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1 Introduction

Decision theorists model risk by a stochastic order. It would therefore be

natural to use, in spite of their incomplete nature, a stochastic order rather

than a utility function, in problems of microeconomic of uncertainty, finance

or insurance. Although several papers have used a concept of demand or

expenditure or efficiency for the order generated by second order stochastic

dominance, without naming it, there has never been a systematic theory of

individual decision making and General Equilibrium when incomplete prefer-

ences are generated by second order stochastic dominance (that we now on

denote by S.S.D.). One can note that the papers that have used S.S.D. belong

to a wide variety of literatures; efficiency pricing (Peleg-Yaari(1975), Chew

and Zilcha (1990)), finance ( Ross-Dybvig (1982), Dybvig (1988), Kim (1994),

Jouini-Kallal (2001), risk-sharing (Lansberger and Meilijson (1994), to name

a few.

The first aim of this paper is to provide such a theory for contingent or

complete markets. We shall first show that demand, expenditure, Pareto-

optima and equilibria under second order stochastic dominance may be fully

characterized. We then show that they are not observationaly distinguish-

able from those of von-Neumann-Morgenstern decision makers with increasing

strictly concave utilities nor from those of strict risk averse non-expected util-

ity maximizers. They all have the same characteristics. The main tool of the

analysis is a result due to Peleg-Yaari (1975) that any non-increasing function

of the pricing density can be rationalized as the demand of some vNM EU

maximizer with strictly increasing and strictly concave utility index. More

precisely, let p ∈ IRk
+ be a pricing density and let w ∈ IR be a revenue. If x is

a non-increasing function of p fulfilling E(px) = w, then there exists a strictly

increasing and strictly concave function u such that x solves

{

maxE[u(c)] s.t.
E(pc) ≤ E(px) = w

While in Decision theory, risk is associated to a stochastic order, in finance

and insurance, academics as well as practitionners have used measures of risk.

Contrary to the stochastic order approach, measures of risk induce complete

preferences on random variables. A standard measure of risk is value at risk. It
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has extensively been criticized by theorists. Other measures involving quan-

tiles (or generalized inverse of distribution functions), have been proposed

such as for example, law invariant coherent measures, premium principles (see

Atzner et al (1999), Denneberg (1990), Föllmer and Schied (2002)). These

measures are neither specifically based on microeconomic behavior nor related

to equilibrium models.

Dybvig (1988) (an later Jouini-Kallal (2001) in the case of imperfections)

defines the ”utility price” e(p, x) of a contingent claim x at pricing den-

sity p as the minimal expenditure to get a claim that is at least as good

as x for any risk averse investor with v.N.M. increasing utility: e(p, x) =
{

minE(pc) s.t.
E(u(c)) ≥ E(u(x)) ∀ u

. In the case of a uniform finite probability, Dybvig

(1988) proves that e(p, x) can be expressed in terms of F −1
p and F−1

x the quan-

tile functions of p and x: e(p, x) =
∫ 1
0 F

−1
p (1 − t)F−1

x (t)dt. As the Choquet

integral of a contingent claim with respect to a continuous convex distortion f

of a probability has value Ef (x) =
∫ 1
0 f

′(1−t)F−1
x (t)dt, one can see that Ef (x)

is the minimal expenditure to get a claim that is at least as good as x for any

price distributed as f ′ (if it exists). As these functionnals play a fundamental

role in the theory of law invariant coherent measures, this provides a way of

giving microeconomic foundations and potentially, an equilibrium analysis to

a class of risk measures.

A second aim of the paper is therefore to use expenditure functions for

S.S.D. to provide a class of law-invariant risk measures. We first generalize

the formula giving e(p, x) to any finite probability space. We deduce that a

Choquet integral with respect to a continuous convex distortion f of a proba-

bility is a minimal expenditure under S.S.D. if there exists a price distributed

as f ′. Building on Dybvig (1988), we next compare e(p, x) to a mean-variance

criterion. We show that the utility price increases with its discounted expected

value and decreases as the contingent claim becomes more disperse (the disper-

sion concept used is the order of dispersion introduced by Bickel-Lehmann).

We show that efficient claims for S.S.D. are claims that maximize an analog of

Sharpe ratio where standard deviation is replaced by a dispersion term. We

then, endogenize the price system by introducing a concept of second order

stochastic dominance equilibrium (denoted �
∼2 equilibrium). It is interesting

to compare S.S.D. equilibria to CAPM equilibria. In CAPM, agents’ consump-

tions are affine increasing functions of aggregate endowment and the pricing

density is an affine decreasing function of aggregate endowment while in a
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�
∼2 equilibrium (equivalently in a v.N.M. equilibrium with increasing strictly

concave utilities), agents’ consumptions are non decreasing functions of aggre-

gate endowment and aggregate endowment is a non decreasing function of the

pricing density.

The paper is organised as follows: in section 2, we recall basic definitions

used in the paper. In section 3, we define and characterize the concepts of

second order stochastic dominance demand and strong efficiency. In section

4, we define the utility price of a contingent claim, study its properties and

relate it to the concept of law-invariant risk-measure. Sections five and six are

devoted to Pareto optimality and equilibrium analysis.

2 The model and a few basic definitions

Given as primitive is a probability space (Ω, 2Ω, P ). We assume that Ω is

finite, Ω = {1, · · · , k} and that P = (π(1), π(2), · · · , π(k)). Contingent claims

are identified to elements of IRk. A contingent claim x ∈ IRk is denoted by

x = (x(1), · · · , x(k)). Two contingent claims x and y identically distributed

are denoted x ∼d y. Given a price p̃ ∈ IRk, we define the associated ”pricing

density” by p = ( p̃(1)
π(1) , . . . ,

p̃(k)
π(k)). We therefore have p̃ · x = EP (px) that we

shall now on write E(px).

Let us first recall a few definitions. Let Fx denote the distribution function

of a contingent claim x and F−1
x its generalised inverse:

F−1
x (t) = inf{z ∈ IR | Fx(z) ≥ t}

2.1 Second order stochastic dominance

Definition 1 A contingent claim x dominates y in the sense of second or-

der stochastic dominance (resp strictly dominates) denoted x�
∼2y (respectively

x�2 y) if any of the following equivalent conditions are fulfilled:

1.
∫ t
−∞ Fy(s)ds ≥

∫ t
−∞ Fx(s)ds, ∀ t ∈ IR

(resp. with a strict inequality for some t),

2.
∫ t
0 F

−1
x (s)ds ≥

∫ t
0 F

−1
y (s)ds, ∀ t ∈]0, 1],

(resp. with a strict inequality for some t),
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3. E[u(x)] ≥ E[u(y)], ∀ u : IR → IR concave increasing

(resp. with a strict inequality for some u concave increasing),

4. y ∼d x+ ε for some ε such that E[ε | x] ≤ 0

(resp. where in addition P (ε 6= 0) > 0).

Two contingent claims x and y are second-order equivalent, denoted by x ∼2 y,

if 1, 2 or 3 holds with equality throughout. In other words, x ∼2 y iff x ∼d y.

It follows from assertion 4 and Jensen’s inequality that x�2y iff for every

u : IR → IR strictly concave increasing, E[u(x)] > E[u(y)].

We shall extensively use this property.

2.2 Comonotone functions

Definition 2 1. Two random variables x and y are comonotone (resp an-

ticomonotone) if [x(s) − x(s′)] [y(s) − y(s′)] ≥ 0, for all (s, s′) ∈ Ω2 (resp

[x(s) − x(s′)] [y(s) − y(s′)] ≤ 0, for all(s, s′) ∈ Ω2).

2. A family of random variables (xi)
n
i=1 ∈ IRkn is comonotone if

[xi(s) − xi(s
′)] [xj(s) − xj(s

′)] ≥ 0, for all i, j and for all (s, s′) ∈ Ω2.

Remark: Let f : IR → IR and g : IR → IR be two non-decreasing functions.

Then if x = f(y) or y = g(x), then x and y are comonotone but the converse

does not necessarely hold. To be precise, two random variables x and y are

comonotone iff for all s ∈ Ω, (x(s), y(s)) belongs to the graph of a non de-

creasing correspondence.

An alternative characterization of comonotonicity (see Denneberg [1994])

expresses each xi as a non-decreasing, one-Lipschitz function of their sum:

Lemma 1 Denneberg’s Lemma A family of of random variables (xi)
n
i=1 ∈

IRkn is comonotone if and only if there exist continuous and non-decreasing

functions (fi)
n
i=1 (fi : IR → IR) with

n
∑

i=1

fi = Id, such that, for every i,

xi = fi(
∑n

j=1 xj).

We shall also make use of the following results:
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Lemma 2 1. Hardy-Littlewood’s inequality

∫ 1

0
F−1

x (1 − t)F−1
y (t)dt ≤ E(xy) ≤

∫ 1

0
F−1

x (t)F−1
y (t)dt

2. If x and y are comonotone, then cov (x, y) ≥ 0.

3. If x and y are comonotone, then F−1
x+y = F−1

x + F−1
y .

3 Demand and Efficiency

In this section, we define and characterize the demand correspondence for

second order stochastic dominance. We show that the demand at pricing

density p is the set of non decreasing functions of p which fulfill the budget

constraint. We furthermore show that the demand correspondence for second

order stochastic dominance is the union of the demand functions for strictly

concave increasing expected utility maximisers. The proof is based on an

argument originally made by Peleg and Yaari (1975) and further used by

Jouini-Kallal (2001)

3.1 Demand correspondence for second order stochastic dom-

inance

Let (p,w) ∈ IRk+1 be a pricing-density income pair. The demand correspon-

dence for second order stochastic dominance is defined by:

ξ2(p,w) = {x ∈ IRk | E(px) ≤ w and ∃\ x′�2x with E(px′) ≤ w}

We start with a lemma:

Lemma 3 Let x ∈ IRk be such that E(px) = w and such that x(`) < x(j)

implies p(`) ≥ p(j) ( resp p(`) > p(j)). Then there exists a strictly in-

creasing and concave (resp strictly concave) function u such that x solves
{

maxE[u(c)) s.t.
E(pc) ≤ E(px) = w

The proof, due to Peleg and Yaari [1975], is recalled in the appendix for

completeness.

Proposition 1
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1. If ξ2(p,w) 6= ∅, then p� 0.

2. x ∈ ξ2(p,w) iff E(px) = w and x is a non decreasing function of p.

The proof that x ∈ ξ2(p,w) implies that E(px) = w and x is a non decreasing

function of p is due to Dybvig [1988]. The proof of the converse statement

follows easily from Lemma 1. It may be found in the appendix.

Corollary 1

1. x ∈ ξ2(p,w) iff there exists u : IR → IR strictly concave increasing such

that x solves

{

maxEu(c) s.t.
E(pc) ≤ E(px) = w

2. ξ2(p,w) 6= ∅ iff p� 0.

Proof. If x ∈ ξ2(p,w), the existence of u follows from the proof of Proposi-

tion 1. The converse statement follows from the definition of ξ2(p,w) and the

caracterisation of strict second order stochastic dominance.

3.2 Demand for �
∼2 averse utility

It follows from the previous section that the demand correspondence for second

order stochastic dominance is the union of v.N.M. demands. This naturally

raises the question of whether other families of utility may be considered. We

define ”�
∼2 risk averse” utilities. These utilities have been used in various set-

tings (for example, efficiency and insurance by Chew and Zilcha (1990)) and

Gollier-Schlesinger(1996), Pareto-optimality and finance by Kim (1994)).

Let us first recall a definition.

Definition 3 A continuous utility v : IRk → IR is “�
∼2 risk averse” if x�

∼2y

implies v(x) ≥ v(y) and strict risk averse denoted �2 risk averse if x�2y

implies v(x) > v(y).

Examples and characterizations of risk averse utilities may be found in

Chateauneuf et al(1997) and in Chew et al (1995). �
∼2 risk aversion does not

imply concavity or quasi-concavity of the utility function.

7



Let v : IRk → IR be a �2 averse monotone increasing utility and let

ξv(p,w) =

{

x ∈ IRk |
x = arg max v(y) s.t.

E(py) ≤ w

}

Since consumptions sets are unbounded, ξv(p,w) may be empty, even in the

case of v.N.M. utilities (see Bertzekas [1973] for example). Let us also define:

ξV(p,w) =

{

x ∈ IRk | ∃ v�
2

averse s.t. x ∈ ξv(p,w)

}

Proposition 2

ξV(p,w) = ξ2(p,w)

In particular, if x ∈ ξv(p,w), then there exists u : IR → IR strictly concave

increasing such that x solves

{

maxEu(c) s.t.
E(pc) ≤ E(px) = w

Proof. The inclusion ξ2(p,w) ⊂ ξV(p,w) follows from corollary 1. To prove

that ξV(p,w) ⊂ ξ2(p,w), one has to prove that, if x ∈ ξV , then E(px) = w and

x is a non decreasing function of p. Assume that for some (`, j), x(`) < x(j)

and p(`) ≤ p(j). Then, as in the proof of Proposition 1, there exists x′ such

that x′�2x and E(px′) ≤ w, hence v(x′) > v(x), contradicting the definition

of x. Hence x(`) < x(j) implies p(`) > p(j). Furthermore since v is monotone

increasing, E(px) = w. The last assertion follows from corollary 1.

3.3 �2 efficiency

Let us next introduce the concept of strong efficiency which turn out to gen-

eralize the concept of mean-variance efficiency used in finance. We first recall

the definition of Mean-Variance efficiency.

3.3.1 Mean-Variance efficiency

Let W denote the set of ”mean -variance utilities” W : IR× IR+ → IR strictly

increasing in the first coordinate and strictly decreasing in the second.

A contingent claim x is mean-variance efficient if there exists W ∈ W such

that x solves

{

max W (E(c), var(c)) subject to
E(pc) ≤ E(px)

.

We recall that x is mean-variance efficient iff there exists a ∈ IR and b ≥ 0

such that x = a− bp. In other words, x is a decreasing affine function of p.
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3.3.2 Strong efficiency

In a similar way, we define the set of �2 efficient claims.

SE2(p) =

{

x ∈ IRk | ∃u ↑ strictly concave s.t. x solves

{

maxEu(c)
E(pc) ≤ E(px)

}

It follows from Corollary 1 that

SE2(p) =
{

x ∈ IRk | ∃\ x′�2x with E(px′) ≤ E(px)
}

or equivalently that

SE2(p) =
{

x ∈ IRk | ∃\ x′ with E(px′) ≤ E(px) and E(u(x′)) > E(u(x)), ∀ u ↑ s.c.
}

Define similarly

SEV(p) =

{

x ∈ IRk | ∃ v �
2

averse s.t. x solves

{

max v(c)
E(pc) ≤ E(px)

}

It follows from proposition 2 that

SEV(p) = SE2(p) =
{

x ∈ IRk | x is a non decreasing function of p
}

and hence that

SEV(p) =

{

x ∈ IRk | ∃\ x′ with E(px′) ≤ E(px) and v(x′) > v(x), ∀ v �
2

averse

}

A weaker concept of efficiency will be introduced in next section.

4 Expenditure as a Measure of risk

Theorists have often used quantile based measures of risk. The Choquet in-

tegral with respect to a convex distortion is an example of such measures.

Following Dybvig’s idea, we shall show that for some distortions, the Choquet

integral may be obtained as an expenditure under second stochastic order, for

a well-chosen price.
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4.1 Definition of the Utility price

Let p ∈ IRk be given. Consider the following problem (E)

minimize











E(pc)
c�

∼2x

c ∈ IRk

The value function of (E), e(p, x) is called ”Utility price” by Jouini-Kallal

(2001). We keep their terminology. Let

ψ(p, x) =

{

x′ ∈ IRk | E(px′) = min E(pc)
c�

∼2x,

}

be the set of minimizers.

A pricing-density is “revealing” if it is an injective function of the state of

the world, equivalently if ` 6= j implies p(`) 6= p(j).

The following properties may easily be proven:

Proposition 3 If ψ(p, x) 6= ∅, then

1. p ≥ 0.

2. If x′ ∈ ψ(p, x), then x′ is anti-comonotone with p,

3. If p is revealing, then if x′ ∈ ψ(p, x), x′ is a function of p,

4. e(·, x) is positively homogeneous of degree 1, concave and increasing. If

p 6≥ 0, then e(·, x) = −∞.

Proof.

1. As in Proposition 1, assume that p(`) < 0 for some ` and that ψ(p, x) 6= ∅.

Let x′(j) = x(j), x′(`) = x(`) +M , M > 0, then x′�2x and E(px′) < E(px),

a contradiction.

2. If ψ(p, x) 6= ∅, by the same proof as Proposition 1, assertion 2, x′(j) < x′(`)

and p(j) < p(`) are incompatible. Hence x′(j) < x′(`) implies p(j) ≥ p(`).

3. If p is revealing, by assertion 2, x′(j) < x′(`) implies p(j) > p(`). Hence x′

is a function of p.
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The proof of the last assertion is obvious.

We now generalize a result proven by Dybvig (1988) in the case of uniform

probability:

Proposition 4 If p ≥ 0, e(p, x) =
∫ 1
0 F

−1
p (1 − t)F−1

x (t)dt and ψ(p, x) 6= ∅ if

and only if p ≥ 0.

The proof may be found in the appendix.

Corollary 2 1) If p is revealing, then ψ(p, x) is a singleton.

2) If p is not revealing, then ψ(p, x) contains a unique function of p.

4.2 Properties of the Utility price

4.2.1 Capacities

We recall that a capacity on (Ω, 2Ω) is a set function C : 2Ω → IR such that

C(∅) = 0, C(Ω) = 1, and for all A,B ∈ 2Ω, A ⊂ B, implies C(A) ≤ C(B). A

capacity C is convex if for all A,B ∈ 2Ω, C(A∪B)+C(A∩B) ≥ C(A)+C(B).

Let x : Ω → IR be a random variable. The Choquet integral of x with respect

to C is defined by:

EC(x) =

∫ 0

−∞
(C(x ≥ t) − 1) +

∫ ∞

0
C(x ≥ t)dt

Let f : [0, 1] → [0, 1] non decreasing satisfy f(0) = 0, f(1) = 1 and P be

a probability on (Ω, 2Ω). Then C = f(P ) is a capacity. Moreover f(P ) is a

convex capacity iff f is convex. If f is absolutely continuous, then

Ef (x) =

∫ 1

0
f ′(1 − t)F−1

x (t)dt

4.2.2 Dispersion

The next two definitions related to the concept of dispersion of a random vari-

able are due to Bickel-Lehmann (1977).
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Definition 4 A contingent claim x ∈ IRk dominates y ∈ IRk for Bickel-

Lehmann order (or x is less dispersed than y) denoted x�
∼

BL

y if

F−1
y (q) − F−1

y (p) ≥ F−1
x (q) − F−1

x (p), 0 < p < q < 1

Equivalently the map p→ (F−1
x (p) − F−1

y (p)) is non increasing on (0, 1).

Definition 5 A map ∆ : IRk → IR+ is a measure of spread if it satisfies

1. ∆(ax) = |a|∆(x), for all x ∈ IRk, for all a ∈ IR,

2. ∆(x+ b) = ∆(x), for all b ∈ IR

3. ∆(x) = ∆(−x), for all x ∈ IRk,

4. ∆(x) ≤ ∆(y) if x�
∼

BL

y.

Examples of measures of spread are standard deviation and ∆(x) = [F −1
x (t)−

F−1
x (1−t)] for t > 1

2 and more generally ∆(x) =

(

∫ 1

1

2

[F−1
x (t) − F−1

x (1 − t))]γdΛ(t)

)
1

γ

where Λ is a finite measure on ( 1
2 , 1).

4.2.3 Properties of the Utility price

We now elaborate on Dybvig’s idea by introducing the dispersion order.

Proposition 5

1. Let r be defined by e(p, 1) = E(p) = 1
1 + r . Then if p ≥ 0, (1 + r)e(p, x)

is a Choquet integral. More precisely (1 + r)e(p, x) =
∫

xdν where ν is a

convex distortion of P , ν = φpP .

2. Let D(p, x) = E(x)
(1+r) − e(p, x). Then D(p, x) ≥ 0, ∀x and if x�

∼

BL

y, then

D(p, x) ≤ D(p, y). Hence e(p, x) =
E(x)
1 + r −D(p, x).

3. Let χ(p, x) = (D(p, x)+D(p,−x)) = −(e(p, x)+e(p,−x)). Then χ(p, x)

is a convex comonotone measure of dispersion of x.
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Remarks: 1. The distortion φp is piecewise linear since its derivative which

is proportionnal to F−1
p is a step function.

2. φp is called the Lorenz curve of p in the theory of measurement of inequal-

ity.

3. For p ≥ 0, −(1 + r)e(p, x) is a comonotone coherent measure of risk (see

Atzner et al (1999) and Delbaen (2000) for the definition and comments).

4.2.4 An example: The tail conditionnal expectation

Assume that p = 1A, then 1
(1+r) = P (A) and

(1 + r)e(1A, x) =

∫ P (A)
0 F−1

x (t)dt

P (A)
= E

[

x | x ≤ F−1
x (P (A))

]

Hence (1 + r)e(1A, x) is the tail conditionnal expectation. The corresponding

measure of dispersion is :

χ(1A, x) =

∫ P (A)

0
(F−1

x (1 − t) − F−1
x (t))dt =

∫ 1

1−P (A)
(F−1

x (t) − F−1
x (1 − t))dt

which is one of the example of measure of dispersion that we gave, with γ = 1.

4.3 Structure of the minimizers

4.3.1 The case of uniform probability

As Dybvig (1988) and Jouini-Kallal (2001), let us first assume that the prob-

ability is uniform. The following results are essentially due to Jouini-Kallal

(2001).

Proposition 6

1. ψ(p, x) equals the convex hull of consumptions x′ that fulfills x′ ∼2 x and

x′ is anti-comonotone with p.

2. If p is revealing, then ψ(p, x) is a singleton: it is the unique non-

increasing function of p distributed as x .

3. e(p, x) = maxu minc

{

E(pc)
Eu(c) ≥ Eu(x)
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4.3.2 The general case

Proposition 7 Let ai > 0 for all i and bi be such that

F−1
p (1 − t) =

k
∑

i=1

ai1[0,bi](t)

Then x′ ∈ ψ(p, x) if and only if

∫ bi+1

bi

F−1
x′ (t)dt =

∫ bi+1

bi

F−1
x (t)dt, for all i

The proof that follows from that of Proposition 4 is omitted.

4.4 Weakly-efficient claims

Following Dybvig (1988) and Jouini-Kallal (2001), we define efficient claims

as claims for which there is no other less costly contingent claim at least as

good for every risk averse investor with v.N.M. increasing utility. More pre-

cisely:

Definition 6 A contingent claim x is �
∼2 weakly-efficient at price p iff there

exists u : IR → IR increasing and concave such that x solves

{

maxE(u(c)) subject to
E(pc) ≤ E(px)

Proposition 8 1. A contingent claim x is weakly-efficient at price p iff

E(px) =min {c�2x}E(pc). Equivalently iff E(px) = e(p, x).

2. A contingent claim x is weakly-efficient at price p iff x and p are anti-

comonotone.

3. A contingent claim x is weakly-efficient at price p iff there exists v :

IRk → IR increasing and �
∼2 averse such that x solves

{

max v(c) subject to
E(pc) ≤ E(px)

4. A contingent claim x with E(px) > 0 is efficient at price p iff it maxi-

mizes
E(R(x)) − (1 + r)

D(p,R(x))

where R(x) =
x

E(px)
is the return of the contingent claim.
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Hence a contingent claim with positive price is efficient iff an analog of Sharpe

ratio is maximized. The maximal value is (1 + r).

5 Pareto optimality

5.1 Definitions

We now consider an n agents economy with initial endowments (wi)
n
i=1 ∈ IRkn.

Let w =
∑n

i=1 ωi denote aggregate endowment.

We first give three definitions.

Definition 7 An allocation (x̃i)
n
i=1 ∈ IRkn is a �

∼2 Pareto optimum, if there

doesn’t exist a feasible allocation (x′i)
n
i=1 ∈ IRkn such that x′i�∼2xi, for every i,

with a strict inequality for some i.

Definition 8 A pair [p∗, (x∗i )
n
i=1] ∈ IRk × IRkn is a �

∼2 equilibrium if

1. For every i, E(p∗x∗i ) ≤ E(p∗ωi) and there doesn’t exist xi�2x
∗
i , with

E(p∗xi) ≤ E(p∗ωi)

2.
∑n

i=1 x
∗
i = ω.

Definition 9 A pair [p∗, (x∗i )
n
i=1] ∈ IRk×IRkn is a �

∼2 equilibrium with trans-

fer payments if

1. There doesn’t exist xi�2x
∗
i , with E(p∗xi) ≤ E(p∗x∗i )

2.
∑n

i=1 x
∗
i = ω.

The following result may easily be proven:

Proposition 9 1. If there exists (ui)
n
i=1 increasing strictly concave such

that (xi)
n
i=1 is a Pareto optimum of the associated economy, then (xi)

n
i=1

is a �
∼2 Pareto optimum.

2. If there exists (ui)
n
i=1 increasing strictly concave such that [p∗, (x∗i )

n
i=1] ∈

IRk×IRkn is an equilibrium (resp an equilibrium with transfer payments)

of the associated economy, then [p∗, (x∗i )
n
i=1] ∈ IRk × IRkn is a �

∼2 equi-

librium (resp a �
∼2 equilibrium with transfer payments).

15



We shall prove that any �
∼2 equilibrium (resp any �

∼2 Pareto optimum) is

an equilibrium (resp a Pareto optimum) of a strictly concave v.N.M. economy.

The main tool of the proof is Peleg and Yaari’s lemma.

5.2 Caracterisations of �
∼2 Pareto optimality

Proposition 10 For a feasible allocation (xi)
n
i=1, the following conditions are

equivalent

1. (xi)
n
i=1 is a �

∼2 Pareto optimum.

2. The family of random variables (xi)
n
i=1 is comonotone.

3. There exists (fi)
n
i=1 , fi : IR → IR continuous non decreasing with

n
∑

i=1

fi =

Id such that xi = fi(ω).

4. For every p � 0 such that ω(j) < ω(`) implies p(j) > p(`), there exists

(ui)
n
i=1, ui : IR → IR strictly concave increasing such that [p, (xi)

n
i=1]

is an equilibrium with transfer payments of the corresponding v.N.M.

economy.

5. There exists (ui)
n
i=1 increasing strictly concave such that (xi)

n
i=1 is a

Pareto optimum of the associated economy.

Proposition 11 For a feasible allocation (xi)
n
i=1, the following conditions are

equivalent

1. (xi)
n
i=1 is a �

∼2 Pareto optimum.

2. For any p � 0 such that ω(j) < ω(`) implies p(j) > p(`), [p, (xi)
n
i=1] is

a �
∼2 equilibrium with transfer payments.

The next proposition shows that no new qualitative behavior may be obtained

by using risk averse utilities.

Proposition 12 For an allocation (xi)
n
i=1, the following conditions are equiv-

alent

1. (xi)
n
i=1 is a �

∼2 Pareto optimum.
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2. There exists (vi)
n
i=1, vi : IRk → IR monotone increasing, �2 averse such

that (xi)
n
i=1 is a Pareto optimum of the associated economy.

Proof.

1. implies 2. It suffices to take vi(x) = E(ui(x)) with ui constructed in Propo-

sition 10, assertion 5.

2. implies 1. since a Pareto optimum of a monotone increasing strictly strongly

averse economy is clearly a �
∼2 Pareto optimum.

We now give another characterisation of Pareto optima .

Proposition 13 An allocation (xi)
n
i=1 is a �

∼2 Pareto optimum iff (xi)
n
i=1 is

feasible and for some p� 0 revealing

i) E(pω) = e(p, ω) (aggregate endowment is efficient at price p),

ii) e(p, ω) =
n
∑

i=1

e(p, xi), (the utility price of aggregate endowment is the sum

of the utility prices of individual consumptions).

Proof. If

e(p, ω) = E(pω) =
n
∑

i=1

E(pxi) =
n
∑

i=1

e(p, xi)

as E(pxi) ≥ e(p, xi), for every i, we have E(pxi) = e(p, xi),. Hence, for every

i, xi(j) > xi(k) implies that p(j) < p(k). Equivalently, for every i, xi is

a non increasing function of p which implies the comonotony of (xi)
n
i=1 (see

Denneberg [1994], chapter four).

6 Second Order stochastic Dominance Equilibria

In this section, we characterize �
∼2 equilibria. We show that the set of �

∼2 equi-

libria coincides with the set of equilibria for strictly averse v.N.M. economy.

It also coincides with the set of equilibria for strictly strongly averse utilities.

We also show that a �
∼2 equilibrium may be characterized by standard fea-

sibility and budget constraints and the conditions that aggregate endowment

is efficient with respect to the price system and its utility price is the sum of

individual utility prices.
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Proposition 14 A pair [p∗, (x∗i )
n
i=1] with (x∗i )

n
i=1 feasible is a �

∼2 equilibrium

iff

1. p∗ � 0 and for every i, E(p∗x∗i ) = E(p∗ωi).

2. For every i, x∗i is a non increasing function of p∗.

Equivalently [p∗, (x∗i )
n
i=1] fulfills

1. For every i, E(p∗x∗i ) = E(p∗ωi),

2. The family of random variables (x∗i )
n
i=1 is comonotone and ω is a non

increasing function of p∗.

Proof. It follows directly from Proposition 1 and corollary 1.

Proposition 15 A pair [p∗, (x∗i )
n
i=1] is a �

∼2 equilibrium iff there exist (ui)
n
i=1,

ui : IR → IR strictly concave increasing such that [p∗, (x∗i )
n
i=1] is the equilibrium

of the associated v.N.M. economy.

Proof. It follows from corollary 1.

Proposition 16 A pair [p∗, (x∗i )
n
i=1] is an equilibrium of an economy with

monotone strictly strongly averse utilities iff it is a �
∼2 equilibrium.

Proof. The proof which is obvious is omitted.

We further have:

Proposition 17 A pair [p∗, (x∗i )
n
i=1] with (x∗i )

n
i=1 feasible and p∗ � 0 and

fully revealing is a �
∼2 equilibrium iff

1. For every i, p∗x∗i = p∗ωi,

2. e(p∗, ω) =
n
∑

i=1

e(p∗, x∗i ) and e(p∗, ω) = E(p∗ω).
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Proof. The proof which is similar to that of Proposition 12 is omitted.

Let (ωi)
n
i=1 be fixed. Let E2 be the set of �

∼2-equilibria, EU be the set of

equilibria of a v.N.M. economy with (ui)
n
i=1 increasing and strictly concave

and finally EV be the set of equilibria of an economy with monotone �2 averse

utilities. It follows from Propositions 14 and 15 that

E2 = EU = EV

Other sets of equilibria may be considered: the set of equilibria of a v.N.M.

economy with (ui)
n
i=1 increasing and concave or the set of equilibria of an econ-

omy with monotone �2 averse utilities. It follows from Lemma 1 and from the

proof of Proposition 1 that these sets coincide and are equal to the set of pairs

[p∗, (x∗i)
n
i=1] with p∗ � 0 and x∗i and p∗ anticomonotone for every i. w and

p∗ are therefore anticomonotone but the family of equilibrium consumptions

is not necessarely anticomonotone.

It may also easily be seen that E2 contains the set of CAPM equilibria

which are characterized by the property that that consumptions are affine non

decreasing functions of the pricing density.

7 Appendix

Proof of Lemma 1

For completeness, we recall the proof which is due to Peleg and Yaari [1975].

Let

g(x(`)) = min {p(j); j s.t. x(j) = x(`)} g−(x(`)) = max {p(j); j s.t. x(j) = x(`)}

Assume w.l.o.g. x(1) ≤ x(2) ≤ · · · x(k) Let g be defined as follows :

g(x) = g(x(1)) + (x(1) − x), if x < x(1)
g(x) = g(x(k)) exp(x(k) − x), if x > x(k)

and g is right continuous, piecewise linear with potential discontinuity and

change of slope at x(1), x(2), · · · , x(k). Then g is positive and non increasing

(decreasing if x(`) < x(j) implies p(`) > p(j)). Let u(x) =
∫ x
0 g(t)dt. Then u

is strictly increasing and concave (resp strictly concave if x(`) < x(j) implies
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p(`) > p(j)). Let us remark that x solves

{

maxE[u(c)) s.t.
E(pc) ≤ E(px) = w

since the

f.o.c., p(j) ∈ [u
′

+(x(j)), u
′

−(x(j))] = [g(x(j)), g−(x(j))] are fulfilled.

Proof of Proposition 1

Assume that ξ(p,w) 6= ∅ and let x ∈ ξ(p,w). If p(`) ≤ 0 for some `, let x′ be

defined by x′(j) = x(j), ∀ j 6= ` and x′(`) = x(`) +M , M > 0. Then x′�2x

and E(px′) ≤ w, a contradiction.

To prove 2, assume that for some pair (`, j), x(`) < x(j) and p(`) ≤ p(j).

• Assume π(`) < π(j).

Let







x′(`) = x(j)

x′(j) = x(j) +
π(`)
π(j)

[x(`) − x(j)] and x′(k) = x(k), k 6= (`, j).

We then have:

E(p(x′ − x)) = π(`)p(`)(x′(`) − x(`)) + π(j)p(j)((x′(j) − x(j))

= π(`)p(`)(x(j) − x(`)) + p(j)π(`)(x(`) − x(j))

= π(`)(x(j) − x(`))(p(`) − p(j)) ≤ 0

while for any v.N.M. expected utility maximizer with a strictly concave

increasing u : IR → IR

E[u(x′) − u(x)]

= π(`)[u(x(j)) − u(x(`))] + π(j)

[

u

(

x(j) +
π(`)
π(j)

(x(`) − x(j))

)

− u(x(j))

]

> π(`)[u(x(j))−u(x(`))] + π(`)u(x(`)) + [π(j)−π(`)]u(x(j))−π(j)u(x(j))

= 0

a contradiction.

• If π(j) < π(`), a similar proof may be given with x′(`) = x(`) +
π(j)
π(`)

(x(j) − x(`)), x′(j) = x(`) and x′(k) = x(k) for k 6= (`, j).
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• If π(j) = π(`), it follows from the above proof that x(`) < x(j) and

p(`) > p(j) is impossible. Assume that π(j) = π(`), x(`) < x(j) and

p(`) = p(j). Let x′(`) = x′(j) = 1
2(x(`) + x(j)), x′(k) = x(k), k 6= (l, j).

Then E(px′) = E(px) while E[u(x′)] > E[u(x)] for any u strictly concave

increasing. A contradiction.

Hence x(`) < x(j) implies p(`) > p(j). In particular p(`) = p(j) implies

x(`) = x(j). Lastly as x+ a�2x, ∀a ∈ IRk
+, if x ∈ ξ(p,w), then E(px) = w.

Conversely, let x be such that E(px) = w and x(`) < x(j) implies p(`) >

p(j) and u be given by lemma 1. Assume that there exists x′�2x and E(px′) ≤

w, then E[u(x′)] > E[u(x)] while E(px′) ≤ E(px), contradicting the optimal-

ity of x, for the v.N.M. utility.

Proof of Proposition 4

Proof. Clearly if p has a negative coordinate, e(p, x) = −∞. Assume p ≥ 0.

Let us show that e(p, x) ≥
∫ 1
0 F

−1
p (1− t)F−1

x (t)dt. It first follows from Hardy-

Littlewood’s theorem that for any c ∈ IRk,

E(pc) ≥
∫ 1

0
[F−1

p (1 − t)F−1
c (t)]dt

Assume further that c�
∼2 x. Since F−1

p (1 − t) is a non negative, non increas-

ing step function, there exists ai ∈ IR+, bi ∈]0, 1] such that F−1
p (1 − t) =

k
∑

i=1

ai1[0,bi](t). Hence

∫ 1

0
[F−1

p (1 − t)F−1
c (t)]dt =

k
∑

i=1

ai

∫ bi

0
F−1

c (t)dt ≥
k
∑

i=1

ai

∫ bi

0
F−1

x (t)dt

=
∫ 1
0 F

−1
p (1 − t)F−1

x (t)dt

since c�
∼2 x.

To prove the converse inequality, it suffices to prove that there exists a con-

tingent claim c�
∼2 x such that E(pc) =

∫ 1
0 F

−1
p (1 − t)F−1

x (t)dt. Let us relabel

states of the world such that p(1) ≥ p(2) ≥ . . . p(k). Let A1, . . . , Ak be the

partition of [0, 1] such that

F−1
p (1 − t) = p(1)1A1

(t) + . . . p(l)1Al
(t) + . . . p(k)1Ak

(t)
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A1 = [0, π(1)], A2 = [π(1), π(1)+π(2)], Al =

[

l−1
∑

i=1

π(i),
l
∑

i=1

π(i)

]

. In particular

λ(Al) = π(l). Let

c(l) =
1

π(l)

∫

Al

F−1
x (t)dt

Since F−1
x is non decreasing, c(1) ≤ . . . ≤ c(k) and

k
∑

l=1

p(l)c(l)π(l) =

∫ 1

0
F−1

p (1 − t)F−1
x (t)dt

Consider the contingent claim c = (c(1), . . . , c(k)) in IRk. Since c(1) ≤ . . . ≤

c(k), F−1
c = c(1)1A1

+. . . c(l)1Al
+. . . c(k)1Ak

. By construction, F−1
c = E[F−1

x |

C] where C is the sigma-field generated by the (Ai), i = 1, . . . , k. Hence by

Jensen’s inequality, F−1
c �2 F

−1
x . Equivalently c �2 x. .

Proof of corollary 2. If p is revealing, the contingent claim c constructed in

the previous proof, is the non increasing function of p f(p), with f defined by

f(F−1
p (1 − Id)) = E(F−1

x | F−1
p (1 − Id)) (the conditionnal expectation being

taken with respect to the probability space ([0, 1],B, λ) with λ the Lebesgue

measure). Since p is revealing, it follows from proposition 3 that if c′ ∈ ψ(p, x),

then c′ is a function of p. Let us show that if c′ = φ(p) is any (non increasing)

function of p that fulfills c′ �
∼2 x and achieves the minimum, then c = c′.

Indeed, let ai > 0, bi ∈]0, 1] be such that F−1
p (1 − t) =

k
∑

i=1

ai1[0,bi]. We have

∫ 1

0
[F−1

p (1 − t)F−1
c′ (t)]dt =

∫ 1

0
[F−1

p (1 − t)φ(F−1
p (1 − t))dt

=
k
∑

i=1

ai

∫ bi

0
φ(F−1

p (1 − t))dt

=
k
∑

i=1

ai

∫ bi

0
F−1

x (t)dt

Since c′ �
∼2 x, we have

∫ bi

0 φ(F−1
p (1 − t))dt =

∫ bi

0 F−1
x (t)dt for every i, hence

∫ bi+1

bi
φ(F−1

p (1−t))dt =
∫ bi+1

bi
F−1

x (t)dt. Since φ(F−1
p (1−t)) is constant on each

interval [bi, bi+1], we get 1[bi,bi+1](t)φ(F−1
p (1 − t)) = 1

(bi+1−bi)

∫ bi+1

bi
F−1

x (t)dt.

Hence ψ(p, x) is a singleton.

The second assertion also follows from the same proof. The function f defined

by f(F−1
p (1 − Id)) = E(F−1

x | F−1
p (1 − Id) is that unique function.
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.

Proof of Proposition 5

1) Let r be defined by E(p, 1) = E(p) = 1
1 + r and let (1 + r)e(p, x) =

ϕ(x). Clearly ϕ(1) = 1 and ϕ is non decreasing. Furthermore, by Lemma

2, ϕ(x + y) = ϕ(x) + ϕ(y) on comonotone functions. Hence by Schmeidler’s

theorem [1986], ϕ is an integral with respect to a capacity ν. Let us show that

ν is a convex distortion of P . Let x = 1A, then F−1
1A

(t) = 1[1−P (A),1](t) and

ν(A) =

∫ P (A)

0
F−1

p (t)dt
∫ 1

0
F−1

p (t)dt
= φp(P (A)) where φp(x) =

∫ x

0
F−1

p (t)dt
∫ 1

0
F−1

p (t)dt
. Clearly φp

is a convex distortion. If x ≥ 0, −(1 + r)e(p, x) is a comonotone coherent

measure of risk.

2) The covariance of two anticomonotone variable being non positive, D(p, x) =
E(x)
1 + r − e(p, x) ≥ 0. If x�

∼

BL

y, then F−1
y − F−1

x is non decreasing, hence its

covariance with t → F−1
p (1 − t) is non positive. Hence D(p, y) ≥ D(p, x). As

x�
∼

BL

y is equivalent to −x�
∼

BL

−y,

D(p,−y) ≥ D(p,−x)

which implies that χ(p, x) ≤ χ(p, y). One easily verifies that all the other

properties of a measure of spread are verified.

Proof of Proposition 6

To prove assertion 1, let x′ ∼2 x be such that x′(j) < x′(`) imply p(j) ≥ p(`).

Then there exists u : IR → IR concave increasing such that x′ max

{

Eu(c) s.t.
E(pc) ≤ E(px′)

.

Hence x′ solves

{

minE(pc) s.t.
Eu(c) ≥ Eu(x′) = Eu(x)

. If c�
∼2x, then Eu(c) ≥ Eu(x),

hence E(pc) ≥ E(px′) which proves that x′ ∈ ψ(p, x) and that ψ(p, x) con-

tains the convex hull of consumptions x′ that fulfills x′ ∼2 x and x′(j) < x′(`)

implies p(j) ≥ p(`). Conversely, by Jouini-Kallal’s lemma, {c�
∼2x} = co{ c ∼2

x}+IRk
+, hence if either c ∈ co{ c ∼2 x} and c is not anticomonotone with p or

c > y with y ∼2 x, then E(pc) > E(px′). Hence ψ(p, x) equals the convex hull

of consumptions x′ that fulfills x′ ∼2 x and x′(j) < x′(`) implies p(j) ≥ p(`).

Assertion 2 follows assertion 1 and proposition 3. Lastly, to prove assertion 3,
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let us first remark that as {c | c�
∼2x} ⊆ {c | E(u(c)) ≥ E(u(x))},

min

{

E(pc)
c�

∼2x
≥ max

u
min

c

{

E(pc)
Eu(c) ≥ Eu(x)

It follows from the proof of assertion 1 that

min

{

E(pc)
c�

∼2x
= max

u
min

c

{

E(pc)
Eu(c) ≥ Eu(x)

= min
c

{

E(pc)
c ∼2 x

Proof of Proposition 8.

To prove assertion 1 , assume that x is weakly-efficient at price p and that there

exists c�
∼2 x such that E(pc) < E(px). Then for ε > 0, E(u(c+ ε)) > E(u(x)

and fulfills E(p(c+ε)) < E(px) for ε > 0 small enough, contradicting the weak

efficiency of x. Conversely if E(px) =min {c�x}E(pc), then by Proposition 3,

x and p are anticomonotone and the existence of u follows from Lemma 1.

The equivalence between assertions 1 and 2 follows from Proposition 3 and

Lemma 1. The proof of assertion 3 which is similar to that of assertion 1 is

omitted.

To prove assertion 4, for any x, we have E(x) − (1 + r)E(px) ≤ (1 +

r)D(p, x). Furthermore x is efficient at price p iff E(x)− (1 + r)E(px) = (1 +

r)D(p, x). If E(px) > 0, as D(p, x) is positively homogeneous, we equivalently

have
E(R(x)) − (1 + r)

D(p,R(x))
≤ 1 + r, for any x

where R(x) =
x

E(px)
is the return of the contingent claim. There is equality

if x is efficient.

Proof of Proposition 10.

1. implies 2. The original proof is due to Landsberger-Meilijson [1994]. We

use a method of proof due to Chateauneuf et al [1997]. Assume that (xi)
n
i=1

are not comonotone. W.l.o.g. we may assume x1(1) > x1(2) and x2(1) < x2(2)

and x1(1) + x2(1) ≤ x1(2) + x2(2). Let x′1 and x′2 be defined as follows:

x′1(1) = x′1(2) =
π(1)x1(1) + π(2)x1(2)

π(1) + π(2)
x′1(j) = x1(j), ∀j > 2.
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x′2 is defined so that the feasibility constraint is fulfilled:

x′2(1) = x2(1) +
π(2)

π(1) + π(2)
[x1(1) − x1(2)]

x′2(2) = x2(2) −
π(1)

π(1) + π(2)
[x1(1) − x1(2)].

We have
E(x′i) = E(xi), i = 1, 2

x1(2) < x′1(1) = x′1(2) < x1(1)
x2(1) < x′2(1) ≤ x′2(2) < x2(2).

Hence x′1 � x1 and x′2 � x2, a contradiction.

2 implies 3 See Denneberg [1994], chapter four.

3 implies 4. Choose any p � 0, such that ω(j) < ω(`) implies p(j) > p(`).

Then by assertion 3, xi(j) < xi(`) implies ω(j) < ω(`), hence p(j) > p(`).

By lemma 1, there exists, ui : IR → IR increasing strictly concave such that

xi solves

{

maxEui(c) s.t.
E(pc) ≤ E(pxi)

The pair [p, (xi)
n
i=1] is therefore an equilibrium

with transfer payments of the associated v.N.M. economy.

4 implies 5. Let (ui)
n
i=1 be as constructed in 4. Then (xi)

n
i=1 is a Pareto opti-

mum of the associated v.N.M. economy.

5 implies 1 The proof which is obvious is omitted

Proof of Proposition 11.

1 implies 2. If (xi)
n
i=1 is a �

∼2 Pareto optimum, then from Proposition 10 as-

sertion 4, for any p� 0 such that ω(j) < ω(`) implies p(j) > p(`), [p, (xi)
n
i=1]

is an equilibrium with transfer payments of a strictly concave economy, hence

by Proposition 9, a �
∼2 equilibrium with transfer payments.

2 implies 1. Let [p, (xi)
n
i=1] be a �

∼2 equilibrium with transfer payments with

p � 0. Assume that (xi)
n
i=1) is not �

∼2 Pareto optimal. Then there exists a

feasible allocation (x′i)
n
i=1 such that x′i �∼

2
xi, for all i with a strict inequality

for some i. If x′i 6= xi, by convexity, we may assume that x′i �2 xi. Hence

E(px′i) > E(pxi), for all i such that x′i 6= xi. Summing over i, we get a contra-

diction with the feasibility of (x′i)
n
i=1. Hence (xi)

n
i=1) is a �

∼2 Pareto optimum.
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