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a b s t r a c t

This paper addresses the question of whether patent citations are useful indicators of tech-
nology flows. We exploit the distinction between citations added by inventors and patent
examiners. We use information from the search reports of European Patent Office patent
examiners to construct our dataset of patenting activity in Europe and the US, and apply
various econometric models to investigate what determines the probability that a citation
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is added by the inventor rather than the examiner. Contrary to previous work which uses
US Patent and Trademark Office data, we find that geographical distance is a factor that
strongly diminishes the probability of knowledge flows. We find other significant effects of
such factors as cognitive distance, time and strategic factors on citing behaviour.

© 2008 Elsevier B.V. All rights reserved.
Local knowledge spillovers

1. Introduction

Patent citations have been used extensively as indica-
tors of technology spillovers, and technology flows more
generally. However, this is a very indirect use of patent cita-
tion data; citations are not intended to be an indication of
technology flows or spillovers. They are instead a response
to the legal requirement to supply a complete description
of the state of the art in the field of the invention. Thus,
citations limit the scope of an inventor’s claim to novelty

and represent a link to the pre-existing knowledge upon
which the invention is built. The latter fact has been used
to justify their use as indicators of knowledge spillovers. An
inventor’s citing of a patent or scientific article may indi-
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cate that the knowledge contained in the cited document
has been useful in the development of the citing patent, and
therefore that the citation might be a proxy for knowledge
flow.

A criticism that has been levelled at the use of patent
citations as an indicator of spillovers is that citations are a
very ‘noisy’ indicator (Jaffe et al., 1998), i.e., they can be
interpreted in several different ways and do not always
point to the actual flow of knowledge from cited to citing
inventor. A crucial factor here is that patent citations can
be included by the applicant (or his/her patent lawyer) and
also can be added by the patent examiner responsible for
judging the degree of novelty of the patent. Where citations
are added by the patent examiner, we cannot judge whether
or not the applicants were aware of the cited patent. Jaffe et
al. (1998) show that in many instances they were not and,

hence, citation data are a ‘noisy’ indicator of spillovers or
knowledge flows.

Alcacer and Gittelman (2006) joined the debate by
proposing two scenarios for examiner citing behaviour:
that the patent examiner might add citations that differ in
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Patents contain references to prior patents and the sci-
entific literature.3 The legal purpose of references in patents
is to indicate which parts of the knowledge described are
claimed in the patent and which parts have been claimed

2 We use the term ‘inventor citation’ to indicate a citation in the original
patent application, irrespective of whether the inventor, the patent lawyer
or someone else involved in the application added the citation.

3 Patent citations in EPO patents are contained in the search report,
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ature from the inventor/applicant citations (‘gap-filling’),
r that the examiner might add similar citations (‘tracking’).
hen patent citations are used in econometric analyses as

ndicators of inventor behaviour, gap-filling implies that
ailure to acknowledge the source of the citation may
roduce statistical results that are biased. Tracking does
ot lead to any bias but it may cause standard errors in
tatistical estimations to be inflated. Moreover, tracking
aises doubts about patent citations as indicators of knowl-
dge flows (Alcacer and Gittelman, 2006, p. 775). A priori,
xaminer citations may be taken as a valid reflection of
echnological and legal relatedness. But, since much of the
iterature argues that knowledge flows are a limited sub-
et of potential technological relations (e.g., Jaffe et al.,
993 argue that knowledge flows are more likely where
hort geographical distances are involved), one would not
xpect inventor citations to be similar to examiner cita-
ions. If they are similar (tracking), this may indicate that
hese citations reflect expectations in examiners’ opinions
ather than knowledge flows that played a role during the
nvention process.

We build on the tracking vs. gap-filling distinction
y formulating a research question in terms of poten-
ial and actual spillovers. Our research question is aimed
t identifying the factors that influence whether an
bserved patent-to-patent citation was added by the appli-
ant/inventor. We assume a citation to be an indicator of
potential spillover or knowledge flow, and whether or

ot the inventor/applicant added the citation as a property
ndicating whether a knowledge flow actually occurred.
f the Alcacer and Gittelman (2006) gap-filling model
olds, we should be able to explain the occurrence of
ctual spillovers (i.e., inventor/applicant citation) by the
xisting theoretical models on spillovers. For example,
f we find that geographical distance impacts negatively
n the likelihood of an inventor (vs. examiner) citation,
his will indicate that inventors tend to choose their cita-
ions from within a narrower geographical space than
o examiners. In that case, we can conclude that inven-
ors make a selection from the set of technologically and
egally relevant citations, which is consistent with the
dea of patent citations being indicators of knowledge
ows.

The explanatory variables, i.e., those variables expected
o have an influence on whether or not a potential spillover
r technology flow occurs, are geographical distance, tech-
ological or cognitive distance (between the ‘sender’ and

receiver’ of the flow), time lapse between the citing
nd cited patents, strategic behaviour of the applicant,
elf-citations and international patent application. Geo-
raphical distance is the variable that has been the focus of
ost econometric work in the area. A large body of empiri-

al studies has exploited the use of patent citations to assess
he spatial nature of technological spillovers (Jaffe et al.,
993, 1998; Jaffe and Trajtenberg, 1996, 1999; Maurseth
nd Verspagen, 2002). These authors looked at whether or

ot knowledge spillovers between firms, or from (semi-)
ublic knowledge institutes to firms, depend on geographi-
al distance, i.e., whether citing occurs, ceteris paribus, more
requently between inventors located close to one another.
he results show that in both the US and Europe, such a rela-
Policy 37 (2008) 1892–1908 1893

tionship exists. Here, we test the hypothesis that proximity
between parties increases the probability of a knowledge
flow.

With the exception of the European Patent Office (EPO)
dataset that we used in this study and recent US Patent and
Trademark Office (USPOT) data, it is not possible to identify
precisely those citations chosen by the inventor. Moreover,
the role of examiner vs. inventor2 citations differs among
patent systems. And, ultimately, the final decision about
which documents are cited in the published patent is made
by the patent examiner. The patent examiner might decide
to retain the citations proposed by the applicant and/or add
new references, which will lead to the bias identified above
that patent citations might not reflect an actual source of
knowledge spillovers.

Two recent studies investigated the citations in patents
granted by the USPTO. The studies by Alcacer and Gittelman
(2006) and Thompson (2006) exploit the fact that, since
2001, the USPTO provides information on the source of
patent citations. Thompson (2006) is aimed primarily at
investigating whether or not knowledge spillovers are geo-
graphically concentrated. Alcacer and Gittelman’s (2006)
investigation is closer to the present study, and looks at
how inventor and examiner citations differ.

In this study we explore the inventor/examiner origin of
patent citations in EPO data, where it has been possible to
identify the source of the citations since the EPO was estab-
lished in 1979. This allows us to test whether the results
obtained by Alcacer and Gittelman (2006), based on US
patents, are typical of a different patent system. We would
expect to find some differences for two reasons. First, the
nature of the geographical space, which is different to that
in the US due to cultural factors, language, the existence
of national borders, etc. In order to identify more clearly
the effect of the patent system, we implement estimations
related to US-based inventors applying for EPO patents.
Second, as Alcacer and Gittelman (2006) stress, USPTO and
EPO patent examiner practices differ substantially, and par-
ticularly with regard to disclosure of prior art. This has a
strong effect on the relative number of citations included by
the inventor (see below), and therefore could have strong
implications for the use of patent citations as a proxy for
knowledge spillovers.

2. Patent citations
which is a separate document attached to the patent and completed by
the examiner. In USPTO patents, citations are reported on the front page
of the patent document. In the case of both EPO and USPTO patents there
may be citations to patents and non-patent literature embedded in the
text of the patent document (Narin et al., 1988), but these citations are
difficult to examine because they are not available in electronic format.
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by previous patents or non-patent. As Collins and Wyatt
(1988) explain, the applicant ‘must set out the background
in such a way as to show how the claimed invention relates
to, but is innovatively different from what was already pub-
lic knowledge’, and his/her task is also to identify work
‘either related to but significantly different from, or else
a useful step towards, the new invention or a use of the
invention’.

Although similar to references in journal articles, patent
citations differ in two respects. First, while academic cita-
tions are mainly the prerogative of the author, citations in
patents are the results of a highly mediated process which
involves the inventor, the patent attorney and the patent
examiner (Meyer, 2000). Second, articles in journals may
be cited for a variety of reasons, not all of them reflecting
recognition of work done previously or knowledge transfer.
Authors may cite articles for strategic reasons, e.g., because
the authors of the cited article might be potential review-
ers. Inventors, on the other hand, have an incentive not to
cite patents unnecessarily, as it may reduce their claims to
novelty of the invention and therefore affect the scope of
the monopoly rights granted by the patent.

In principle, when a patent cites another patent, this
indicates that the knowledge embodied in the cited patent
has been useful in some way for developing the new knowl-
edge described in the citing patent and that the citing
patent has no claim over that particular knowledge. This
is the line of reasoning in Jaffe et al. (1993), and Jaffe and
Trajtenberg (1996, 1999) for USPTO patents. Thus, patent
citations represent a ‘paper trail’ of the knowledge flows
between citing and cited inventors, although, as pointed
out by Jaffe and Trajtenberg (2002), ‘one that is incomplete
and mixed with a fair amount of noise’.

Patent citations are an incomplete measure of knowledge
flows because they capture only those flows that result
in a novel and patentable technology and therefore they
cannot be used to make inferences about knowledge trans-
fers that do not result in a patent, such as tacit forms of
knowledge, learning via imitation, or reverse engineering.
It should also be emphasised that knowledge flows are a
much broader concept than is captured simply by patent
citations. In terms of the distinction introduced by Griliches
(1992), patent citations focus on a specific form of pure
knowledge spillovers. Rent spillovers, which reflect the fact
that intermediate input prices do not completely embody
product innovations or the quality improvements resulting
from research and development (R&D) activities, are com-
pletely ignored. However, as pointed out by Breschi and
Lissoni (2001), although in theory, patent citations try to
measure pure knowledge spillovers, empirically it is hard
to exclude those knowledge flows (giving rise to patent cita-
tions) that are mediated by markets or market mechanisms.
Even within the category of pure knowledge spillovers,
patent citations (to the extent that they are related to
spillovers) are only a part of the story. For example, in
order for patents to be cited, both the spillover-receiving

and spillover-generating firms must be actively engaged in
R&D and apply for patent protection. Therefore, knowledge
flows can occur without generating citations.

Patent citations are a noisy measure of knowledge flows
because, although suggested by the inventor and/or the
Policy 37 (2008) 1892–1908

inventor’s attorney, the final decision on which patents to
cite ultimately lies with the patent examiner. This implies
that the inclusion of a given citation does not necessarily
indicate that the inventor has knowledge of the technology
underlying the cited patent and, thus, it does not repre-
sent an actual knowledge source utilised by the inventor in
the development of the invention. In this study we elimi-
nate this source of noise, although there are three others
that may have an effect (Jaffe et al., 1998). The first derives
from the intervention of the patent attorney who might
decide to cite a patent not considered by the inventor to
constitute prior art. The attorney may include it to avoid
the risk of any future legal battle (strictly legal citation).
The second relates to the possibility that inventors might
have learnt about the cited invention only after the devel-
opment of their own invention (after-fact citation). In this
case the citation cannot be interpreted as a source of knowl-
edge contributing to the development of the invention, but
still represents a knowledge flow between citing and cited
inventors. The third source of noise is associated with a
citation to a patent, which, while not drawn on directly by
the inventor in the inventing process, is nonetheless seen
as basic to the process (teaching citation).

Breschi and Lissoni (2004) also argued against the use
of patent citations as a proxy for inter-personal knowledge
spillovers. These authors distinguish between two types of
innovative efforts resulting in patents: cumulative efforts,
i.e., the citing inventor built upon the knowledge devel-
oped by the cited patent, and duplicative efforts, i.e., the
citing inventor duplicated the cited inventor’s research. In
the latter case citation might not involve any exchange of
knowledge between the inventors and might not be asso-
ciated with either awareness or intellectual debt between
the cited and citing patent. When patents are the result of
cumulative innovative efforts citations might be the result
of either the citing inventor’s search in a patents database,
which does not correspond to inter-personal knowledge
flow, or a word of mouth diffusion process, which does
represent a knowledge flow.

Despite these limitations, recent studies have shown
that patent citations can be used as a proxy for knowledge
flows. Jaffe et al. (2000) surveyed a sample of USPTO patent
inventors and asked about the extent and mode of their
communication with the inventors they cited and about the
extent to which patent citation was indicative of this com-
munication. The authors found evidence that a significant
fraction of the links indicated by patent citations reflect
some kind of spillover. Almost 40% of the inventors sur-
veyed indicated that they learnt about the cited invention
either before or during the development of their inven-
tion. But in one-third of cases they were unaware of the
cited patent, which indicates it was included as a result
of the intervention in the citation process of the patent
attorney or patent examiner. Duguet and MacGarvie (2005)
provide evidence related to the legitimacy of citations in
EPO patents as a measure of knowledge flows. Matching a

sample of French firms’ responses to the European Com-
munity Innovation Survey (CIS) with a count of citations
made and received by their EPO patents, the authors were
able to explore the relationship between patent citations
and firms’ technology sourcing behaviour. They found that



esearch

c
a
t
m
i
R
a

t
U
e
s
m

o
t
p
c
i
t
b
t
m
2

d
B
v
a
f
u
s
t
a
i
F
t
o
p
t
h
n
a
r
t
i
t
c

w
d
a
b
i
o
m

t
v
p
A

P. Criscuolo, B. Verspagen / R

itations are correlated significantly with the way firms
cquire and disseminate new technologies. In particular,
heir results indicate that backward citations, i.e., citations

ade to other patents by the surveyed firms, were pos-
tively and significantly correlated with learning through
&D collaboration, licensing of foreign technology, mergers
nd acquisitions (M&A) and equipment purchases.

The evidence from these two studies goes some way
owards justifying the use of patent citations involving
SPTO and EPO patents as a reasonable proxy for knowl-
dge flows, despite the differences that in these two patent
ystems in terms of the examination process and require-
ents concerning description of the state of the art.
In the USPTO the inventor and his/her attorney are

bliged to provide a list of those references describing
he state of the art that are considered relevant to the
atentability of the invention – the so called ‘duty of
andour’ – and non-compliance with this requirement is
nterpreted as fraud and can be grounds for invalidating
he patent.4 Nevertheless, applicants to the USPTO might
e very strategic about what prior art to disclose since
hey might be awarded broader patents if certain prior art

aterial is not considered by the patent examiner (Sampat,
005; Hedge and Sampat, 2005).

In contrast, the EPO has no requirement similar to the
uty of candour (Akers, 2000; Meyer, 2000; Michel and
ettels, 2001). Rule 27(1)(b) of the European Patent Con-
ention requires that the description in a European patent
pplication should ‘indicate the background art which, as
ar as known to the applicant, can be regarded as useful for
nderstanding the invention, for drawing up the European
earch report and for the examination, and, preferably, cite
he documents reflecting such art’. However, Akers (2000)
rgues there are a number of reasons why inventors would
nclude all prior art documents in their EPO applications.
or example, applicants might want all relevant documents
o be considered by the examiner to avoid future patent
bjections being filed by a third party. Similarly, should the
atent be enforced in court or have its validity challenged,
he applicant might derive stronger bargaining power from
aving all pertinent prior art considered during the exami-
ation procedure.5 Akers (2000, p. 314) reports that ‘many
pplicants take the time and trouble to disclose the most
elevant prior art and discuss the relevance of its disclosure

o the invention being claimed’. However, in EPO patents,
t is the examiners rather than the inventors or applicants,
hat add the majority of patent citations. The obvious impli-
ation is that in the EPO system more often than in the

4 US patent law 37 C.F.R. 156 establishes that ‘each individual associated
ith the filing and prosecution of a patent application has a duty of can-
our and good faith in dealing with the (US Patent) Office, which includes
duty to disclose to the Office all information known to that individual to
e material to patentability. . . no patent will be granted on an application

n connection with which fraud on the Office was practiced or attempted
r the duty of disclosure was violated through bad faith or intentional
isconduct’.
5 A similar motivation can be advanced for the inclusion of citations by

he applicant in US patents: ‘citing more prior art will make a patent more
aluable in litigation, as it is much harder to prove a patent is invalid if the
atent office has already considered it and rejected the relevant prior art’
llison et al. (2004).
Policy 37 (2008) 1892–1908 1895

USPTO system, inventors are more likely to be unaware of
the patents that are (ultimately) cited in their patents.

The different legal requirements of the two systems also
imply that there are significant differences in the number
of citations in the patents6 and their technological rele-
vance. As pointed out by Michel and Bettels (2001, p. 192),
applicants to the USPTO

rather than running the risk of filing an incomplete
list of references,. . .they tend to quote each and every
reference even if it is only remotely related to what
is to be patented. Since most US examiners appar-
ently do not bother to limit the applicants’ initial
citations to those references which are really relevant in
respect to patentability, this initial list tends to appear in
unmodified form on the front page of most US patents.
(emphasis added).

On the other hand, in the EPO citations are strictly
related to descriptions of prior art relevant to the
patentability of the invention (Michel and Bettels, 2001).

Thus, EPO citations, although fewer in number, may be
less ‘noisy’ than USPTO citations, since it can be assumed
that they have been scrutinised and chosen by the patent
examiner, and citing-cited patent pairs might be ‘closer’
both in time and technological content than those extracted
from the USPTO (Breschi and Lissoni, 2004). Moreover
EPO citations might be broader in scope because patent
examiners do not limit their search to prior art written in
English and/or to patents issued by one particular patent
office. Michel and Bettels (2001) found that, while 90% cita-
tions in USPTO patents are to other USPTO patents, in EPO
patents contain citations to patents from a wide range of
patent offices: 23.3% EPO patents, 30.9% USPTO patents,
16.3% WIPO patents, 13.1% German patents, 6.2% British
patents, 5.2% Japanese patents, and 5% other patents. This
bias against foreign patents in the USPTO was explored
in more detail by Sampat (2005). In this study the author
found that references to foreign patents are 27% less likely
to be added by the patent examiners. On the basis of these
findings the author suggests that patents granted by the
USPTO might be of lower quality if they cover technological
fields where most prior art is not contained in US patents.

Another important difference between the EPO and the
USPTO systems is that in European search reports, cited
documents are classified by the patent examiner within
a particular citation category according to their relevance.
Table 1 reports these citation categories. As explained by
Schmoch (1993), in assessing the novelty of patent appli-
cations the examiner searches for earlier documents which
have the same or almost the same features as the patent
concerned. Thus, there are two important types of cita-
tions: documents of particular relevance which restrict the
claims of the inventor (citation categories X and Y); and

references related to technological background (citation
category A). Citations in category X are those that ‘already
show essential features of the invention or at least ques-
tion the inventive step of these features if taken alone’

6 The US patent office cites 3 times as many patents as the EPO (Michel
and Bettels, 2001).
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Table 1
Description of category of citations

Category of citations Description Fraction of
all citations

Fraction of all
EPO-to-EPO citations

Fraction of all EPO-to-EPO
inventor citations

X Particularly relevant documents if taken alone; citations
classified under this category are such that when taken
alone a claimed invention cannot be considered novel or
cannot be considered to involve an inventive step

0.20 0.22 0.13

Y Particularly relevant documents if combined with another
document, such a combination being obvious to a person
skilled in the art

0.16 0.16 0.17

A Documents defining the state of the art and not prejudicing
novelty or inventive step

0.62 0.60 0.69

D Documents cited in the application. 0.09 0.11 -
P Intermediate documents; Documents published on dates

falling between the date of filing of the application being
examined and the date of priority claimed

0.04 0.07 0.04

E Earlier patent documents, but published on, or after the
filing date

0.01 0.02 0.00

O Documents that refer to a non-written disclosure 0.00 0.00 0.00
T Documents relating to the theory or principle underlying 0.00 0.00 0.00

vs. 22% for the total EPO-to-EPO sample), indicating that
inventors have less inclination to cite patents that ‘already
show essential features of the invention’. This seems to
indicate the (expected) tendency for inventors not to cite
the invention
L Documents cited for other reasons

Source: EPO examination guides lines part B chapter X.

(Schmoch, 1993, p. 194). In other words, the examiner
considers that such citations anticipate the claims in the
patent application (Akers, 1999). Citations in category Y
are considered to question the inventive steps claimed in
the patent being examined, when combined with one or
more documents in the same category. This implies that Y
citations never occur singly.

The X and Y citations are related to some of the strate-
gic incentives that Sampat (2005) and Hedge and Sampat
(2005) discuss. They argue that applicants may deliber-
ately leave out certain citations in an attempt to get broader
patents. As Sampat (2005) shows, the extent of this strate-
gic behaviour varies among technology fields. Using the
EPO dataset, we can control for these strategic motives,
at least as far as they are captured by X and Y type cita-
tions, which is an important advantage compared with
using USPTO data.

Documents in category A describe the state of the art
and, according to the patent examiner, are important for
assessing the inventive step. Thus, many patents might be
cited because they provide a good description of prior art
and are used in the technical background of a patent. Finally,
and most importantly, category ‘D’ documents include cita-
tions already mentioned in the patent application for which
the search is being carried out, i.e., those proposed by the
applicant. This is our source of inventor citations. Note
that we include only those citations added by the appli-
cant that the examiner deems relevant with respect to the
patentability of the invention.

3. Data

Our primary data sources are the EPO database on

patent applications (Bulletin CD) and patent citations to
other patents within the EPO over the period 1985–2000
(all citations are taken from the EPO REFI database). We
complement these data with information from the OECD
citations database on patent applications filed under the
0.00 0.01 0.00

Patent Cooperation Treaty (PCT) and on equivalent patents
(Webb et al., 2004).7 Our dataset includes citations by EPO
patents to patents issued by all national and regional patent
offices. However, in our analysis we focus only on EPO-to-
EPO citations because it is only for this sample of patents
that we have complete information on our independent
variables (particularly self-citation, which is an important
control variable). Among these citations we distinguish
between citations by inventors with addresses in one of the
European countries8 (‘within-Europe’ sample) and involv-
ing inventors residing in the US (‘within-US’ sample).

The last three columns in Table 1 show the distribution
of citations over citation categories, for the entire sample
of citations, for the sample of EPO-to-EPO citations, and for
the sample of EPO-to-EPO citations added by the inventor.
Note that cited patents can be classified into up to three
categories (e.g., ADL). For the entire sample, the largest
share (62%) of citations describes the state of the art (A),
followed by particularly relevant documents (X, 20% and Y,
16%). Similar proportions are found in the sample of EPO-to-
EPO citations. 9% of all citations in EPO patents are inventor
citations (D), but this share goes up to 11% when we restrict
our sample to citations to other EPO patents only. All other
citation categories are less than 5% of the total. It is inter-
esting that the predominance of A citations is greater in the
sample of EPO-to-EPO inventor citations: 69% of all inventor
citations are categorised as A, vs. 60% for the total EPO-to-
EPO sample. Also there is a smaller proportion of X citations
among the sample of EPO-to-EPO inventor citations (13%
7 In a longer version of this paper available on the web as a working
paper, we report in more detail how we combined the REFI and OECD
datasets to build our database.

8 Our countries include the EU-16 plus Norway and Switzerland.
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atents that may compromise the novelty of their own
atents. In contrast, Y category, which also includes patents
ompromising novelty but only in combination with other
atents, occurs almost as frequently in the sample of inven-
or citations as in the total sample (17% vs. 16% for the total
PO-to-EPO sample). The 11% of inventor citations in our
PO-to-EPO sample is small compared to the proportion
ound in USPTO patents by Alcacer and Gittelman (2006): in
heir study inventor citations represent 60% of all citations.
his finding can be explained by the different legal require-
ents of the two patent offices concerning description of

he state of the art.
Figs. 1 and 2 report the distribution of share of inventor

itations by the citing patent’s priority year and techno-
ogical field, for the sample of EPO-to-EPO citations. We
se the IPC classes of technological fields provided by the
bservatoire des Sciences et des Techniques (OST) and
he Fraunhofer Institute (FhG-ISI) (see OST, 2002 appendix
5a-1 p. 346).

Two things stand out. First, as shown in Fig. 1, the share
f inventor citations has been declining from almost 14%
n 1985 to 9% in 2000. Second, there is a quite large vari-

Fig. 2. Share of inventor citation
Fig. 1. Temporal pattern in the share of inventor citations.

ation across fields: more than 20% of citations in organic
chemistry patents were added by the inventor, while for
information technology patents this share drops to 4%. In

general it appears that the share of inventor citations is
higher for patents related to chemistry and materials than
for patents in other technological fields, in particular semi-
conductors, telecommunication, audiovisual and IT. This is
in line with the findings in Sampat (2004) for a sample of

s by technological field.
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Table 2
Summary statistics

Total sample
Number of citing patents 700,674
Number of citations 2,859,714
Citations per patent (mean) 3.25
Fraction of citing patents with all citations added

by the examiner
75.77

Fraction of citing patents with all citations added
by the inventor

2.37

Sample of EPO-to-EPO citations
Number of citing patents 490,230
Number of citations 982,826
Citations per patent (mean) 1.91

Fraction of citing patents with all citations added

by the examiner
81.72

Fraction of citing patents with all citations added
by the inventor

7.05

USPTO patents classified in six broader technology fields.
Although not directly comparable, our results differ from
Sampat’s in terms of the proportion of inventor citations in
USPTO ‘drug and medical’ patents, which is higher than for
chemical patents. Sampat’s interpretation, which could be
valid also in the context of EPO citations, is that inventors
are more likely to carry out patent searches and to disclose
prior art in fields such as chemical and pharmaceuticals,
where patent protection is the most important mechanism
for appropriating returns from R&D investment.

Table 2 presents further summary statistics. The top
part of the table provides information on the total cita-
tions database, while the bottom panel gives information
for the sample we use in the regressions. Table 2 shows that
our sample of EPO-to-EPO citations varies slightly from the
total sample. Obviously, the number of citations per patent
is lower, while the proportion of patents with only citations
added by the examiner, and the fraction of patents with all
citations added by the inventor, are higher.

We explore these patterns in more detail by examin-
ing the distribution of these shares over time (Fig. 3), and

across technology fields (Fig. 4). The trend depicted in Fig. 3
shows that the share of patents with all citations included
by the inventor has been constantly declining, from 10% in
1985 to 5% in 2000, while the fraction of patents with all
citations added by the examiner has been fairly constant.

Fig. 3. Temporal pattern in the share of patents with all citations added
by the examiner and by the inventor.
Policy 37 (2008) 1892–1908

Some of the patterns in Fig. 2 are also evident in Fig. 4. In
particular, organic chemistry stands out with almost 15%
(65%) of patents with all citations added by the inven-
tor (examiner), while the share of information technology
patents where inventors (examiners) inserted all citations
is only 2% (93%). Thus, our descriptive evidence indicates
that there are some notable differences across technology
fields in terms of both share of inventor citations and pro-
portion of patents with all citations added by inventor or
by examiner, but that there is little temporal variation.

4. Econometric approach

As discussed in the introduction, we want to investigate
the factors that explain whether a potential knowledge flow
(spillover) actually occurs. The dependent variable is cita-
tion type (examiner or inventor). This is a binary variable
that is equal to 1 if the citation was added by the inventor. A
zero value indicates that the potential knowledge flow did
not occur because the examiner and not the inventor pro-
vided the citation, a value of 1 indicates that the potential
knowledge flow did occur.

With regard to the explanatory factors, our first hypoth-
esis is that the probability of a spillover taking place is
higher when the geographical distance between the two par-
ties decreases. Alcacer and Gittelman (2006) found mixed
evidence in this respect, i.e., they found that geography
is only relevant for explaining inventor citations when
both cited and citing patent are within the US; in addi-
tion, their statistical results differed according to the types
of geographic indicators. Thompson (2006) found more
unequivocal evidence that patent citations added by the
inventor are more geographically concentrated than those
added by the examiner, and that this effect is particularly
strong when short distances are involved (e.g., within-state
or even closer), and is non-existent when geographical cov-
erage extends beyond US borders.

Our main variable for geographical proximity is a
standardised measure of regional distance in kilometres
(Distance (km)) between the regions of the citing and cited
inventors. We calculate this for EU-regions, and for US
States, but not between Europe and the US. The variable
is standardised to units of 173 km, which is the average dis-
tance between European regions in our sample. In terms of
the effect of localisation on knowledge spillovers, we expect
Distance (km) to be negatively correlated with inventor
citations (i.e., the shorter the distance between two patents,
the more likely it is that inventors actually include a cita-
tion).

In the distance calculations, assignment of patents to
a region is based on the inventor’s address. However, a
single patent may have more than one inventor, and if
these inventors are located in different regions, the distance
between them is not unambiguous. We followed Alcacer
and Gittelman (2006) by using the minimum distance
between any citing-cited inventor pair, but our results are

also robust to using average distance for the citation pairs.

Although our initial estimations are limited to within-
EU and within-US, we also use a discrete distance variable
that tests for the relevance of overseas distances. Alcacer
and Gittelman (2006) found that geographic distance was
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Fig. 4. Share of patents with all citations added by

o longer significantly correlated with inventor citations
hen citations were included that spanned beyond the US

pace. Because we apply a finer distance grid to the EU, our
iscrete distance variable has different scales for the EU
nd the US. In the EU, we define KMclEU as 0 for minimum
istances between cited and citing inventors in the range
–100 km, 1 for distances 100–250 km, 2 for 250–500 km,
for distances within Europe over 500 km, and 4 for cita-

ions where the citing inventor(s) is in Europe and the cited
nventor(s) is not.9 For the US space, we have a similar
efinition, KMclUS = 0 for cited and citing inventors less
han 100 km apart, 1 in the range of 100–650 km, 2 for
50–1500 km, 4 for distances within the US over 1500 km
nd 4 for citations where the citing inventor(s) is in the US
nd the cited inventor(s) is outside the US.
KMclEU and KMclUS are obviously ordinally scaled, and
his makes their use as an independent variable somewhat
omplicated. We include each of the values of KMclEU or
MclUS as a dummy variable, using the 0 class as the refer-

9 If a cited patent has one inventor in Europe and one outside Europe,
e assign it to one of the categories 0–3 (rather than 4). This is consistent
ith using minimum distance within Europe.
miner and by the inventor by technological fields.

ence. Hence, we would expect that the dummies associated
with the lower classes (small distances) yield relatively
higher probabilities of inventor citations than those asso-
ciated with the higher classes (larger distances).

Our next hypothesis is that the amount of time that has
elapsed between the two patents increases the probability
of a knowledge flow occurring. Temporal distance is mea-
sured by the variable Citation lag (in years), which is the
time that has elapsed between the priority dates of the cit-
ing and cited patents. The idea behind this is that over time,
an invention will become more well known and, hence, the
probability of a spillover will increase (see also Verspagen
and Schoenmakers, 2004).

Cognitive similarity is the subject of the next hypothesis,
which states that a spillover is more likely to take place if

the two inventions come from similar knowledge domains.
This measure (Same technology) is a dummy variable equal
to 1 if the citing and cited patent are classified in the same
4-digit IPC class, and zero otherwise.10 If the geographic

10 We also experimented with technological similarity at higher levels of
IPC aggregation, but this did gave no additional insights (results available
on request).
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distance and the cognitive similarity variables are both sig-
nificant, this is evidence of a localisation effect in addition
to geographical concentration of R&D activities of a specific
kind.

Self-citations, i.e., those where the citing and cited firm
(or even the inventor) are the same, are a special case within
cognitive similarity. It could be argued that in such cases,
cognitive similarity is very strong, although a degree of
cognitive distance will always be present, especially if the
citing and cited firms, but not the inventor, are the same.
In this case, the Same Technology variable does account for
the full degree of cognitive similarity, and we need also to
control for self-citation. Unfortunately, we cannot do this
in a perfect way, because of the large number of patents in
our dataset. Many patents are applied for under the names
of subsidiaries and divisions that are different from those of
the parent companies. In addition the names of companies
are not unified, in the sense that the same company may
appear several times in the data, but with a slightly dif-
ferent name in each case. This requires that self-citations
would need to be identified manually, which is not feasi-
ble given the more than 360,000 citation pairs involved in
some of the regressions.

But we can control for self-citation for two subsets of
patents in our sample.11 The first includes patents owned
by 169 high-tech multinational enterprises (MNEs) listed in
the Fortune 500 in 1997, mostly American, European and
Japanese companies. These patents were consolidated at
the level of the firm, using the Dun and Bradstreet Link-
ages ‘Who Owns Whom’ (1998) database, which contains
1997 group ownership structures.12 We consolidated the
patents for the complete period considered, although this
was on the basis of the 1997 Dun and Bradstreet Linkages
data. To control for self-citation we defined a dummy vari-
able (Same MNE) that is 1 if the cited and citing patents are
owned by the same MNE, and 0 otherwise.

The second sub-sample includes patents owned by 2197
publicly listed European companies as described in Thoma
and Torrisi (2007). The consolidation of patents under the
names of the parent companies was based on information
contained in Bureau Van Dijk’s Amadeus dataset from 1997
to 2005, and obtained using an approximate matching algo-
rithm, rather than the time consuming manual procedure.
As before, we defined a variable Same EU firm which is set
to 1 if the citing and cited patents are owned by the same
company. Because in both sub-samples patent consolida-
tion was undertaken at the end of our sample period, in the
regressions where we control for self-citations we include
only citing patents applied for between 1993 and 2000.

The dataset assembled by Thoma and Torrisi contains a

larger number of firms, mostly smaller sized, than the sam-
ple created by Verspagen and Schoenmakers, but it is biased
towards European companies. Thus, we believe that by esti-
mating our models for both sub-samples we can test for

11 We did not attempt to control for self-citation at inventor level,
because of the phenomenal difficulties involved in matching names in
such a large dataset. Also, we do not have information on the names of
examiners and, hence, cannot control for examiner ‘self-citations’.

12 Verspagen and Schoenmakers (2004) provides more details of the
consolidation process, and the names of the companies.
Policy 37 (2008) 1892–1908

the impact of self-citation on the realisation of knowledge
flows.

We also account for strategic motivations influencing
inventor citations (e.g., Sampat, 2004). The first of these
is related to the citation categories presented in Table 1.
We constructed three mutually exclusive dummy variables
capturing the most frequent classes (A, Y and X) other than
D, which defines our dependent variable. The remaining
categories account for a minor fraction of the patents in our
sample (see Table 1), and hence we dropped the citations
classified under these categories from the sample. Cate-
gories X and Y pose a serious threat to the novelty of the
patent and, hence, as observed above, we expect that inven-
tors will be less likely to add citations in these categories,
even if a knowledge flow in fact occurred. Thus, by includ-
ing the X and Y citation types as independent variables, we
correct for this potential bias in the dependent variable.

We also controlled for whether the EPO patent was
applied for through the World Intellectual Property Organi-
zation (WIPO) by including a dummy variable (WO), which
is equal to 1 if the EPO patent was filed under the Patent
Cooperation Treaty (PCT). International patent applications
through WIPO have to abide by the rules set by the PCT,
which establish (rule 5) that the applicant should ‘indi-
cate the background art which, as far as known to the
applicant, can be regarded as useful for the understanding,
searching and examination of the invention, and, prefer-
ably, cite the documents reflecting such art’ (emphasis
added). Thus, although WIPO is less strict than USPTO in
terms of imposing an obligation on the applicant to dis-
close the prior art, its requirements are more stringent than
EPO terms. Equally, WIPO sets rigorous requirements for
patent examiners with regard to the extent of the doc-
umentation searched to establish relevant prior art (see
rule 33 of the PCT). Therefore, citations in EPO patents
applied for through WIPO might have a higher percent-
age of inventor citations than other EPO patent applications
not subject to an international applications procedure.
Finally we included 30 technological dummies to account
for the different citation patterns across technological
fields.

Our estimation method is a logit model. Because citation
behaviour may be influenced by the personal characteris-
tics of the applicant and/or examiner as well as the specific
technology involved in the citing patent, we can expect
the error terms in our econometric equation to be cor-
related between citation pairs involving the same citing
patent. In order to deal with the correlated error terms, we
follow Alcacer and Gittleman (2004) and apply a random
effects panel model, in which the random effects refers to

the citing patent, and what normally is the ‘time’ dimen-
sion is represented by the various citations in a given citing
patent.13

13 We experimented with alternative logit models, such as a model with
clustered errors on citing patents and a complementary log–log model.
Based on information criteria (AIC or BIC), we concluded that the random
effects logit model was most appropriate for our data. We also ran a logit
with fixed effects, and a linear probability model with fixed effect on the
citing patent, and obtained qualitatively similar results to those reported
here.
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Table 3
Descriptive statistics

Variable Within Europe sample Within the US sample

Inventor citations
(n = 50,106)

Examiner citations
(n = 219,583)

T-test Inventor citations
(n = 21,677)

Examiner citations
(n = 134,908)

T-test

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Geographic distance
Distance (km) 1.422 2.076 2.833 2.714 109.30*** 3.456 6.187 7.146 7.891 65.67***

Technology similarity
Same technology 0.710 0.454 0.681 0.466 −12.75*** 0.655 0.475 0.620 0.485 −9.78***

Temporal distance
Citation lag 5.218 3.524 5.573 3.909 18.68*** 4.453 3.054 4.594 3.374 5.78***

Self-citation
Same MNEa,b 0.611 0.488 0.304 0.460 −57.02*** 0.688 0.463 0.364 0.481 −41.84***
Same EU Firmc,d 0.447 0.497 0.229 0.420 −53.10*** 0.539 0.498 0.276 0.447 −28.82***

Citations categories
Class A 0.718 0.450 0.647 0.478 −30.40*** 0.652 0.476 0.550 0.497 −28.12***
Class X 0.108 0.310 0.212 0.409 53.84*** 0.157 0.363 0.257 0.437 32.15***
Class Y 0.174 0.379 0.141 0.348 −19.08*** 0.191 0.393 0.192 0.394 0.40

Other controls
Wo 0.113 0.317 0.179 0.383 35.46*** 0.145 0.353 0.394 0.489 71.94***

***Significant at 1%.
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samples, we differentiate between four sub-samples: start-
ing from the complete (sub) sample, we exclude citations
with citing patents where all citations were added by the
examiner, by the inventor, or by both examiner or inventor

14 By their nature, Y citations do not occur as single citations. Thus, we
can identify the ‘trigger’ effect by examining the Y citations where at least
For the within Europe sample, Ninventor = 9268, Nexaminer = 37,784.
b For the within the US sample, Ninventor = 4444, Nexaminer = 28,339.
c For the within Europe sample, Ninventor = 13,951, Nexaminer = 58,654.
d For the within the US sample, Ninventor = 2944, Nexaminer = 16,301.

. Results

Table 3 reports the descriptive statistics for the variables
n the regression for the sample of within-EPO citations
nd the sample of within-US citations. In both these sam-
les inventor citations are more co-localised (Distance (km)

s smaller) than examiner citations: on average, inventors
re more likely to cite local patents and the difference in
eans is quite large – especially for the within-US sample
and statistically significant. Inventors are also more likely

o include citations to patents in the same 4-digit IPC class
han examiners, but the difference in means, though statis-
ically significant, is not very large: for the within Europe
US) sample 71% (65%) of inventor citations are to patents
n the same technology class, while the corresponding pro-
ortion for examiner citations is 68% (62%). This is in line
ith our expectations about cognitive distance. Also con-

istent with our expectations we find that inventors show
slightly higher tendency to cite more recent patents than
xaminers: for the sample of EU (US) patents the citations
ag for inventor citations is on average 5.2 (4.4) years while
or examiner citations it is 5.5 (4.6) years.

Our findings for the self-citation variables indicate that
nventors rather than examiners tend to cite prior patents
pplied for by their own firm. Table 3 shows that for both
amples of within Europe and within the US citations, the
ame MNE and Same EU Firm variables are, on average, twice
s large for inventor citations relative to examiner citations.
inally, we find that examiners on average have a higher
endency to include citations to patents that anticipate the

laims listed in the patent application (Class X citations),
hile patents that describe the prior state-of-the-art (Class
) are more likely to be cited by the inventor.

Surprisingly, we also find that citations questioning the
nventive steps claimed in the patent when combined with
another document (Class Y) are more frequent for inventor
citations than for examiner citations. We asked EPO patent
examiners to comment on this result, and they indicated
that it might be the result of a ‘trigger’ effect: an inven-
tor might cite a patent because it signals a problem (which
is also addressed in the citing patent), which prompts the
examiner to look for patents that have provided a solution
to this problem. When such citations are identified, they
are added, along with the original inventor citation, as a
Y type. This clearly indicates non-rational expectations on
the part of the inventor who added the ‘triggering’ citation,
but it does seem to explain the tendency for Class Y to be
higher for inventor citations.14

To conclude, the descriptive evidence confirms many of
our theoretical expectations about citations as a measure of
knowledge flows, but it needs to be tested in a multivariate
analysis.

We first estimate a number of models for the ‘within
Europe’ citations shown in Table 4. We estimate a model
for the entire sample (columns 1–4), and for the two
sub-samples, which enables us to control for self-citations
(columns 5–8 and 9–12). Within each of these three basic
one of them is made by the inventor, and at least one is made by the
examiner. At a descriptive level, we compared the relative frequency of
these ‘trigger’ Y citations to non-Y citations that combine inventor and
examiner citations within a single citing source patent. We indeed found
that ‘trigger’ combinations are relatively more frequent, which suggests
that the trigger effect is real.



1902
P.Criscuolo,B.Verspagen

/Research
Policy

37
(2008)

1892–1908

Table 4
Odds ratios from random effects logit regressions within-Europe citations

Entire sample Sample of MNEs’ patents Sample of EU firms’ patents

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Distance (km) 0.733 0.831 0.773 0.831 0.862 0.919 0.888 0.926 0.829 0.893 0.860 0.898
(90.07)*** (52.46)*** (62.42)*** (41.02)*** (16.84)*** (8.75)*** (11.28)*** (6.41)*** (28.71)*** (16.31)*** (19.78)*** (12.51)***

Citation lag 0.996 0.999 1.005 1.006 1.017 1.019 1.020 1.020 1.006 1.008 1.005 1.005
(2.26)** (0.56) (2.61)*** (2.28)** (4.48)*** (4.07)*** (4.49)*** (3.88)*** (1.84)* (2.27)** (1.44) (1.28)

Same technology 1.124 1.030 1.100 1.046 1.064 1.024 1.016 1.014 1.110 1.040 1.102 1.060
(8.21)*** (1.74)* (5.64)*** (2.22)** (1.87)* (0.62) (0.41) (0.30) (3.89)*** (1.28) (3.18)*** (1.60)

Class X 0.377 0.578 0.483 0.640 0.410 0.562 0.548 0.657 0.380 0.548 0.494 0.620
(48.94)*** (24.26)*** (31.11)*** (16.37)*** (19.78)*** (11.93)*** (12.10)*** (7.40)*** (26.10)*** (14.94)*** (17.10)*** (10.07)***

Class Y 1.119 1.161 1.194 1.289 1.008 0.965 1.169 1.149 1.066 1.127 1.148 1.253
(6.30)*** (6.84)*** (8.67)*** (10.00)*** (0.17) (0.72) (3.27)*** (2.44)** (1.80)* (2.87)*** (3.53)*** (4.74)***

WO 0.556 1.074 0.605 1.038 0.727 1.235 0.717 1.107 0.778 1.190 0.736 1.049
(28.42)*** (2.90)*** (21.01)*** (1.28) (7.79)*** (4.66)*** (7.40)*** (1.90)* (7.80)*** (4.82)*** (8.56)*** (1.12)

Same MNE 3.065 2.159 2.440 2.110
(28.81)*** (18.46)*** (20.53)*** (15.02)***

Same EU firm 2.346 1.854 1.951 1.778
(29.16)*** (18.74)*** (20.59)*** (15.00)***

Observations 269,689 78,928 242,074 51,313 47,052 15,111 42,322 10,381 72,605 23,136 65,608 16,139
Number of groups 170,443 42,499 146,804 18,860 28,411 7,633 24,505 3,727 43,328 11,583 37,499 5,754
Log-likelihood −117290.9 −49716.81 −69400.9 −34103.47 −20465.55 −9541.39 −12950.96 −6830.63 −31952.83 −14775.91 −20415.31 −10644.79
Avg cited per citing 1.58 1.86 1.65 2.72 1.66 1.98 1.73 2.79 1.68 2 1.75 2.8
Max cited per citing 23 23 23 23 23 23 23 23 23 23 23 23

Wald Chi 2 12935.46 3933.13 7674.95 2174.01 2966.93 1009.93 2060.71 581.82 3933.29 1428.84 2634.91 803.31
Degree of freedom 35 35 35 35 36 36 36 36 36 36 36 36
Rho 0.33 0.01 0.13 0.01 0.33 0.01 0.12 0.01 0.31 0.01 0.12 0.01
Chi bar 2 3801.1 63.07 580.7 258.47 757.85 8.99 109.14 45.26 1071.55 20.53 153.72 74.54

Models 1,5,9 include all citing patents in the respective samples. Model 2,6,10 exclude citing patents with all citations added by the examiner, Models 3,7, 11 exclude citing patents with all citations added by
the inventor, Models 4,8, 12 exclude those citing patents with all citations added by the inventor and those with all citations added by the examiner, absolute value of z statistics in brackets, *significant at 10%;
**significant at 5%; ***significant at 1%.
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in the last case, we have only patents where examiners and
nventors added citations). We present the results for these
ub-samples in order to check for robustness with regard
o potential fixed effects related to individual examiners or
nventors.

In all 12 equations, we find that a smaller geographical
istance increases the probability of inventor citations or,

n other words, that geographical closeness increases the
robability of a knowledge flow occurring. This is shown
y the odds-ratios for the variable Distance (km), which is
lways smaller than 1, and significantly so. Excluding cit-
ng patents with a single source (examiner or inventor) of
itations leads to somewhat higher odds ratios on Distance
km), but these are still clearly below 1.

Our expectation with regard to the time lapse between
ited and citing patents is mostly, but not always con-
rmed. 8 out of 12 of the equations in Table 4 show an
dds ratio for this variable that is significant and larger than
(as expected). This indicates that, ceteris paribus, time

ncreases the likelihood of a spillover occurring. However,
he odds-ratios of this variable (Citation lag) is very close to
, indicating that the time effect is small. Column 1 shows
n odds ratio smaller than 1 and significant, i.e., contrary to
ur expectations.

Next, we test the hypothesis that inventors cite more
ithin the technology class (Same technology), i.e., that cog-
itive distance has a negative effect on knowledge flows.
he odds ratio for this variable is larger than 1 and signifi-
ant in all four equations for the total sample, although we
bserve that this effect is somewhat smaller if we exclude
iting patents with a single citation source (examiner or
nventor). For the MNE sample, the effect is much weaker,
lthough all odds ratios are larger than 1. Only the equation
or the complete MNE sample is (weakly) significant. In the
U firms sample, again, all odds ratios are larger than 1, but
nly two of the four equations are significant.

With regard to strategic factors, the results confirm that
xaminers are more likely to add the ‘dangerous’ citation
ype X than the ‘common’ citation type A, which is the refer-
nce category. This effect is sizeable, as the deviation from
in the odds ratio indicates. For example, in equation 1

n Table 4, the effect of an X citation is comparable to an
ncrease of 400 km distance.15 As the descriptive evidence
uggests, however, inventors are generally more likely to
dd citations type Y than citations type A. Only two equa-
ions in the MNE sample are not significant for this variable.
his suggests that the trigger effect is the main explanatory
actor in the Y type citations.

We found mixed evidence for the international appli-
ation dummy (WO). In half of the equations this has an
dds ratio greater than 1 (our a priori expectation); in the

ther half, the odds ratio is smaller than 1, and often size-
bly so (in equation 1 it is comparable to the effect of a
istance of some 285 km). Interestingly, odds ratios greater
han 1 are found only in cases where we exclude citing

15 To calculate this effect, it is necessary to know that 1 minus the odds
atio for Distance (km) corresponds to the effect of 173 km (the unit of
istance (km)). 1 minus the odds ratio of a dummy variable, e.g. ClassX,
orresponds to the effect of the dummy variable taking the value 1.
Policy 37 (2008) 1892–1908 1903

patents, and where all citations are added by the examiner.
This shows the importance of controlling for this factor; but
the WO effect does not seem greatly to influence the other
parameter estimates.

With regard to self-citations, the two sub-samples
(equations 5–8 and 9–12) confirm that many of the gen-
eral findings for the total sample (columns 1–4) also hold
for the smaller subsets of firms, especially for geographic
effect, although there are obviously some differences with
regard to the numeric values of the estimated parameters.
This indicates that the mechanisms governing spillovers do
not differ qualitatively between the different types of firms
in these samples (large MNEs, small and large firms). The
cognitive distance variable is the most obvious exception
to this. It also indicates that whether or not we control for
self-citations does not influence the results in a qualitative
way. With regard to the self-citation variable, the results
in Table 4 confirm our expectation that these are much
more likely for inventor citations than for examiner cita-
tions (i.e., inventors are more likely to cite their own firm’s
patents). The self-citation effect is somewhat stronger in
the MNE sample compared to the more general EU firms
sample.

The results in Table 4 refer to citing and cited patents
invented in Europe. We want to test whether these results,
particularly for geography, hold for the US space. Conse-
quently, we present estimations for the ‘within-US’ sample
of EPO citation pairs in Table 5. In this case, our geograph-
ical units are US states (we exclude Alaska and Hawaii,
which are geographic outliers), which tend to be larger than
European regions, and this may affect our results. In partic-
ular, we might expect that the effect of distance would be
smaller, since we are using bigger minimum distances.

Table 5 presents the estimations for the same 12 samples
as in Table 4. The first row confirms the geography effect: all
odds ratios are smaller than 1 and significant. However, as
expected, the geographic effect is somewhat smaller than
for the European space (the odds ratios are closer to 1,
in some cases only a couple of percentage points differ-
ence). This is consistent with previous studies of USPTO
patents (Alcacer and Gittelman, 2006; Thompson, 2006).
The results in Table 5 also confirm the (small) effect of time:
all odds ratios for the citation lag variable are larger than 1
and significant.

On the other hand, the effects for cognitive similarity
(Same technology) are mostly insignificant, and where they
are significant, the odds ratios are smaller than 1, which is
contrary to our expectations. This is particularly the case in
the last three columns, i.e., for the EU firms sample where
we are able to control for self-citations. This suggests that
the negative findings for the Same Technology variable are
related to citations made by US-affiliates of European firms.

The results for the Class X variable and the WO and self-
citations variables are again as expected. For the X citations
in equation 1, the effect is comparable to an increased dis-
tance of about 1200 km, which also confirms the smaller

geographic effect in the US compared to Europe. The Class
Y variable is less often significant than in Table 4, but when
it is, it maintains its sign (>1). The odds ratios for the WO
variable are more often below 1 (contrary to our expecta-
tions).
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Table 5
Odds ratios from random effects logit regressions within-US citations

Entire sample Sample of MNEs’ patents Sample of EU firms’ patents

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Distance (km) 0.923 0.949 0.936 0.936 0.957 0.974 0.971 0.971 0.945 0.972 0.949 0.949
(49.26)*** (30.17)*** (32.97)*** (32.97)*** (10.56)*** (5.94)*** (6.13)*** (6.13)*** (10.99)*** (5.42)*** (8.52)*** (8.52)***

Citation lag 1.01 1.023 1.011 1.011 1.03 1.04 1.024 1.024 1.026 1.034 1.017 1.017
(3.35)*** (5.93)*** (3.18)*** (3.18)*** (4.40)*** (4.74)*** (3.12)*** (3.12)*** (3.34)*** (3.67)*** (1.96)** (1.96)**

Same technology 1.015 0.97 0.971 0.971 1.006 1.019 0.971 0.971 0.908 0.891 0.866 0.866
(0.72) (1.21) (1.21) (1.21) (0.12) (0.34) (0.52) (0.52) (1.62) (1.73)* (2.18)** (2.18)**

Class X 0.475 0.64 0.6 0.6 0.369 0.559 0.509 0.509 0.42 0.636 0.574 0.574
(27.92)*** (14.58)*** (16.40)*** (16.40)*** (15.51)*** (8.35)*** (9.34)*** (9.34)*** (11.42)*** (5.55)*** (6.74)*** (6.74)***

Class Y 0.975 1.09 1.018 1.018 0.907 1.051 0.983 0.983 1.071 1.121 1.229 1.229
(0.95) (2.71)*** (0.59) (0.59) (1.53) (0.68) (0.23) (0.23) (0.90) (1.33) (2.53)** (2.53)**

WO 0.208 0.926 0.268 0.268 0.463 1.135 0.408 0.408 0.411 1.009 0.446 0.446
(57.15)*** (2.33)** (41.14)*** (41.14)*** (11.56)*** (1.77)* (11.70)*** (11.70)*** (11.92)*** (0.11) (10.13)*** (10.13)***

Same MNE 4.041 2.31 3.073 3.073
(24.12)*** (13.45)*** (17.06)*** (17.06)***

Same EU firm 2.974 2.156 2.283 2.283
(16.88)*** (11.09)*** (11.87)*** (11.87)***

Observations 156,585 34,055 144,435 144,435 32,788 6,992 30,323 30,323 19,245 4,795 17,701 17,701
Number of groups 96,089 18,207 85,845 85,845 20,030 3,655 18,002 18,002 11,296 2,387 10,059 10,059
Log-likelihood −55292.64 −21476.39 −32063.95 −32063.95 −11101.01 −4320.75 −6501.72 −6501.72 −7215.18 −3034.61 −4447.65 −4447.65
Avg cited per citing 1.63 1.87 1.68 1.68 1.64 1.91 1.68 1.68 1.7 2.01 1.76 1.76
Max cited per citing 17 17 17 17 14 14 14 14 14 14 14 14

Wald Chi 2 7773.92 1602.09 3941.79 3941.79 1743.7 493.96 994.33 994.33 928.47 297.45 622.13 622.13
Degree of freedom 35 35 35 35 36 36 36 36 36 36 36 36
Rho 0.38 0.01 0.17 0.17 0.46 0.01 0.24 0.24 0.43 0.01 0.18 0.18
Chi bar 2 2772.67 17.98 527.11 527.11 828.49 0.55 175.15 175.15 491.12 1.51 82.73 82.73

Models 1, 5, 9 include all citing patents in the respective samples, Models 2, 6, 10 exclude citing patents with all citations added by the examiner, Models 3, 7, 11 exclude citing patents with all citations added by
the inventor, Models 4, 8, 12 exclude those citing patents with all citations added by the inventor and those with all citations added by the examiner, absolute value of z statistics in brackets, *significant at 10%;
**significant at 5%; ***significant at 1%.
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Table 6
Odds ratios from random effects logit model for the sample of within the US patents owned by EU firms

Sample of self-citations Sample with self-citations excluded

(1) (2) (3) (4) (5) (6) (7) (8)

Distance (km) 0.954 0.983 0.964 0.964 0.945 0.970 0.947 0.947
(4.23)*** (1.40) (3.21)*** (3.21)*** (9.76)*** (5.04)*** (7.52)*** (7.52)***

Citation lag 1.062 1.060 1.037 1.037 1.011 1.023 1.006 1.006
(4.20)*** (3.36)*** (2.58)*** (2.58)*** (1.13) (2.00)** (0.50) (0.50)

Same technology 0.700 0.639 0.762 0.762 1.078 1.106 0.959 0.959
(3.63)*** (3.88)*** (2.79)*** (2.79)*** (0.96) (1.17) (0.46) (0.46)

Class X 0.443 0.640 0.615 0.615 0.403 0.632 0.559 0.559
(6.80)*** (3.49)*** (4.11)*** (4.11)*** (8.94)*** (4.18)*** (5.02)*** (5.02)***

Class Y 1.118 1.227 1.270 1.270 0.979 1.012 1.188 1.188
(0.92) (1.46) (2.05)** (2.05)** (0.21) (0.11) (1.49) (1.49)

WO 0.387 0.988 0.470 0.470 0.424 1.049 0.416 0.416
(7.81)*** (0.09) (6.42)*** (6.42)*** (9.27)*** (0.47) (8.07)*** (8.07)***

Observations 6089 2211 5248 5248 13156 2584 12453 12453
Number of groups 4412 1466 3724 3724 8663 1548 8051 8051
Log-likelihood −3218.16 −1256.86 −2028.62 −2028.62 −3944.47 −1730.55 −2358.55 −2358.55
Avg cited per citing 1.38 1.51 1.41 1.41 1.52 1.67 1.55 1.55
Max cited per citing 12 12 10 10 11 10 11 11

Wald Chi 2 197.18 102.49 141.04 141.04 452.52 103.43 285.63 285.63
Degree of freedom 35 35 35 35 35 35 35 35
Rho 0.49 0.04 0.18 0.18 0.40 0.01 0.19 0.19
C 35.4
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odels 1 and 5 include all citing patents in the respective samples, Mode
and 7 exclude citing patents with all citations added by the inventor, Mo

nd those with all citations added by the examiner, absolute value of z sta

Given the fact that the estimations in Table 5 do not
onfirm our prior expectations about cognitive similar-
ty (Same technology variable), and that this appears to
e driven largely by the sub-sample of US-affiliates of
U firms, we investigate this sub-sample (i.e., the Thoma
nd Torrisi sample) in somewhat more detail (Table 6).
n particular, we split the sample into self-citations and
on-self-citations samples. This allows us to investigate
hether the self-citations effect is purely additive, or is also
artly multiplicative with respect to the other variables.

The results in Table 6 clearly show that the negative find-
ng for cognitive similarity is driven mostly by self-citation
mong the firms. The odds ratios for Same technology are
ll smaller than 1 and significant for the self-citations sub-
ample, while there are no significant estimates for Same
echnology in the non-self citations part of this sample. This

ay be an indication of so-called asset-seeking behaviour,
.e., the US-affiliates of EU firms are active in fields that are
ifferent from rather than similar to the activities of the
uropean home-base (see e.g. Kuemmerle, 1996; Criscuolo
t al., 2005). Future research should investigate the role of
his effect in inventor vs. examiner citations, in more detail.

The results in Table 6 also confirm that the distance
ffect is relevant even at the intra-firm level, i.e., between
S-affiliates of EU firms. In columns 1–4 of Table 6, i.e., for

elf-citations only, we find a significantly negative effect of
istance (km). Although we do present these results here

or reasons of space, they hold for the within-EU citations
n the Thoma and Torrisi sample and the Verspagen and

choenmakers MNE sample (for both the within-EU and
ithin-US samples).

Our estimations so far have not addressed the effect of
ong distances, i.e., we have excluded overseas citations
i.e., EU- or US-based inventors citing overseas patents).
213.55 0.53 47.75 47.75

exclude citing patents with all citations added by the examiner, Models
nd 8 exclude those citing patents with all citations added by the inventor
n brackets, *significant at 10%; **significant at 5%; ***significant at 1%.

Our final set of estimations makes use of the KMclEU and
KMclUS variables to test for these long distances. For rea-
sons of space, Table 7 shows the estimations for the sample
that includes only citing patents with both inventor and
examiner added citations (the results for the other sam-
ples were qualitatively similar for the geographic distance
variable).

It should be remembered that the KMcl = 0 class is the
reference, i.e., if geographical distance is an impediment
to inventors’ citing a patent, we would expect the odds
ratios for the other KMcl classes would be <1. This is indeed
always the case, for both US space and European space, and
for the total sample as well as for the MNE and EU firms
sub-samples. In particular, the KMcl = 4 dummy is always
significant, which means that overseas inventors are, ceteris
paribus, less likely to be cited than proximate inventors. As
before, MNEs appear to be less influenced by distance, i.e.,
the odds ratios are higher (but < 1) in the MNE sample. The
EU firms sample has odds ratios between those of the MNE
and the total samples.

If longer distances are a stronger impediment to knowl-
edge flows, we would expect the dummies associated with
higher KMcl values to be smaller. In the EU-citing inven-
tor sample, this holds very clearly up to and including the
KMclEU = 3 dummy. But the difference between the odds
ratio of KMclEU = 3 and KMclEU = 4 is very small in this
case, which indicates that an overseas distance has about
the same effect as a large distance within Europe. In the
US-citing inventor sample, the KMclUS = 4 dummy is much

lower than any of the others, which indicates that overseas
distances from the US matter more (in a relative sense)
compared to Europe. But, here, we find less clear differ-
ences between the KMclUS = 2 and KMclUS = 3 dummies,
especially so for the MNE and EU firms sample.
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Table 7
Odds ratios from random effects logit model with discrete distance variables

Sample of EU-based citing inventors Sample US-based citing inventors

Total MNEs EU firms (5) (6) (7)

KMcl = 1 0.532 0.811 0.666 0.481 0.716 0.622
(22.61)*** (3.39)*** (7.98)*** (18.06)*** (3.41)*** (4.39)***

KMcl = 2 0.414 0.717 0.605 0.416 0.654 0.597
(35.20)*** (5.26)*** (10.53)*** (22.20)*** (4.31)*** (4.85)***

KMcl = 3 0.31 0.617 0.47 0.373 0.747 0.592
(51.57)*** (7.72)*** (16.40)*** (27.44)*** (3.24)*** (4.77)***

KMcl = 4 0.286 0.613 0.44 0.227 0.424 0.399
(61.50)*** (8.53)*** (19.10)*** (53.53)*** (11.28)*** (11.16)***

Citation lag 1.015 1.02 1.013 1.048 1.05 1.045
(7.58)*** (4.86)*** (3.96)*** (14.63)*** (7.44)*** (5.98)***

Same technology 1.053 1.126 1.07 0.983 1.019 0.875
(3.19)*** (3.41)*** (2.32)** (0.75) (0.37) (2.28)**

Class X 0.66 0.679 0.631 0.649 0.618 0.687
(19.10)*** (8.60)*** (11.94)*** (14.83)*** (7.47)*** (5.12)***

Class Y 1.239 1.186 1.233 1.074 1.042 1.103
(10.52)*** (3.84)*** (5.49)*** (2.47)** (0.65) (1.30)

WO 1.067 1.055 1.072 0.899 1.026 0.981
(2.73)*** (1.27) (2.00)** (3.62)*** (0.40) (0.28)

Same MNE 2.21 2.519
(16.87)*** (14.29)***

Same EU firm 1.832 2.149
(16.06)*** (10.59)***

Observations 82,570 17,537 25,681 40,353 8,708 6,153
Number of groups 29,201 6,077 8,933 13,836 2,954 2,050
Log-likelihood −53114.03 −11196.67 −16405.33 −25349.52 −5354.1 −3849.78
Avg cited per citing 2.83 2.89 2.87 2.92 2.95 3
Max cited per citing 21 21 21 20 16 14

Wald Chi 2 5160.48 1157.81 1626.01 3235.86 894.35 493.02
Degree of freedom 38 39 39 38 39 39

0.01
95.58

nventor
at 1%.
Rho 0.01 0.01
Chi bar 2 326.94 61.47

All models exclude those citing patents with all citations added by the i
statistics in brackets, *significant at 10%; **significant at 5%; ***significant

Overall, and contrary to the findings in Alcacer and
Gittelman (2006), the results for our discrete distance vari-
able show that the results in Tables 4 and 5 are completely
robust to the inclusion of overseas distances, as well as the
ordinal measurement scale. This means that inventor cita-
tions in the EPO system are more sensitive to distance than
examiner citations, suggesting that geographical distance
is a strong factor working against knowledge flows.16

6. A closer look at the effect of distance

In Tables 4–6, we (implicitly) assumed that the effect
of distance is linear, but it might be the case that the rela-
tion between knowledge flows and distance is non-linear.
In particular, and in line with some of the results in Table 7,
we would expect that at small distances, an increase in dis-

tance by one unit (1 km) would lead to a stronger effect
of the likelihood of an inventor citation, than the same
increase over a longer distance. In order to test for this, we
employ a non-parametric method that starts by eliminating

16 Following Alcacer and Gittelman (2006), we also experimented with
dummy variables for whether or not citing and cited inventors are in the
same EU-region or US-state, the same country, and the same continent.
For reasons of space, we do not document these results, but the findings
entirely confirmed those reported here.
0.01 0.01 0.01
136.71 25.71 18.29

and those with all citations added by the examiner, absolute value of z

the effect of variables other than distance from the likeli-
hood of an inventor citation (Hausman and Newey, 1995).
To this end, we first estimate a random effects linear proba-
bility regression model, with our usual dependent variable
and using the same independent variables as in Table 4.
We calculated a residual from this regression as ri = ei − êi,
where e is our dependent variable, and êi = ĉ + ˆ̌ Xi + ıi.
Here c and ˇ are the parameters in our linear model, X is
the vector of the independent variables with the exception
of Distance (km), ı is the random effect associated with the
citing patent, and hats indicate estimated values. Note that
the regressions from which ĉ and ˆ̌ were derived included
Distance (km) as an independent variable, but we do not
include this variable in the calculation of the residual r.
Hence r ‘partials out’ all variables except distance from the
dependent variable (inventor citations).

Next, we run a locally weighted regression (lowess)
of r on Distance (km) (we use a bandwidth of 0.8). This
regression yields a smooth curve on which each point cor-

responds to the ‘local’ (for the value of Distance (km)) effect
of distance on the likelihood of an examiner citation. Fig. 5
depicts the results of this procedure for within-Europe.17

Instead of the version of Distance (km) that is standard-

17 We applied other methods to assess the potential non-linear nature of
the distance relationship, e.g., a step-function for Distance (km), a linear
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Fig. 5. The relationship between distance and the likelihood of an inventor
citation, within-Europe sample.
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ig. 6. The relationship between distance and the likelihood of an inventor
itation within the US sample.

sed into units of 173 km, on the horizontal axis we take a
istance variable in units of 1 km.

Fig. 5 confirms that the effect of distance is non-linear.
t short distances between the cited and citing patent,

he likelihood of a knowledge flow (inventor citation)
ecreases rapidly with distance, but this effect reduces at

arger distances. Beyond 1000 km (which is the distance,
ay, between the Brussels and Vienna regions), the marginal
ffect of distance on the likelihood of a knowledge flow
s very low. This non-linear effect of distance is consistent

ith the results in Bottazzi and Peri (2003).
Fig. 6 depicts the results for the within-US sample. For

he US space, the maximum distance is somewhat larger
the horizontal scale extends to 5000 instead of the 4000
n Fig. 5, and while this is a real outlier in Europe, it is not in
he US). Despite this, the curve for the US is also clearly non-
inear, although the rate of decline is more modest than in

urope. This finding is in line with the evidence reported
n Alcacer and Gittelman (2006), who found also that the
ocalisation effect is stronger over shorter distances.

pline function for Distance (km), and kernel regression instead of locally
eighted regression in the above procedure. The results of these methods
ere generally in the same direction as the results documented here.
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7. Conclusions

The European patent database allows identification of
whether citations are added by the applicant/inventor
(inventor citations) or the patent examiner for all of its
patents. Moreover, since the legal requirements for citing
prior art differ between the European and US systems, we
expect the indication of knowledge spillovers based on the
patent citations in our database to be different from the
USPTO citation studies that dominate the literature. On
the basis of the EPO database, we asked about what fac-
tors have an influence on the probability that a potential
knowledge flow or spillover actually takes place. We found
evidence that geographical distance has a negative impact.
Time since the date of the cited patent has a small positive
impact. Cognitive distance between knowledge receiver
and knowledge sender also has a negative impact, except
for the part of our sample that refers to the US space.
This latter result is because of the effect of US-affiliates
of EU-firms, and we suggest it is related to asset-seeking
behaviour by European firms. We also found that examiner
citations more often involve citations that may compro-
mise novelty, which shows that inventors may have a
tendency to ignore citations that may endanger their patent
claims.

These results can be interpreted as supporting the
hypothesis that inventor citations and examiner cita-
tions (in the EPO system) are different, i.e., we find
that examiner citations generally do not track inven-
tor citations. Contrary to some of the evidence based
on USPTO patent citations, in Alcacer and Gittelman
(2006), we find that inventor citations are more localised
than examiner citations. This hypothesis has generally
been tested using patent citation data, which must
be considered a very noisy indicator of knowledge
flows. Whereas Alcacer and Gittelman (2006) issue a clear
warning against extrapolating these ‘noisy’ results on geog-
raphy in a wide variety of spatial contexts, our results based
on European patents clearly support the importance of dis-
tance in the broadest way possible.

But our results also indicate that geographic distance
is not the only variable that impacts on spillovers: cog-
nitive distance and time are also important. These factors
have been under-explored in the econometric literature on
knowledge flows, and our results suggest that more applied
and theoretical work on these factors could be very useful.

In summary, our results clearly indicate that European
patent and US patent citations are quite different. These dif-
ferences stem from the institutional differences between
the two systems, discussed in Section 2, and particularly
the less stringent requirements in Europe on describing
the state of the art in the patent application, which may
lead European inventors to cite only those patents that they
actually know about ex ante. But it may also be the case
that these differences are due to different behaviour and
incentives on behalf of the patent examiners in the two

systems. While additional research on the background to
the different citation practices between the EPO and the
USPTO would be useful, our results clearly suggest that it is
inventor citations rather than the total set of citations, that
should be taken as indicators of knowledge flows.
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