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Abstract

We study the polyhedral structure of the partial constraint satisfaction problem (PCSP). Among the problems that can be
formulated as such are the maximum satis�ability problem and a fairly general model of frequency assignment problems. We
present lifting theorems and classes of facet de�ning inequalities, and we provide preliminary experiments. c© 1998 Elsevier
Science B.V. All rights reserved.
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1. The partial constraint satisfaction problem

A partial constraint satisfaction problem (PCSP)
is de�ned by a so-called constraint graph G=(V; E).
Each vertex v∈V in this graph represents a decision
variable, that can obtain a value from a given domain
Dv. Each value has a penalty attached to it. Moreover,
an edge {v; w}∈E in the graph indicates that some
combinations of domain elements of v and w are also
penalized. The objective of the PCSP is to select a
domain element for each vertex such that the total
penalty incurred is minimized. More formally, a PCSP
is de�ned by the quadruple (G=(V; E); DV ; PE; QV ).
DV is a set of domains Dv, v∈V where each do-
main is a �nite set. PE is a set of edge-penalty
functions P{v;w} : {{dv; dw} |dv ∈Dv; dw ∈Dw}→R,
{v; w}∈E, and QV is a set of vertex-penalty functions
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Qv :Dv→R, v∈V . The objective is to minimize the
total sum of the penalties

∑
{v;w}∈E P{v;w}({dv; dw})+∑

v∈V Qv(dv).
Many frequency assignment problems (FAP) de-

scribed in the literature belong to the class of partial
constraint satisfaction problems. For example, in the
FAP in which we have to assign a frequency to each
transceiver in a mobile telephone network, a vertex
corresponds to a transceiver. The domain of a ver-
tex is the set of frequencies that can be assigned to
that transceiver. An edge indicates that communica-
tion from one transceiver may interfere with communi-
cation from the other transceiver. In most applications
interference occurs whenever the distance between the
frequencies assigned to the transceivers is less than
a given threshold depending on the two transceivers.
The penalty of an edge reects the priority with which
interference should be avoided, whereas the penalty
on a vertex can be seen as a level of preference for
the frequencies.
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For another type of frequency assignment problems,
involving receiver–transmitter pairs of radio links, that
can be formulated as a partial constraint satisfaction
problem, we refer to Kolen [3]. Forthe special case
in which no interference is allowed (is there a solu-
tion with penalty zero) the polyhedral structure of the
problem is studied in Aardal et al. [1].
The maximum satis�ability problem (MAX SAT)

can be reformulated elegantly as a partial constraint
satisfaction problem. In a MAX SAT problem m
clauses c1; : : : ; cm involving the boolean variables
x1; : : : ; xn are given. Each clause contains a number
of literals, where a literal is either a variable or the
negation of a variable. The problem is to assign a
value true or false to each variable so as to maximize
the number of clauses that are satis�ed. A clause is
satis�ed if at least one literal in it has the value true.
To model MAX SAT as a PCSP, we introduce a

vertex vci for every clause ci; i=1; : : : ; m, and a ver-
tex vxj for every variable xj; j=1; : : : ; n. The domain
of vci contains a element for each literal in the clause
ci; let us denote this element by the literal itself. The
domain of vxj is given by {true; false}. There is an
edge between a vertex vci representing clause ci, and
a vertex vxj representing variable xj if and only if
xj ∈ ci or �xj ∈ ci ( �xj is the negation of xj). If xj ∈ ci,
then the penalty of the combination of domain values
(xj; false) is equal to 1. If �xj ∈ ci, then the penalty of
the combination of domain values ( �xj; true) is equal
to 1. All other penalties are zero. The optimal value
of this partial constraint satisfaction problem is k if
and only if the optimal value of the corresponding
MAX SAT is m−k. Furthermore, an optimal solution
of the MAX SAT is given by the domain values se-
lected for the vertices corresponding to the variables
in the optimal solution of the partial constraint satis-
faction problem. This shows that the two problems are
equivalent. Since MAX 2 SAT (each clause contains
at most 2 literals) is NP-hard [2] a partial constraint
satisfaction problem with |Dv|=2 for all v∈V is al-
ready NP-hard.
For the MAX 2 SAT problem a more compact for-

mulation is possible. We have a vertex vxj correspond-
ing to every variable xj, and the domain is given by
{true; false}. There is an edge {vxi ; vxj} if and only if
there exists a clause containing a literal corresponding
to xi and a literal corresponding to xj. The penalty cor-
responding to a combination of values for the variables

xi and xj is equal to the number of clauses containing
literals corresponding to both variables for which the
given combination does not satisfy the clause.
The satis�ability problem (SAT), in which the ques-

tion is whether there is an assignment of the variables
for which all clauses are satis�ed, can also be formu-
lated as a partial constraint satisfaction problem as fol-
lows. There is one vertex for every clause and an edge
if the two corresponding clauses contain a conicting
literal corresponding to the same variable. A combina-
tion {xi; �xi} with xi ∈Cj and �xi ∈Ck has penalty one.
All combinations corresponding to non-conicting lit-
erals have penalty zero. A problem instance is satis�-
able if and only if the corresponding partial constraint
satisfaction problem instance has optimal value zero.
The PCSP can be viewed as a linearization of the

boolean quadric polytope (see [6]) and is therefore
related to the transitive packing polytope (see [4]).
In Section 2 of this paper we formulate the partial

constraint satisfaction problem as {0; 1} linear pro-
gramming problem, we state the dimension of the
problem, and describe trivial facet de�ning valid in-
equalities. We prove theorems for lifting facets of
a subproblem to facets for the original problem in
Section 3. In Section 4 we de�ne some classes of facets
for the PCSP. Some preliminary computational results
are addressed in Section 5, whereas the last section
contains the concluding remarks.

2. Formulation, dimension and trivial facets

To formulate the partial constraint satisfaction prob-
lem as a {0; 1}-programming problem we introduce
the following {0; 1}-variables for all v∈V , dv ∈Dv

y(v; dv)=
{
1 if dv ∈Dv is selected;
0 otherwise

and for all {v; w}∈E; dv ∈Dv; dw ∈Dw

z(v; dv; w; dw)=



1 if (dv; dw)∈Dv×Dw

is selected;
0 otherwise:

In the sequel, let q(v; dv) and p(v; dv; w; dw) denote
Qv(dv) and P{v;w}({dv; dw}), respectively.
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A {0; 1}-programming formulation of the partial
constraint satisfaction problem is given by

min
∑

{v;w}∈E

∑
dv∈Dv

∑
dw∈Dw

p(v; dv; w; dw)z(v; dv; w; dw)

+
∑
v∈V

∑
dv∈Dv

q(v; dv)y(v; dv) (1)

s:t:
∑
dv∈Dv

y(v; dv)= 1 ∀v∈V; (2)

∑
dw∈Dw

z(v; dv; w; dw)

=y(v; dv) ∀{v; w}∈E; dv ∈Dv; (3)

z(v; dv; w; dw)∈{0; 1}
∀{v; w}∈E; dv ∈Dv; dw ∈Dw; (4)

y(v; dv)∈{0; 1} ∀v∈V; dv ∈Dv: (5)

Constraints (2) model the fact that exactly one value in
the domain of a vertex should be selected. Constraints
(3) enforce that the combination of values selected for
an edge should be consistent with the values selected
for the vertices of that edge.
We de�ne the partial constraint satisfaction poly-

tope X (PCSP) to be the convex hull of all {0; 1}-
vectors (y; z) satisfying Eqs. (2) and (3). Although the
y-variables can be eliminated from the formulation,
we believe that it is more convenient to keep them
in the formulation. Note that once the y-variables are
{0; 1} the z-variables are forced to be integral.
The dimension of the partial constraint satisfaction

polytope is given by Theorem 2.1.

Theorem 2.1. The dimension of X (PCSP), de�ned by
(G=(V; E); DV ) is

∑
v∈V

(|Dv| − 1) +
∑

{v;w}∈E
(|Dv| − 1)(|Dw| − 1): (6)

Proof. We will �rst prove that X (PCSP) satis-
�es |V | + ∑

{v;w}∈E (|Dv| + |Dw| − 1) (number of

variables minus dimension) linearly independent
equalities, which implies that Eq. (6) is an up-
per bound for the dimension. These linear inde-
pendent equalities are obtained by taking the |V |
constraints (2), and for every edge {v; w} all but
one (=

∑
{v;w}∈E (|Dv| + |Dw| − 1)) of the con-

straints (3). Note that constraints (3) for a given
edge {v; w} can be viewed as the constraints of a
transportation problem with suppliers indicated by
(v; dv) with supply y(v; dv) and clients indicated by
(w; dw) with demand y(w; dw). Thus, deleting one of
these constraints results in a set of linear independent
equalities.
Next, we will prove that Eq. (6) is a lower bound

for the dimension by supplying 1+
∑

v∈V (|Dv|−1)+∑
{v;w}∈ E (|Dv| − 1)(|Dw| − 1) a�nely independent

feasible solutions. Note that once the y-variables are
given, the z-variables are uniquely determined by con-
straints (3). To de�ne these solutions we arbitrarily
select a value d∗v ∈Dv. A �rst solution is given by
y(v; d∗v )= 1 for all v∈V .
Next, we construct

∑
v∈V (|Dv| − 1) solutions

which di�er from the �rst solution in only one domain
element: for each v∈V , dv ∈Dv\{d∗v }, we de�ne
the solution y(v; dv)= 1; y(w; d∗w)= 1 for all w 6= v.
Lastly, we construct

∑
{v;w}∈ E (|Dv| − 1)(|Dw| − 1)

solutions which di�er from the �rst solution in
two domain elements of adjacent vertices: for
each {v; w}∈E; dv ∈Dv\{d∗v }; and dw ∈Dw\{d∗w},
we de�ne the solution y(v; dv)=y(w; dw)= 1 and
y(u; d∗u)= 1 for all u∈V\{v; w}. Note that all these
solutions are a�nely independent.

The following theorem shows that many of the triv-
ial inequalities are facet de�ning.

Theorem 2.2. For every {v; w}∈E; |Dv|¿2,
|Dw|¿2; dv ∈Dv, dw ∈Dw the inequality

z(v; dv; w; dw)¿0 (7)

de�nes a facet for X (PCSP).

Proof. Among the a�nely independent solutions in
the proof of the previous theorem, all solutions but
one satisfy Eq. (7) with equality.
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Fig. 1. Extension of the graph.

Fig. 2. Extension of the domain.

3. Lifting theorems

In this section we will discuss two types of lifting.
Combining them enables us to lift a facet de�ning
inequality of a particular PCSP to facet de�ning in-
equalities for an extended PCSP. First, we show that
a facet de�ning inequality remains facet de�ning if
the constraint graph is extended with vertices having
one domain element (see Fig. 1). Second, we show
how a facet de�ning inequality can be extended if the
domain of a vertex is extended with copies of other
domain elements (see Fig. 2).
If X (PCSP) is de�ned by (G=(V; E); DV ), let

Xu(PCSP) denote the PCSP-polytope de�ned by the
extended graph on Gu=(V ∪{u}; E ∪Eu) where Eu
is the set of edges incident to u, with the same do-
mains for v∈V and |Du|=1. Moreover, let x=(y; z)
denote the solution vector.

Theorem 3.1. Let X (PCSP) be de�ned by (G=(V;
E); DV ). If �x6�0 is a facet de�ning inequality for
X (PCSP), then �x6�0 is a facet de�ning inequality
for Xu(PCSP).

Proof. The polytope X (PCSP) is a projection of
Xu(PCSP) and both have the same dimension (see
Theorem 2.1).

Next, we show how a facet de�ning inequality of a
PCSP de�ned by the constraint graph G=(V; E) and
a set of domains Dv, v∈V , can be lifted into a facet
de�ning inequality for the PCSP. This is done by
using the same constraint graph and set of domains
D+v , v∈V; where D+v =Dv, for all v∈V , v 6= u, and
D+u =Du ∪{d+u } (see Fig. 2). Theorem 3.2 states that
if we give each variable related to d+u the same co-
e�cient as the corresponding variable of an arbitrar-
ily selected domain element du ∈Du, then the new
inequality is facet de�ning for the extended problem
whenever the original inequality is facet de�ning for
the original problem. In order to prove Theorem 3.2
we need the following two lemmas.

Lemma 3.1. Let u∈V; du ∈Du, and let �u de�ne the
set of neighbors of u, �u= {v | {u; v}∈E}. If

�(u; du)y(u; du) +
∑
v∈�u

∑
dv∈Dv

(v; dv)z(u; du; v; dv)¿0

(8)

is a facet de�ning inequality for X (PCSP), then the
inequality describes a trivial facet.

Proof. Let d∗v =argmindv∈Dv (v; dv) for all
v∈ �u. Adding (v; d∗v ) times the model equality
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y(u; du)−
∑

dv∈Dv z(u; du; v; dv)= 0 to Eq. (8) for all
v∈ �u results in the inequality

�(u; du) +∑

v∈�u
(v; d∗v )


y(u; du)

+
∑
v∈�u

∑
dv∈Dv

[(v; dv)− (v; d∗v )]z(u; du; v; dv)¿0

or using y(u; du)=
∑

dv′∈Dv′ z(u; du; v
′; dv′) for a spe-

ci�c v′ ∈ �u
�(u; du) +∑

v∈�u
(v; d∗v )


 ∑
dv′∈Dv′

z(u; du; v′; dv′)

+
∑
v∈�u

∑
dv∈Dv

[(v; dv)− (v; d∗v )]z(u; du; v; dv)¿0

(9)

The validity of Eq. (8) implies that �(u; du) +∑
v∈�u (v; d

∗
v )¿0. Thus all coe�cients of Eq. (9) are

non-negative. Furthermore, at least one coe�cient is
positive, otherwise Eq. (9) is a linear combination
of the model equalities. Hence, the face de�ned by
Eq. (8) is a subset of a trivial facet and thus, it can
only be a trivial facet.

In the sequel, for a given (u; du), we use xr(u; du)
(�r(u; du)) as the restriction of the vector x(�) to
the components related to (u; du), i.e., the variables
y(u; du) and z(u; du; v; dv) for all v∈ �u.

Lemma 3.2. Let �x6�0 de�ne a non-trivial facet of
X (PCSP). Then for each (u; du), there are exactly 1+∑

v∈�u (|Dv|−1) solutions with y(u; du)= 1; �x= �0,
and for which xr(u; du) are a�nely independent.

Proof. Let x1; : : : ; xp be p= dim X (PCSP) a�nely
independent solutions which satisfy �x6�0 with
equality. Moreover, let x1; : : : ; xq be q solutions with
y(u; du)= 1 which are a�nely independent with re-
spect to the components y(u; du) and z(u; du; v; dv)
for all v∈ �u, dv ∈Dv (x1r (u; du); : : : ; xqr (u; du) are
a�nely independent). Then we have to prove that
q=1+

∑
v∈�u (|Dv|−1). Since x1r (u; du); : : : ; x

q
r (u; du)

all satisfy y(u; du)= 1 these vectors are also linearly
independent. So, it is su�cient to prove that the

matrix [x1r (u; du); : : : ; x
q
r (u; du)] with 1 +

∑
v∈�u |Dv|

rows has rank 1 +
∑

v∈�u(|Dv| − 1). Or, equivalently,
it is su�cient to prove that the dimension of the row
nullspace is |�u| (number of rows minus the rank of
the matrix).
First, we prove that the dimension of the row

nullspace is at least |�u|. Every solution satis�es the
model equalities y(u; du) −

∑
dv∈Dv z(u; du; v; dv)= 0

for all v∈ �u. So, if �v=(�v; v) corresponds to the
coe�cients in the left-hand side of the equality for
v∈ �u, then �vxir(u; du)= 0 for i=1; : : : ; q. Moreover,
�v, for v∈ �u are linearly independent, which implies
that the dimension of the row nullspace is at least |�u|.
Now, suppose the dimension of the row nullspace

is at least |�u| + 1. Then there exists another non-
zero vector �=(�; ) with �xir(u; du)= 0 for all
i=1; : : : ; q which is linearly independent from
the vectors �v, v∈ �u. For j= q + 1; : : : ; p, either
y j(u; du)= zj(u; du; v; dv)= 0 or x

j
r (u; du) is a�nely

dependent of x1r (u; du); : : : ; x
q
r (u; du). Hence, these

solutions also satisfy �xr(u; du)= 0. As a conse-
quence, the facet described by �x= �0 is a sub-
set of the face described by �xr(u; du)= 0, i.e.
F := {x∈X (PCSP) | �xx= �0}⊆{x∈X (PCSP) |�xr
(u; du)= 0}=:F�. If equality does not hold, then
(since �x6�0 describes a facet) F�≡X (PCSP) and
�xr(u; du)= 0 is an implicit equality. However, �
is linearly independent from the implicit equalities
involving (u; du). Hence F�≡F . From Nemhauser
and Wolsey [5] (Theorem 3.6, page 91) it follows
that either �xr(u; du)¿0 or −�xr(u; du)¿0 is a valid
inequality for X (PCSP) de�ning the same facet as
�x6�0. By Lemma 3.1, however, �xr(u; du)¿0
(or −�xr(u; du)¿0) describes a trivial facet, a con-
tradiction. Consequently, the dimension of the row
nullspace is exactly |�u|.

Now, we can prove the main theorem of this paper.

Theorem 3.2. Let X (PCSP) be de�ned by (G=(V;
E); DV ). Let u∈V; du ∈Du. De�ne X+(PCSP) by
(G=(V; E); D+V ) with D

+
v =Dv; v∈V\{u}; D+u =Du

∪{d+u }. If �x6�0 is a non-trivial facet de�ning in-
equality for X (PCSP), then

�x + �r(u; du)xr(u; d+u )6�0 (10)

is facet de�ning for X+(PCSP).
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Proof. First, note that dim X+(PCSP)= dim X
(PCSP) + 1 +

∑
v∈�u (|Dv| − 1). Let the solutions

x1; : : : ; xp, where p= dim X (PCSP), be a set of
a�nely independent solutions which satisfy �x6�0
with equality. It follows from Lemma 3.2 that there
exist 1 +

∑
v∈�u (|Dv| − 1) solutions which satisfy

y(u; du)= 1 and for which the restrictions to (u; du)
are a�nely independent. Replace in these solutions
du by d+u . Then these new solutions together with the
old solutions are a�nely independent.

4. Non-trivial classes of facet de�ning inequalities

In this section we introduce two classes of facet
de�ning inequalities for the PCSP. The facets are char-
acterized by an induced subgraph GS =(S; ES) of the
constraint graph G=(V; E). For every v∈ S the do-
main Dv is partitioned into Av and Bv. Domain values
in Av can be seen as copies of one another (i.e., their
related variables have the same coe�cients in the in-
equality); likewise the domain values in Bv. Therefore,
the facet-proofs for these classes can be restricted to
GS and domains of size 2 (for all v∈ S), which suf-
�ces according to the theorems of Section 3.
For notational convenience, we introduce

y(v; D′
v)=

∑
dv∈D′

v

y(v; dv) and

z(v; D′
v; w; D

′
w)=

∑
dv∈D′

v

∑
dw∈D′

w

z(v; dv; w; dw)

for D′
v⊆Dv and D′

w ⊆Dw.

4.1. The cycle-inequalities

First, we introduce the cycle-inequalities. Let the in-
duced subgraphGS =(S; ES) ofG=(V; E) be a chord-
less k-cycle (i.e. S = {vi | i=1; : : : ; k}; ES = {{vi;
vi+1}; | i=1; : : : ; k − 1}}∪ {{vk ; v1}}), then a k-cycle
inequality, k¿3, is given by

k−1∑
i=1

(z(vi; Avi ; vi+1; Avi+1) + z(vi; Bvi ; vi+1; Bvi+1))

+ z(v0; Av0 ; vk ; Bvk ) + z(v0; Bv0 ; vk ; Avk )6 k − 1:
(11)

Fig. 3. Cycle inequalities.

Fig. 3 shows a 3-cycle inequality and a 4-cycle
inequality. The a-dot represents the A-subset of
the domain; the b-dot represents the B-subset of
the domain. A line between two dots indicates
that the coe�cient corresponding to the indicated
subsets is equal to one.

Theorem 4.1. The k-cycle inequalities, k¿3, are
valid and facet de�ning for X (PCSP).

Proof. By the results of Section 3 it is su�cient to
prove that the k-cycle inequalities are valid and facet
de�ning for X (PCSP) de�ned by the k-cycle con-
straint graph and Avi = {avi}, Bvi = {bvi}, i=1; : : : ; k.
Consider an arbitrary solution x. Each edge of the

cycle in the constraint graph contributes at most one to
the left-hand side of Eq. (11). So, if at least one edge
does not contribute to the left-hand side, Eq. (11) is
satis�ed by x. If all edges {vi; vi+1} for i=1; : : : ; k−1
contribute 1 to the left-hand side, then either avi is se-
lected, for i=1; : : : ; k or bvi is selected, for i=1; : : : ; k.
But, then the edge {vk ; v1} does not contribute to the
left-hand side. Hence, x satis�es Eq. (11).
A k-cycle inequality is satis�ed with equality if ex-

actly one edge of the cycle does not contribute 1 to
the left-hand side. The k solutions (j∈{1; : : : ; k}) in
which avi is selected for 16i6j and bvi for j+16i6k
satisfy Eq. (11) with equality. Also, the k solutions
(j∈{1; : : : ; k}) in which bvi is selected for 16i6j
and avi for j+16i6k satisfy Eq. (11) with equality.
These 2k = dim X (PCSP) solutions are a�nely inde-
pendent.

4.2. The clique-cycle inequalities

A second class of facet de�ning valid inequali-
ties are the clique-cycle inequalities. Let the induced
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Fig. 4. Clique-cycle inequality.

subgraph GS =(S; ES) be a k-clique, then a k-clique-
cycle inequality, k¿3, is de�ned by

k∑
i=1

z(vi; Avi ; vi+1; Dvi+1) +
∑
i¡j

z(vi; Bvi ; vj; Bvj)

¿k − 1 (12)

with k + 1≡ 1. Fig. 4 shows clique-cycle inequalities
for k =3 and 4.
It should be noted that for a subset of three vertices

of the constraint graph the clique-cycle inequality and
the cycle inequality describe the same facet.

Theorem 4.2. The k-clique-cycle inequalities, k¿3,
are valid and facet de�ning for X (PCSP).

Proof. By the results of Section 3 it is su�cient to
prove that the k-clique-cycle inequalities are facet
de�ning for X (PCSP) de�ned by the k-clique con-
straint graph and Avi = {avi}; Bvi = {bvi}, i=1; : : : ; k.
Consider an arbitrary solution x. Whenever avi is

selected for some i, then the edge {vi; vi+1} (or {vk ; v1}
whenever i= k) contributes exactly one to the left-
hand side of Eq. (12), independent of the element
selected for vi+1. If both bvi and bvj are selected, then
the edge {vi; vj} contributes exactly one to the left-
hand side of Eq. (12). Hence, if bv is selected for p
vertices (and consequently av is selected for k − p
vertices), the total contribution to the left-hand side is(p
2

)
+ (k − p)¿k − 1 for all integer p.
A clique-cycle inequality is satis�ed with equal-

ity, if bv is selected for either 1 or 2 vertices. These

(k
1

)
+
(k
2

)
= k + k(k − 1)=2= dim X (PCSP) solutions

are a�nely independent.

5. Computational results

A �rst test of the quality of the valid inequali-
ties described above is done on 11 instances with
|Dv|=2 for v∈V . These instances are subproblems
of the celar8 instance of the CALMA-project. In
the Combinatorial Algorithms for Military Applica-
tions (CALMA)-project researchers from England,
France, and the Netherlands tested di�erent com-
binatorial algorithms on the same set of frequency
assignment problems. Results of the CALMA-project
as well as all test problems are available by anony-
mous ftp from ftp.win.tue.nl in the directory
/pub/techreports/CALMA. For these frequency
assignment problems, Kolen [3] described a ge-
netic algorithm in which the crossover is optimized,
i.e. given two solutions (the parents) we would
like to obtain the best-possible solution among all
solutions that can be generated with the parents. So
the crossover problem corresponds to a PCSP with at
most two values per domain. By applying the cycle
and clique-cycle inequalities these subproblems can
be solved e�ciently. To illustrate the e�ciency of the
classes of inequalities, we have selected the already
mentioned 11 subproblems. We used the callable li-
brary of CPLEX 4.0 to solve the linear programming
relaxation (vLP), the (0; 1)-programming problem
(vIP) as well as the linear programming relaxation
with 3-cycle valid inequalities (v3). The separation of
violated valid inequalities was done by enumeration
of all valid inequalities with k =3 (i.e. four valid
inequalities for each 3-cycle were available). For all
instances we have |V |=458 and |E|=1655. The re-
sults are presented in Table 1. The program written in
C++ was running on a DEC 2100 A500MP worksta-
tion with 128Mb internal memory. Table 1 shows that
for all instances the LP-relaxation with 3-cycle valid
inequalities gives an integer solution. The number of
violated inequalities which had to be added is given
in the last column. The computation times were on
average reduced by 76.4%.
An instance with a large gap between LP and IP

is p1. This instance has 708 vertices and 1677 edges
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Table 1
Computational results |Dv|=2
Instance vLP v3 vIP CPU vLP CPU v3 CPU v3+IP CPU vIP #v.i.

c8 1 848.5 986 986 8.8 18.1 18.1 78.0 1104
c8 2 721 836 836 8.7 11.4 11.4 48.4 497
c8 3 630.5 747 747 7.8 13.1 13.1 63.1 771
c8 4 802 834 834 8.0 10.9 10.9 35.4 1243
c8 5 627.5 729 729 7.5 11.3 11.3 35.7 608
c8 6 695 717 717 8.6 12.0 12.0 31.5 907
c8 7 836 894 894 8.2 9.9 9.9 39.1 267
c8 8 757 835 835 7.2 10.5 10.5 71.2 747
c8 9 769 866 866 9.2 12.6 12.6 54.9 610
c8 10 768.5 812 812 8.1 10.0 10.0 37.7 215
c8 11 622 814 814 7.3 16.0 16.0 187.1 1259

p1 35.5 104.5 110 6.6 25.5 152.4 – 266

Table 2
Computational results |Dv|¿2
Instance |Dv| Gap closed by CPU-time for

3-cycle 3+4-cycle vLP v3 v3+4 v3+IP v(3+4)+IP

celar6a 2 99.9 99.9 0.7 3.1 3.1 3.1 3.5
celar6b 3 98.8 99.2 1.6 40.8 47.0 117.3 84.1
celar6c 4 89.3 92.0 3.1 327.0 471.7 36067.3 11785.5
celar6d 5 97.3 97.0 3.9 11510.9 12516.1 19647.9 22501.2
celar6e 6 95.6 97.0 4.5 50380.7 53793.1 208617.0 75570.5

(again all domains contain two values). The 3-cycle
inequalities close 92.6% the gap between LP and
IP. With these valid inequalities CPLEX needed 113
branch-and-bound nodes to obtain and prove the opti-
mal value. CPLEX was not able to solve this instance
to optimality without adding valid inequalities.
We also tested the cycle-inequalities on some in-

stances with more than two elements per domain.
Table 2 reports the results for �ve instances with 100
vertices, 350 edges, and 2, 3, 4, 5, or 6 elements in
each domain. These instances are obtained by arbitrar-
ily selecting a subset of the domain elements from the
celar6 instance of the CALMA-project. Given the
3-cycles and 4-cycles in the graph, the separation of a
violated inequality for each cycle was done in a heuris-
tic way. If no violated inequalities were found, we
started the branch-and-bound procedure of CPLEX.
Table 2 shows for each instance the percentage of the
gap between LP and IP that is closed in the case we
only separate 3-cycle inequalities and in the case we

separate both 3-cycle and 4-cycle inequalities. Also
the cpu-times for LP, 3-cycle separation, 3-cycle and
4-cycle separation, IP obtained by 3-cycle separation,
and IP obtained by 3-cycle and 4-cycle separation are
reported. For all instances on average 96% of the gap
between LP and IP is closed with the 3-cycle inequal-
ities, whereas on average 97% of the gap is closed
with the 3-cycle and 4-cycle inequalities. Moreover,
the total computation time with the 4-cycle inequali-
ties is substantially reduced for most instances.

6. Concluding remarks

In this paper we introduced the cycle-inequalities
and clique-cycle inequalities for the PCSP. For in-
stances with small domains the 3-cycle and 4-cycle
inequalities close the gap between LP and IP substan-
tially. For the separation of these inequalities we used
a simple heuristic. Given these results future work will
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be done on the complexity of the separation problem
for cycle inequalities and clique-cycle inequalities as
well as the implementation of these classes of valid
inequalities in a branch-and-cut framework (separa-
tion in a exact and=or heuristic way). In a future paper
we also hope to report solutions for large-size real-
life PCSPs like the complete CALMA-instances where
each domain consists of 40 or 50 elements.
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