  for  and , (23) 

 

where  and  are non-negative constants. In particu-

lar,  represents the technology transfer effect under joint ven-

ture on firm  brought about by firm 's technology. 

The profit of the joint venture is the sum of the participating firms' 

profits: 

 

 

 . (24) 

 

The firms in the joint venture then act cooperatively to maximize 

(24) subject to (23). Giving up technical calculation, we have  
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 =  (25) 

 

for  .  

 

Denoting  by , we can write 

 

= 

 

 

for  and , 
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= 

 

 . (26) 

 

After analytical transformation we have  
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, 

for  and . 

 

, 

 

for . 

 , (27) 

 

for . 
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Note that coefficients  are the solutions of linear differen-

tial equation system. The explicit solution is not stated here because of its 

lengthy expressions.  

Using eq. (25) to (27) and (20) we obtain the form for . A 

payment  offered to player  at time  

will lead to the realization of the dynamic Shapley value. Hence a dynami-

cally stable solution to the joint venture will result. 

 

CONCLUSION 

Long term cooperative solutions based on interest coordination are 

considered. It is shown, that basic cooperative optimality principles ha-

ven’t dynamic stability (time consistency) property. This property requires 

saving optimality property along the optimal trajectory. We have proposed 

regularization procedure (PDP), introducing a new control variable. Apply-

ing the method of regularization for dynamic cooperation problem, we 

constructed the control in the form of special payments, paid at each time 

instant on the optimal trajectory. As special case the joint venture dynamic 

model is investigated. For this problem the dynamic stable solution is ob-

tained.  
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