
Journal of Combinatorial Optimization, 9, 313–323, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

A Framework for the Complexity of
High-Multiplicity Scheduling Problems

N. BRAUNER Nadia.Brauner@imag.fr
Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, 38031 Grenoble cedex, France

Y. CRAMA Y.Crama@ulg.ac.be
HEC Management School, University of Liège, Boulevard du Rectorat 7 (B31), 4000 Liège, Belgium

A. GRIGORIEV A.Grigoriev@ke.unimaas.nl
Department of Quantitative Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht,
The Netherlands

J. VAN DE KLUNDERT J.vandeKlundert@math.unimaas.nl
Department of Mathematics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

Received October 14, 2003; Revised March 1, 2005; Accepted March 1, 2005

Abstract. The purpose of this note is to propose a complexity framework for the analysis of high multiplicity
scheduling problems. Part of this framework relies on earlier work aiming at the definition of output-sensitive
complexity measures for the analysis of algorithms which produce “large” outputs. However, different classes
emerge according as we look at schedules as sets of starting times, or as related single-valued mappings.

Keywords: computational complexity, design of algorithms, scheduling, high multiplicity

1. Introduction

The purpose of this note is to propose a complexity framework for the analysis of so-called
high multiplicity scheduling (HMS) problems. Such problems have been investigated by sev-
eral researchers (see e.g., Rothkopf, 1966; Psaraftis, 1980; Cosmadakis and Papadimitriou,
1984; Posner, 1985) for early references, and other articles cited below for more recent
ones). Hochbaum and Shamir (1990, 1991), in particular, have coined the term “high mul-
tiplicity” and have underlined the need to discuss the complexity of such problems with
special care. A paper by Clifford and Posner (2001) provides a more detailed framework
for this complexity analysis, as well as applications to several specific problems.

We take a further step along this same line of research, by formulating several proposals
to cast HMS problems into a more precise computational complexity framework. As usual,
this requires a complexity study of the algorithms that solve the problems. It will become
clear quickly, however, that the meaning of the task “to solve a HMS problem” is not
entirely obvious. Therefore we propose a framework that allows to study a variety of
solution representations and algorithms for HMS problems. The desired classification of

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6787335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

314 BRAUNER ET AL.

HMS problems will follow naturally from this classification of HMS algorithms, just like
the definition of polynomially solvable decision problems, for instance, follows from the
definition of polynomial algorithms for such problems. Although the paper does not contain
any deep theoretical results, we believe that such classification may prove useful for a precise
analysis of HMS problems and a precise statement of algorithmic performance.

For the sake of clarity, we restrict ourselves to non-preemptive one-machine scheduling
problems. More complex problem formulations are tackled by Brauner et al. (2001) or
Grigoriev (2003).

2. High multiplicity scheduling problems

The input of a classical scheduling problem SP consists of a list of n jobs, together with
a list of attributes of each job. The attributes of job j (j = 1, 2, . . . , n) typically include
its processing time p j , its release date r j , its due date d j , etc. The binary input size of an
instance of SP is O(nL), where L is the largest input size of an attribute.

It frequently happens, however, that the input of a scheduling problem can be described
in a much more compact way, due to the fact that the jobs naturally fall into a small number,
say s � n, of distinct job types, where all the jobs of a same type share exactly the same
characteristics, i.e. attribute values. When this is the case, we only need to describe one
representative job in order to completely define a type, so that an instance of the problem
SP consists of the following data:

– for each job type i = 1, 2, . . . , s, the number ni of jobs of type i ;
– for each job type i = 1, 2, . . . , s, the attributes of a representative job of type i .

When the data is encoded in this compact form, we say that SP is a high multiplicity
scheduling problem.

This kind of situation is encountered in repetitive manufacturing environments (see e.g.,
Miltenburg, 1989; Pinedo, 1995). In other applications, the number of job types may be
artificially reduced by aggregating jobs with different, but similar characteristics, into a
single type. The resulting scheduling problem is only an approximation of the original one,
but may prove easier to handle (Hochbaum et al., 1992).

Consider now a generic instance D = (s, n1, n2, . . . , ns, �) of a (one-machine non-
preemptive) high multiplicity scheduling problem SP , where � comprises all the relevant
job attributes. We assume that all the entries of D are integral, and we denote by n =∑

1≤i≤s ni the number of jobs to be processed. We also assume without loss of generality
that the jobs are numbered from 1 to n in such a way that jobs 1 to n1 are of type 1, jobs
n1 + 1 to n1 + n2 are of type 2, etc.

The input size of instance D is |D| = O(
∑

1≤i≤s log ni + sL) = O(s log n + sL), where
L is again the largest input size of an attribute value. Typically, this input size is much
smaller than O(nL), as is e.g. the case when s is viewed as a constant and therefore |D| =
O(log n + L) � O(nL). More precisely, we say that SP is a high multiplicity scheduling
problem if n is not polynomially bounded in the input size of the problem, i.e. if there is no
constant k such that n = O((sL)k) for all instances of SP . As observed by Hochbaum and

COMPLEXITY FRAMEWORK FOR HIGH-MULTIPLICITY SCHEDULING PROBLEMS 315

Shamir (1990, 1991), Hochbaum et al. (1992) and Clifford and Posner (2001), an algorithm
for SP whose complexity is polynomial in s, L and n is only pseudo-polynomial, but not
polynomial in the input size. In order to develop this point more completely, we need to
introduce more terminology and notations.

A schedule for the instance D can be viewed as an assignment S : {1, 2, . . . , n} → R

where S(j) denotes the starting time of job j (j = 1, 2, . . . , n), and where S may be (and
usually is) restricted to belong to a set FD of feasible schedules associated with D.

We let fD : FD → R be the objective function to be minimized over FD . For the sake
of simplicity, we assume that FD is non empty for every D, and that fD always attains its
minimum overFD . Moreover, we also assume that, given a description of S in extension (i.e.,
given a list of the values S(1), S(2), . . . , S(n)), fD(S) can be computed in time polynomial
in |D| and n.

As in Papadimitriou and Steiglitz (1982), we now define three distinct scheduling prob-
lems associated with FD and fD (see also Clifford and Posner, 2001).

RECOGNITION PROBLEM SP1:
INSTANCE: D = (s, n1, n2, . . . , ns, �) and K ∈ R.
OUTPUT: Yes if there is a schedule S ∈ FD with fD(S) ≤ K . No otherwise.

EVALUATION PROBLEM SP2:
INSTANCE: D = (s, n1, n2, . . . , ns, �).
OUTPUT: The minimum value of fD over FD .

OPTIMIZATION PROBLEM SP3:
INSTANCE: D = (s, n1, n2, . . . , ns, �).
OUTPUT: A schedule S ∈ FD which minimizes fD(S) over FD .

Issues related to the complexity classification ofSP1 orSP2 fall within the traditional scope
of complexity analysis, as discussed e.g. by Garey and Johnson (1979) or Papadimitriou
and Steiglitz (1982). However, analyzing the complexity of any specific high multiplicity
problem, may turn out to be a tricky matter. Indeed, proving that SP1 is in NP, for instance,
requires the existence of an algorithm A and of a polynomial-size certificate c(D, K) for
each Yes-instance (D, K) of SP1, with the property that, when applied to c(D, K), A
returns the answer Yes after a polynomial number of steps (we use the terminology of
Papadimitriou and Steiglitz (1982)). Intuitively, when the answer to SP1 is affirmative, the
certificate provides a concise proof that it is indeed so. Now, the most natural certificate
for problem SP1 would be a feasible schedule S such that fD(S) ≤ K . But in many cases,
obvious descriptions of S are not concise, i.e. not polynomial in the size of (D, K). Hence
membership in NP is a non trivial issue for many high multiplicity scheduling problems.
Similar problems pop up when considering membership in P .

In spite of these difficulties, many high multiplicity scheduling problems have been proved
to be polynomially solvable (see for instance Brauner et al., 2003; Clifford and Posner, 2000,
2001; Granot and Skorin-Kapov, 1993; Hochbaum and Shamir, 1990, 1991; Hochbaum
et al., 1992; Hurink and Knust, 2001; McCormick et al., 2001; Munier and Sourd, 2003,
etc.) or in co-NP (Brauner and Crama, 2004) or NP-hard (Clifford and Posner, 2000, 2001;

316 BRAUNER ET AL.

Posner, 1985; Bar-Noy et al., 2002, etc.). Such results (and other similar results found in the
literature) can be established by displaying (optimality or feasibility) certificates whose size
is polynomial in the input length O(s log n+sL). The certificates, clearly, do not enumerate
the list of n starting times, but rather provide an implicit, concise encoding of these starting
times. Let us illustrate this on a problem solved by Hochbaum and Shamir (1991).

Example 1 (Weighted number of tardy jobs). This is the problem 1|p j = 1| ∑ j w jU j . Its
input takes the form

D = (s, n1, n2, . . . , ns, d1, d2, . . . , ds, w1, w2, . . . , ws),

where di is the due-date for the jobs of type i and wi is their weight. All jobs are assumed
to have unit-processing time. The objective function is to minimize the weighted number of
tardy jobs. Hochbaum and Shamir (1991) proved that the problem can be transformed into
a transportation problem of dimension s × (s + 1), where variable xit indicates the number
of jobs of type i processed in the interval (dt−1, dt], for i = 1, 2, . . . , s, t = 1, 2, . . . , s + 1
(wolog, d0 = 0 ≤ d1 ≤ · · · ≤ ds ≤ ds+1 = n). The variables must satisfy the transportation
constraints

s∑

i=1

xit = dt − dt−1, t = 1, 2, . . . , s + 1;

s+1∑

t=1

xit = ni , i = 1, 2, . . . , s.

Consequently, the recognition and the evaluation version of this problem can be solved in
(strongly) polynomial time (in fact, in O(s log s) time if a specialized greedy algorithm is
used).

Let us now turn to the optimization problem SP3. Few authors have attempted to discuss
precisely what it means to “solve” SP3. Hochbaum and Shamir (1991) and Hochbaum
et al. (1992) have observed that SP3 can sometimes be solved by first obtaining a concise
encoding of the optimal schedule, then applying a decoding algorithm to generate all the
elements of the schedule. For instance, in the above example, the solution (xit) of the
transportation problem provides a concise encoding of the solution. In order to obtain a
schedule in extension, i.e. in order to compute a starting time for each job, one needs to
“decode” the solution (xit) by carrying out additional computations (see Section 4). In the
next section, we propose more general models for describing a solution of problem SP3,
which allow us to obtain a more precise complexity classification.

3. Complexity models

In this section, we shall rely on several interpretations of the task “output an optimal schedule
S”. A main distinction takes place according as we focus on the set of starting-times, or on
the computation of the mapping S.

COMPLEXITY FRAMEWORK FOR HIGH-MULTIPLICITY SCHEDULING PROBLEMS 317

3.1. List-generating algorithms

In our first interpretation, we assume that the set {S(1), S(2), . . . , S(n)} is to be generated in
extension: this may be the most natural interpretation of the requirement “output an optimal
schedule S”.

Definition 1. An algorithm A is a list-generating algorithm for SP3 if, for every instance
ofSP3,A successively outputs the values (π1, S(π1)), (π2, S(π2)), . . . , (πn, S(πn)), where
S is an optimal schedule and (π1, π2, . . . , πn) is a permutation of the job-set.

Examples of list-generating algorithms are found in Brauner and Crama (2004), Kubiak
and Sethi (1991, 1994); Munier and Sourd (2003) and Steiner and Yeomans (1993), etc.
For a list-generating algorithm A, we let τ (0) = 0 and for j = 1, 2, . . . , n, we denote by
τ (j) the running time required by A in order to output the first j elements of the schedule,
i.e. (π1, S(π1)), (π2, S(π2)) , . . . , (π j , S(π j)). So, τ (n) is the total running time of A, and
τ (j) − τ (j − 1) is the time elapsed between the (j − 1)-st and the j-th outputs.

The classification of list-generating algorithms to be described in Definition 2 is based on
a proposal due to Johnson et al. (1988) for problems in which the size of the output may be
exponentially larger than the size of the input (such as, for instance, the problem of listing
all maximal independent sets of a graph, or all vertices of a polyhedron; see also Lawler
et al. (1980) or Dyer (1983) for related concepts).

Definition 2. A list-generating algorithm A for SP3 runs in:

• polynomial total time if τ (n) is polynomially bounded in n and |D|;
• polynomial incremental time if τ (j) − τ (j − 1) is polynomially bounded in j and |D|,

for j = 1, 2, . . . , n;
• polynomial delay if τ (j)− τ (j −1) is polynomially bounded in |D|, for j = 1, 2, . . . , n;
• polynomial time if τ (n) is polynomially bounded in |D|.

These definitions are motivated by the same considerations as the definitions in Johnson
et al. (1988). Let us discuss them briefly.

Polynomial total time is, in a sense, the weakest notion of polynomiality which can be
applied to SP3, since the running time of any algorithm which lists the starting times of all
n jobs must grow at least linearly with n.

Polynomial incremental time captures the idea that the algorithm outputs the starting
times sequentially and does not spend “too much time” between two successive outputs.
In computing the starting time of job π j , however, the algorithm may need to look at the
starting times of π1, π2, . . . , π j−1 (for instance, to check feasibility of the partial schedule)
and therefore we allow τ (j) − τ (j − 1) to depend on j as well as on |D|.

An algorithm runs with polynomial delay when the time elapsed between two successive
outputs is polynomial in the input size of the problem. This is a rather strong requirement,
the strongest, in fact, among those discussed in Johnson et al. (1988). We also feel that it is
one of the most meaningful requirements that may apply to algorithms for HMS problems.
Indeed, in contrast, polynomial time is the usual concept from complexity theory and is

318 BRAUNER ET AL.

only mentioned here for the sake of completeness: if SP3 can be solved in polynomial time,
then n must be bounded by a polynomial in |D| for all instances of this problem (since τ (n)
is at least linear in n), and the problem does not qualify as a high multiplicity problem.

Clearly, we can define complexity classes for HMS problems based on the corresponding
classification of algorithms: we say that problem SP is solvable in polynomial total time
(resp., incremental time, or delay) if there is an algorithm for SP3 with the corresponding
running time.

The following relationships hold:

Proposition 1. If A is a list-generating algorithm for the optimization version SP3 of a
single-machine scheduling problem without preemptions, then:

A runs in polynomial time ⇒ A runs with polynomial delay

⇒ A runs in polynomial incremental time

⇒ A runs in polynomial total time.

Proof: All the implications are easy. For instance, if A runs in incremental polynomial
time, then the whole schedule can be generated in time τ (n) = ∑n

j=1(τ (j) − τ (j − 1)),
which is polynomially bounded in n and |D|. Hence, A runs in polynomial total time.

3.2. Pointwise algorithms

In this section, we assume that the algorithm A is not necessarily required to produce the
optimal schedule in extension, but that it should only be able to compute the mapping S
pointwise.

Definition 3. A pointwise algorithm for SP3 is an algorithm A such that

(1) on the input (D, j), algorithm A outputs S(j) (j = 1, 2, . . . , n), and
(2) { S(j) : j ∈ {1, 2, . . . , n} } defines an optimal schedule for D.

Since a pointwise algorithm produces a single numerical output for each input string, the
classical complexity measures apply to it without modification. In particular, the existence
of a polynomial pointwise algorithm forSP3 simply means that the optimal schedule can be
queried in polynomial time or, in other words, that the function S : {1, 2, . . . , n} → R can
be computed in polynomial time (in the sense of Garey and Johnson (1979)). The following
relations hold.

Proposition 2. For a single-machine scheduling problem without preemptions,

(a) ifSP3 has a polynomial list-generating algorithm, thenSP3 has a polynomial pointwise
algorithm;

COMPLEXITY FRAMEWORK FOR HIGH-MULTIPLICITY SCHEDULING PROBLEMS 319

(b) if SP3 has a polynomial pointwise algorithm, then SP3 has a polynomial-delay list-
generating algorithm.

Proof: Statement (a) holds trivially, since all the elements of an optimal schedule can be
generated in polynomial time when a polynomial list-generating algorithm is available.

For statement (b), observe that a polynomial pointwise algorithm can be called n times to
compute successively S(1), S(2), . . . , S(n). Since the running time of each call is polynomial
in |D|, the resulting list-generating algorithm runs with polynomial delay.

So, intuitively, polynomial pointwise algorithms fall somewhere between polynomial and
polynomial delay list-generating algorithms in the hierarchy described in Proposition 1. We
already mentioned in Section 3.1 that genuine HMS problems do not have polynomial
time list-generating algorithms; thus, statement (a) is rather vacuous from that point of
view. Note, however, that its converse does not hold in general, meaning that certain HMS
problems do have polynomial pointwise algorithms. Example 1 in Section 4 will illustrate
this point.

On the other hand, we conjecture that the converse of statement (b) also fails, but we
cannot establish this conjecture (see Example 3 in Section 4).

Interestingly, many known examples of polynomial pointwise algorithms actually consist
of two distinct algorithms: a first algorithmAe which solvesSP2 while producing a compact
“encoding” (“certificate”) � of the optimal schedule S, and a second algorithm Au which
computes S by “decoding” the output produced by Ae. Let us formulate these notions in
more precise terms.

Definition 4. A 2-phase algorithm for SP3 is a pair of algorithms (Ae,Au) such that

(1) on the input D, Ae outputs a string �;
(2) on the input (D, j, �), Au outputs S(j) (j = 1, 2, . . . , n), and
(3) { S(j) : j ∈ {1, 2, . . . , n} } defines an optimal schedule for D.

The string � in this definition represents the encoding of the optimal solution. It can be
viewed, in a sense, as a natural counterpart of the compact encoding of the input.

We say that a 2-phase algorithm runs in polynomial time if both Ae and Au run in
time polynomial in the size of their respective inputs. In particular, when this is the case,
the size of � must be polynomially related to the size of D. For examples, see e.g.
Clifford and Posner (2000, 2001); Granot and Skorin-Kapov (1993), Hochbaum and Shamir
(1990, 1991), Hochbaum et al. (1992), Hurink and Knust (2001) and McCormick et al.
(2001).

The definition of pointwise algorithms may appear to be slightly less restrictive than the
definition of 2-phase algorithms. But in fact, the following equivalence holds.

Proposition 3. Problem SP3 has a polynomial pointwise algorithm if and only if it has
a polynomial 2-phase algorithm.

320 BRAUNER ET AL.

Proof: Assume that SP3 has a polynomial pointwise algorithm A. We define Ae as the
algorithm which always returns the empty string φ. The decoding algorithm Au can be
identified with A: when running on the input (D, j, φ), the algorithm simply ignores the
empty string.

Conversely, if SP3 has a polynomial 2-phase algorithm (Ae,Au), then a polynomial
pointwise algorithm A can be defined as follows. When handed the input (D, j) (j =
1, 2, . . . , n), the algorithm A first runs Ae on D to obtain �, then it runs Au on (D, j, �) to
compute S(j). Note that the total running time of this procedure is polynomial in |D|.

Thus, polynomial pointwise and 2-phase algorithms turn out to be equivalent.

4. Applications

Example 1 (Weighted number of tardy jobs—continued). A discussion of this problem
was already started in Section 2. Let us now show that the approach in (Hochbaum and
Shamir, 1991) leads to a polynomial pointwise algorithm for the optimization version of this
problem. This algorithm is best viewed as a two-phase approach. Indeed, the solution (xit)
of the transportation problem can be computed in O(s log s) and constitutes the required
encoding �. Then, given a job index j , we first determine the type of this job, i.e. the unique
index i∗ such that

∑
1≤i<i∗ ni < j ≤ ∑

1≤i≤i∗ ni . If r = j −∑
1≤i<i∗ ni , we look at job j as

the r -th replication of job type i∗. Next, we compute the index of the interval where j must
be scheduled: this is the value of t∗ such that

∑
1≤t<t∗ xi∗t < r ≤ ∑

1≤t≤t∗ xi∗t . Then, we
compute the number of jobs which must be processed before j in the interval (dt∗−1, dt∗].
We can assume that this is

q =
∑

1≤i<i∗
xit∗ +

(

r − 1 −
∑

1≤t<t∗
xi∗t

)

(i.e., the number of jobs of type i < i∗ processed in the interval t∗, plus the number of jobs
of type i∗ processed before j but not already processed in a previous interval). Finally, the
starting time of j is given by dt∗−1 + q. Clearly, this procedure yields S(j) in (strongly)
polynomial time.

Example 2 (Total deviation JIT). An instance of this problem is D = (s, n1, n2, . . . , ns),
with the usual interpretation. All jobs have unit processing time. Assume that all jobs have
been sequenced on a single machine, and let xit denote the number of jobs of type i which
have been sequenced in the interval [0, t] (i = 1, 2, . . . , s; t = 1, 2, . . . , n). The total
deviation JIT problem asks for a sequence which minimizes the total “weighted” deviation

s∑

i=1

n∑

t=1

F

(

xit − t
ni

n

)

, (1)

COMPLEXITY FRAMEWORK FOR HIGH-MULTIPLICITY SCHEDULING PROBLEMS 321

where F is a unimodal, convex function which penalizes the deviation between the actual
cumulated production xit and the ideal production tni/n up to time t .

Kubiak and Sethi (1991, 1994) gave a polynomial total time list-generating algorithm
with complexity O(n3) for this problem, by reformulating it as an assignment problem. It is
unknown whether its recognition version can be solved in polynomial time, or even whether
it is in NP or co-NP.

Example 3 (Maximum deviation JIT). This problem is similar to the previous one, but the
objective function (1) is replaced by a function penalizing the maximum deviation, namely

max
1≤i≤s

max
1≤t≤n

∣
∣
∣xit − t

ni

n

∣
∣
∣ . (2)

Brauner and Crama (2004) showed that the recognition version of the maximum deviation
JIT problem, i.e. SP1, is in co-NP, but the exact complexity of SP1 is currently unknown.
Steiner and Yeomans (1993) gave a polynomial total time list-generating algorithm for this
problem. Interestingly, when the optimal objective value is known, then their algorithm
produces the optimal schedule with polynomial delay (nothing similar seems to hold for
the total deviation JIT problem, for instance).

Brauner and Crama (2004) proved that the evaluation version SP2 can be solved in
polynomial time when s is fixed. In view of the previous remark, this also implies that the
optimization version SP3 can be solved with polynomial delay when s is fixed. But even in
this case, we do not know whether there is a polynomial pointwise algorithm for computing
the optimal schedule.

5. Discussion

The complexity of high multiplicity algorithms has been discussed by several authors, but
it seems that a fully satisfactory framework has been missing so far for this discussion. The
aim of this note is to propose such a framework.

A main (albeit trivial) observation is that the complexity of the task “output an optimal
schedule” cannot be meaningfully discussed unless we explicitly clarify the form of its
output. It makes a big difference, for instance, whether we want to generate all elements
of a schedule, viewed as a set, or whether we just want to compute some elements of
the schedule, viewed as a mapping. In addition, different “compact” encodings of the
optimal schedule may differ in the extent to which they allow an efficient decoding into
explicit schedules. The complexity classification proposed in this paper provides one way
of distinguishing algorithms, and hence problems, on this basis. The results obtained by
various authors suggest that the relationship between different complexity classes may go
deeper than the simple implications mentioned in Proposition 1.

Extensions of this framework to more complex scheduling problems (involving multiple
machines and job preemptions) are proposed in Brauner et al. (2001) and Grigoriev (2003).

322 BRAUNER ET AL.

Acknowledgments

The authors are grateful to Tom McCormick, Maurice Queyranne, Gerhard Woeginger and
two anonymous referees for their stimulating comments.

This research was carried out while the first author was visiting the University of Liège
in the framework of a postdoctoral project supported by the European Network DONET
(contract number ERB TMRX-CT98-0202).

The second author acknowledges the partial financial support of ONR (grant N00014-
92-J-1375), NSF (grant DMS-98-06389), and research grants from the Natural Sciences
and Engineering Research Council of Canada (NSERC). The fourth acknowledges support
from the EU project APPOL (IST-1999-14084).

References

A. Bar-Noy, R. Bhatia, J.S. Naor, and B. Schiber, “Minimizing service and operation costs of periodic scheduling,”
Mathematics of Operations Research, vol. 27, pp. 518–544, 2002.

N. Brauner and Y. Crama, “The maximum deviation just-in-time scheduling problem,” Discrete Applied Mathe-
matics, vol. 134, pp. 25–50, 2004.

N. Brauner, Y. Crama, A. Grigoriev, and J. van de Klundert, “On the complexity of high-multiplicity scheduling
problems,” University of Liège, Liège, Belgium, Working paper GEMME 0110, 2001.

N. Brauner, G. Finke, and W. Kubiak, “Complexity of one-cycle robotic flow-shops,” Journal of Scheduling, vol. 6,
pp. 355–371, 2003.

J.J. Clifford and M. E. Posner, “High multiplicity in earliness-tardiness scheduling,” Operations Research, vol. 48,
pp. 788–800, 2000.

J.J. Clifford and M.E. Posner, “Parallel machine scheduling with high multiplicity,” Mathematical Programming,
vol. 89, pp. 359–383, 2001.

S.S. Cosmadakis and C.H. Papadimitriou, “The traveling salesman problem with many visits to few cities,” SIAM
Journal on Computing, vol. 13, pp. 99–108, 1984.

M.E. Dyer, “The complexity of vertex enumeration methods,” Mathematics of Operations Research, vol. 8,
pp. 381–402, 1983.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman:
San Francisco, CA, 1979.

F. Granot and J. Skorin-Kapov, “On polynomial solvability of the high multiplicity total weighted tardiness
problem,” Discrete Applied Mathematics, vol. 41, pp. 139–146, 1993.

A. Grigoriev, “High Multiplicity Scheduling Problems,” Maastricht University, The Netherlands, Doctoral thesis,
2003.

D.S. Hochbaum and R. Shamir, “Minimizing the number of tardy job units under release time constraints,” Discrete
Applied Mathematics, vol. 28, pp. 45–57, 1990.

D.S. Hochbaum and R. Shamir, “Strongly polynomial algorithms for the high multiplicity scheduling problem,”
Operations Research, vol. 39, pp. 648–653, 1991.

D.S. Hochbaum, R. Shamir, and J.G. Shanthikumar, “A polynomial algorithm for an integer quadratic nonseparable
transportation problem,” Mathematical Programming, vol. 55, pp. 359–376, 1992.

J. Hurink and S. Knust, “Makespan minimization for flow-shop problems with transportation times and a single
robot,” Discrete Applied Mathematics, vol. 112, pp. 199–216, 2001.

D.S. Johnson, M. Yannakakis, and C.H. Papadimitriou, “On generating all maximal independent sets,” Information
Processing Letters, vol. 27, pp. 119–123, 1988.

W. Kubiak and S.P. Sethi, “A note on “Level schedules for mixed-model assembly lines in just-in-time production
systems,” Management Science, vol. 37, pp. 121–122, 1991.

W. Kubiak and S.P. Sethi, “Optimal just-in-time schedules for flexible transfer lines,” International Journal of
Flexible Manufacturing Systems, vol. 6, pp. 137–154, 1994.

COMPLEXITY FRAMEWORK FOR HIGH-MULTIPLICITY SCHEDULING PROBLEMS 323

E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, “Generating all maximal independent sets: NP-hardness and
polynomial-time algorithms,” SIAM Journal on Computing, vol. 9, pp. 558–565, 1980.

S.T. McCormick, S.R. Smallwood, and F.C.R. Spieksma, “A polynomial algorithm for multiprocessor scheduling
with two job lengths,” Mathematics of Operations Research, vol. 26, pp. 31–49, 2001.

J. Miltenburg, “Level schedules for mixed-model assembly lines in just-in-time production systems,” Management
Science, vol. 35, pp. 192–207, 1989.

A. Munier and F. Sourd, “Scheduling chains on a single machine with non-negative time-lags,” Mathematical
Methods of Operations Research, vol. 57, pp. 111–123, 2003.

C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice Hall:
Englewood Cliffs, N.J., 1982.

M. Pinedo, Scheduling: Theory, Algorithms and Systems, Prentice Hall: Englewood Cliffs, N.J., 1995.
M.E. Posner, “The complexity of earliness and tardiness scheduling problems under id-encoding,” New York

University, New York, U.S.A, Working Paper 85–70, 1985.
H.N. Psaraftis, “A dynamic programming approach for sequencing groups of identical jobs,” Operations Research,

vol. 28, pp. 1347–1359, 1980.
M. Rothkopf, “The travelling salesman problem: On the reduction of certain large problems to smaller ones,”

Operations Research, vol. 14, pp. 532–533, 1966.
G. Steiner and J.S. Yeomans, “Level schedules for mixed-model, just-in-time processes,” Management Science,

vol. 39, pp. 728–735, 1993.

