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Abstract

Given an edge-weighted graph and an integer k, the generalized graph coloring problem is the problem of partitioning the
vertex set into k subsets so as to minimize the total weight of the edges that are included in a single subset. We recall a result
on the equivalence between Karush–Kuhn–Tucker points for a quadratic programming formulation and local optima for the
simple 5ip-neighborhood. We also show that the quality of local optima with respect to a large class of neighborhoods may
be arbitrarily bad and that some local optima may be hard to 6nd. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Graph coloring; Local search; Worst-case analysis

1. Introduction

Consider the following problem. Given a graph
G = (V; E), a weight function w : E → Z on its
edges, and an integer k¿ 2, 6nd a color assignment
c : V → {1; : : : ; k} of the vertices that minimizes the
total weight of the monochromatic edges, i.e., edges
that have end points with the same color. The problem
was 6rst stated by Carlson and Nemhauser [1], who
write about ‘scheduling to minimize interaction cost’.
The problem may occur when one wishes to partition
a set of items into a given number of groups so as
to minimize the total pairwise interaction cost. The
problem is also referred to as the generalized graph
coloring problem (GGCP) [8], graph k-partitioning
[5], and k-min cluster [10]. For k = 2 the problem
is equivalent to the well-known max cut problem,
as for two colors minimizing the total weight of
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the monochromatic edges is equivalent to maximizing
the weight of the cut edges. For general k, the problem
is equivalent to the max k-cut problem. As max cut is
NP-hard [6], the GGCP is also NP-hard, even for 6xed
k. If k is not part of the input, we denote the problem
by k-GGCP.
From an approximation point of view, the GGCP is

not equivalent to the max k-cut problem. Under the
assumption that P �=NP, Kann et al. [5] show that for
k ¿ 2 and every 
¿ 0 there exists a constant �¿ 0
such that the GGCP cannot be approximated in poly-
nomial time within a factor �|V |2−
 of optimal. For
the 2-GGCP, Garg et al. [2] gave a polynomial-time
O(log n)-approximation algorithm. On the negative
side, as a direct consequence of the hardness of ap-
proximating max cut by HIastad [3], there cannot exist
a polynomial-time algorithm for 2-GGCP such that the
solution is guaranteed to have value within 18

17 times
the optimal solution value, unless P = NP.
Away to 6nd approximate solutions is through local

search, which iteratively searches through the set of
feasible solutions. Starting from an initial solution, a
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local search procedure moves from a feasible solution
to a neighboring solution until some stopping criteria
are met. The choice of a suitable neighborhood func-
tion has an important in5uence on the performance of
local search. The simplest form of local search is iter-
ative improvement. This method iteratively chooses a
better solution in the neighborhood of the current so-
lution; it stops when no better solution is found. We
say that the 6nal solution is a local optimum.

In this note, we recall a result that is implicit in
[1] on the relation between the Karush–Kuhn–Tucker
conditions and so-called FLIP-optimal solutions. More-
over, we show that the quality of local optima may be
bad, and we mention some results on the time required
to 6nd locally optimal solutions.

2. Neighborhoods

In this section, we describe the neighborhood FLIP,
its extension m-FLIP, and a variable-depth search vari-
ant of FLIP, called VD-FLIP.

Given a solution, a FLIP neighbor is obtained by
choosing a single vertex and assigning it a diNerent
color. A solution is FLIP-optimal if 5ipping any single
vertex does not decrease the total weight of monochro-
matic edges.
To obtain anm-FLIP neighbor of a given solution, we

choose at most m vertices and 5ip them. A solution is
m-FLIP-optimal if it has no m-FLIP neighbor of smaller
objective value.
The third neighborhood, VD-FLIP, is a form of

variable-depth search, introduced by Kernighan and
Lin [7] for the graph partitioning problem. We ob-
tain a neighbor of a given solution as follows. To
facilitate the exposition, we de6ne tie-breaking rules,
based on complete orderings of the vertices and the
colors. We start by labeling all vertices ‘un5ipped’.
We iteratively choose the 6rst un5ipped vertex that is
best to 5ip, assign it the 6rst best new color, and label
it ‘5ipped’. After |V | iterations all vertices have been
5ipped and we have obtained a series of |V | solutions,
of which we choose the 6rst best one as our neighbor.
Note that if there are only two colors, the last solu-
tion in the series is equivalent to the 6rst solution.
We say that a solution is VD-FLIP-optimal if its VD-FLIP

neighbor does not have a smaller objective value.

3. KKT conditions and FLIP-optimality

Carlson and Nemhauser [11] gave a quadratic pro-
gramming formulation for the GGCP. It uses binary vari-
ables xhi for i∈V; h = 1; : : : ; k: xhi = 1 if and only
if vertex i is colored with color h. The weight func-
tion is extended to the complete graph on V by set-
ting wij = 0 whenever {i; j} is not an edge in E. The
quadratic formulation is then the following:

(QP) min
1
2

∑

h

∑

i; j

wijxhixhj

s:t:
∑

h

xhi = 1; i∈V;
(1)

xhi ∈{0; 1}; i∈V; h= 1; : : : ; k: (2)

As there is a one-to-one correspondence between fea-
sible solutions to (QP) and a color assignment of the
vertices, we can denote a feasible color assignment c
by its corresponding feasible solution x∈{0; 1}k|V | to
(QP).
Let us replace the integrality constraint (2) by

xhi¿ 0. Carlson and Nemhauser showed that there
exists an optimal solution to this program that is inte-
gral. The Karush–Kuhn–Tucker (KKT) conditions for
this quadratic program are
∑

j

wijxhj − �i = �hi; i∈V; h= 1; : : : ; k; (3)

∑

h

xhi = 1; i∈V;

�hi¿ 0; i∈V; h= 1; : : : ; k; (4)

xhi¿ 0; i∈V; h= 1; : : : ; k; (5)

�hixhi = 0; i∈V; h= 1; : : : ; k: (6)

The following result is implicit in Carlson and
Nemhauser [1], and also mentioned by Lenstra [9].

Theorem 1. An integral solution satis8es the KKT
conditions if and only if it is FLIP-optimal.

Proof. Suppose x∈{0; 1}k|V | satis6es the KKT
conditions; for some �∈R|V | and �∈Rk|V |+ ; and let
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x′ be the solution obtained by 5ipping a vertex; say
vertex j. Assume w.l.o.g. that this vertex has color g
in x and color g′ in x′. The change in costs due to this
5ip is

1
2

∑

h

∑

p;q

wpqx′hpx
′
hq −

1
2

∑

h

∑

p;q

wpqxhpxhq

=
∑

p

wpjxg′p −
∑

p

wpjxgp

(3)
= (�j + �g′j)− (�j + �gj)

(6)
= �g′j¿ 0:

Thus; this new solution is not better than x and hence
x is FLIP-optimal.
Now, consider a FLIP-optimal solution x∈{0; 1}k|V |.

Let �i be the total weight of monochromatic edges
incident to vertex i∈V , i.e., if xgi = 1, then

�i =
∑

j

wijxgj; i∈V:

Let �hi denote the change in the weight of monochro-
matic edges incident to vertex i∈V when we change
its color to h, i.e.,

�hi =
∑

j

wijxhj − �i; h= 1; : : : ; k; i∈V:

As x is FLIP-optimal, �hi¿ 0 and �gi = 0 if xgi = 1,
and thus (x; �; �) satis6es (3), (4), and (6). As x is
a feasible solution, it certainly satis6es (1) and by
de6nition of � and �, (x; �; �) satis6es (3). Hence,
(x; �; �) is a KKT-point.

In their paper, Carlson and Nemhauser propose an
iterative improvement procedure that always moves to
the best FLIP neighbor, i.e., the one yielding the high-
est decrease in the objective value; one may escape
from local optima by making a zero-cost FLIP. They re-
port that this method is eQcient and frequently attains
global minima. For an instance with 45 vertices, Kolen
and Lenstra [8] report that iterative improvement over
the FLIP neighborhood always 6nds the same local min-
imum in the case of two colors, while for three and
four colors several local minima are being found. In

the subsequent sections, we prove worst-case results
on the quality of local optima and the running time of
iterative improvement.

4. Local optima may be bad

We will now show that a large class of local op-
tima can be arbitrarily bad. The underlying neighbor-
hood functions for this class are so-called polynomi-
ally searchable neighborhoods, which are neighbor-
hoods for which in polynomial time either a better
neighbor will be found if one exists or it is determined
that the current solution is locally optimal.
The proofs in this section are based on graphs with

optimum GGCP value equal to 0. Our arguments can
be trivially extended to graphs with a strictly positive
optimum.

Theorem 2. Consider the GGCP with k¿ 3. For any
constant �¿ 1; a local optimumw.r.t. a polynomially
searchable neighborhood is not guaranteed to have
value at most � times the optimum; unless P = NP.

Proof. Consider a graph G=(V; E) with unit weights
on the edges. For k¿ 3; the problem of deciding
whether G is k-colorable; i.e.; it can be colored with k
colors without monochromatic edges; is NP-complete
[6]. IfG is k-colorable; then the optimal value for GGCP
is 0 and otherwise it will be at least 1. If there exists a
constant �¿ 1 such that a local optimum is guaranteed
to have value at most � times the optimal value; then
any locally optimal solution for a k-colorable graph
has value 0 and it would be a global optimum;whereas
a local optimum for a graph that cannot be properly
colored with k colors has value at least 1. Hence; any
procedure that 6nds a local optimum decides on the
k-colorability of G. An arbitrary coloring has value
at most |E|; because of the unit weights. Thus; an it-
erative improvement procedure needs at most |E| it-
erations to 6nd a local optimum. As the time spent
to 6nd each neighbor is by assumption polynomially
bounded in the input size; the total time spent by iter-
ative improvement is polynomially bounded.

For the three neighborhoods de6ned in Section 2,
we show stronger results, as these results hold without
the assumption P �=NP and are also true for k = 2.
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Theorem 3. For any constant �¿ 1; there exists a
class of instances and a FLIP-optimal solution for each
instance; such that the value of this FLIP-optimal solu-
tion is larger than � times the optimal solution value.

Proof. Consider the graph G = (V; E) with V =
{1; 2; 3; 4} and E = {{1; 2}; {2; 3}; {3; 4}} and let the
weights on the edges be 1. As this graph is bipartite;
the optimum for the 2-GGCP has value 0.
It is easy to see that the solution c in which vertices

1 and 4 are colored blue and the other two vertices
are colored red, is FLIP-optimal for the 2-GGCP and that
this solution has value 1.
This graph can be extended to the general case of

k colors by adding k − 2 vertices all adjacent to the
vertices 2 and 3. This extended graph has unit weights
on the edges. As this graph is k-colorable, the optimal
value is 0. In the FLIP-optimal solution, the coloring
of V remains as in c and the k − 2 new vertices are
matched to the k − 2 unused colors.

Theorems 4 and 5 extend this result to m-FLIP-
optimal and VD-FLIP-optimal solutions, respectively.

Theorem 4. For any constant �¿ 1; there exists
a class of instances and an m-FLIP-optimal solu-
tion for each instance; such that the value of this
m-FLIP-optimal solution is larger than � times the
optimal solution value.

Proof. Choose a positive integer m¿ 2. De6ne
a graph G = (V; E) by V = {1; 2; : : : ; 2m + 2};
E = {{1; 2}; {2; 3}; : : : ; {2m+ 1; 2m+ 2}}; let it have
unit weights on the edges; and let k = 2. This graph
is bipartite and therefore the optimum has value 0.
Consider a coloring c in which the odd numbered

vertices between 1 and m + 1 and the even vertices
between m + 2 and 2m + 2 are colored red and the
other vertices are colored blue. Because of the edge
{m+ 1; m+ 2}, the coloring c has value 1. We claim
that c is m-FLIP-optimal.
Suppose we 5ip at mostm vertices to obtain a neigh-

boring coloring c′. If both m+1 and m+2 are 5ipped,
or if neither of them is, then c′ is no better than c. If
exactly one of m+ 1 and m+ 2 is 5ipped, say m+ 1,
then consider the connected component of the sub-
graph induced by the 5ipped vertices containing ver-

Fig. 1. Graph.

tex m+ 1. Obviously, there is an un5ipped vertex m′

with 1 ≤ m′¡m + 1. Hence, in this case c′ is no
better than c either.
The graph and the locally optimal solution in the

above proof can be extended to the general problem
with k colors by adding a (k − 2)-clique to the graph,
and making all vertices of this clique adjacent to the
2m + 2 vertices of the bipartite graph. All additional
edges have unit weight. The m-FLIP-optimal solution c
is extended by matching the k − 2 new vertices to the
k − 2 unused colors.

Theorem 5. For any constant �¿ 1; there exists a
class of instances and a VD-FLIP-optimal solution for
each instance; such that the value of this locally op-
timal solution is more than � times the optimal solu-
tion value.

Proof. Consider the graph G = (V; E); with V =
{1; : : : ; 8} and E={{1; 7}; {2; 7}; {3; 4}; {3; 7}; {4; 8};
{5; 8}; {6; 8}}. The weights on the edges are depicted
in Fig. 1. This graph is bipartite and has optimal value
0. The coloring c in which we color vertices 7 and 8
red and the other vertices are colored blue has weight
1. We claim that this solution is VD-FLIP-optimal.
In Fig. 2, we show how the variable-depth search

will proceed. All un5ipped vertices are denoted by cir-
cles and the 5ipped vertices are denoted by squares.
The value next to an un5ipped vertex denotes the in-
crease in the objective value if this vertex is 5ipped.
We iteratively choose the best un5ipped vertex, which
is denoted by an extra circle. In Fig. 2(a), the coloring
c is shown. The best vertex to 5ip is vertex 3 and we
proceed as shown in Figs. 2(b–i). The intermediate
solution in Fig. 2(f) and the starting and 6nal solution
all have objective value 1; the other intermediate so-
lutions have all value at least 2. Thus, the coloring c
is VD-FLIP-optimal.
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Fig. 2. Variable-depth 5ip.

We extend this graph to the general case of k colors
by adding a (k − 2)-clique of which all vertices are
adjacent to the vertices in V . All added edges have
weight at least 7 and in the coloring c, the k − 2 new
vertices are matched to the k − 2 unused colors.

5. Local optima may be hard to #nd

For the computational complexity of 6nding lo-
cal optima, Johnson et al. [4] introduced the class
of polynomial-time local search (PLS) problems; see
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Fig. 3. Module i; Ai = 20i−1

also Yannakakis [12]. This class contains local search
problems whose neighborhoods are polynomially
searchable. The local search problems of the GGCP

with the FLIP, m-FLIP, or the VD-FLIP neighborhood are
in PLS, as the number of FLIP and m-FLIP neighbors
are polynomially bounded in the input size and the
procedure to obtain a VD-FLIP neighbor runs in poly-
nomial time. Johnson et al. also de6ned a reduction
among problems in this class and showed that there
exist PLS-complete problems. If a local optimum for
such a complete problem can be found in polynomial
time by whatever means, then for all problems in PLS
a local optimum can be found in polynomial time.
This is generally not believed to be true, as it would
require a general approach to 6nding local optima at
least as clever as the ellipsoid algorithm, since linear
programming with the simplex neighborhood is in
PLS. On the other hand, Johnson et al. showed that if
a PLS problem is NP-hard, then NP = co-NP.
SchSaNer and Yannakakis [11] showed that the

max cut problem with the FLIP neighborhood is
PLS-complete. It is easy to verify that a FLIP-optimal
solution for the max cut problem on a given graph
G also corresponds to a FLIP-optimal solution for the
2-GGCP on the same graph. Furthermore, we can ex-
tend the graph G and the solution so that we obtain
a FLIP-optimal solution for the general case. We also
know that an m-FLIP and a VD-FLIP-optimal solution
both are FLIP-optimal. This leads us to the following
theorem.

Theorem 6. The GGCP with the FLIP; m-FLIP; or VD-FLIP

neighborhood is PLS-complete.

Fig. 4. Chain.

SchSaNer and Yannakakis introduced the notion of
tight PLS reductions. If there is a tight PLS reduction
from a problem �1 to a problem �2 and �1 contains
instances and starting solutions for which iterative im-
provement needs an exponential number of iterations,
then there exist instances and starting solutions for�2

with the same property. By constructing a tight PLS
reduction, they showed that 6nding a FLIP-optimal so-
lution for max cut by iterative improvement may take
an exponential number of iterations, regardless of the
neighbor selecting rules. Hence, 6nding a FLIP-optimal
solution for the GGCP by iterative improvement takes
an exponential number of iterations in the worst case
as well. As the reductions for the GGCP with the m-FLIP
and with the VD-FLIP neighborhoods are not tight, this
result does not extend to iterative improvement pro-
cedures for 6nding m-FLIP- and VD-FLIP-optimal solu-
tions. This does not imply that there does not exist a
tight PLS reduction for these problems.
To illustrate the exponential number of iterations

needed for 6nding a FLIP-optimal solution, we give an
example of a graph and an initial solution for 2-GGCP
for which best improvement, i.e., always 5ipping the
best vertex, needs an exponential number of iterations
to 6nd a FLIP-optimal solution. This graph consists of
K modules with weights on the edges as shown in
Fig. 3 for i = 1; : : : ; K and a chain of three additional
vertices as shown in Fig. 4.
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Vertex 1 is called the input node and vertex 7 is
called the output node of a module. The input node
of module i is adjacent to the output node of module
i+1, for i=K−1; : : : ; 1, and the input node of module
K is adjacent to the right most vertex of the chain of
Fig. 4. The output node of module 1 is only adjacent
to vertices 4, 5, 6, and 10 of this module. An edge of
weight −M , where M is some large positive value,
makes sure that the two vertices incident to this edge
have the same color. We claim that the best improve-
ment procedure starting from the solution in which all
vertices are colored red, 5ips the output node of the
6rst module 2K times.
In our starting solution, only 5ipping the right most

vertex of the chain yields an improvement. This 5ip
results in a solution in which the input node of mod-
ule K is unhappy, i.e., 5ipping this vertex improves
the solution. The claim is now a direct result of the
following lemma.

Lemma 1. If the input node of module K is the only
unhappy node; the output node of module 1 ;ips 2K

times.

Proof. We show this by induction on K . For K = 0;
the output node is the right most vertex of the chain
and it 5ips once.
Assume the claim is true for K − 1 modules. Con-

sider a graph on K modules of which the only un-
happy vertex is the input node of module K . Flipping
this vertex yields a solution in which vertices 2 and 3
of module K are unhappy. Changing vertex 2 yields
an improvement of 2−K and by our choice of edge
weights, best improvement will only change the color
of this vertex when all other vertices are happy. Hence,
vertices 3, 5 and 7 are 5ipped, which results in a so-
lution in which the input node of module K − 1 is un-
happy. By induction we know that the output node of
module 1 will now 5ip 2K−1 times and then we have
found a solution in which all vertices in the modules

1; : : : ; K − 1 are happy and the only unhappy vertex
is vertex 2 of module K . Thus, this vertex is 5ipped
and then successively vertices 4 and 6 and the output
node of module K are 5ipped. This yields a solution
in which the input node of module K − 1 is unhappy.
By induction, we know that the output node of module
1 5ips another 2K−1 times and then we have found a
FLIP-optimal solution. Hence, the number of times that
the output node of module 1 5ips is 2K .
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