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Abstract 

We consider the single-item discrete lot-sizing and scheduling problem. We present a partial linear description of the 
convex hull of feasible solutions that solves this problem in the presence of Wagner-Whitin costs. 
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I. Introduction 

In recent years a great number of lot-sizing prob- 
lems have been studied from a polyhedral point 
of view (cf. [4]). Most of the results concern the 
polyhedral structure of single-item models. Valid 
inequalities derived for these models have been suc- 
cessfully used in cutting plane algorithms for multi- 
item problems. Hence, (partial) linear descriptions 
of the convex hull of feasible solutions of single- 
item models are a valuable aid in solving lot-sizing 
problems by methods based on polyhedral combina- 
torics. 

In [3], Pochet and Wolsey study four single-item 
lot-sizing problems in the presence of Wagner-Whitin 
costs, i.e., when the unit inventory cost ht and the 
unit production cost Pt satisfy ht --~ Pt ~ Pt+l for 
every period t of the planning interval. For each 
of these problems, they give a partial linear de- 
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scription of the convex hull of feasible solutions 
that solves the problem when the costs satisfy the 
Wagner-Whitin property. These polyhedra involve 
considerably fewer constraints than in the general 
cost case, 

In this paper we derive a similar result for the 
single-item discrete lot-sizing and scheduling prob- 
lem (DLSP). The proof, however, differs from the 
proofs in [3]. In the following section we for- 
mulate the problem and discuss a partial linear 
description of the convex hull of feasible solu- 
tions that solves the problem in the presence of 
Wagner-Whitin costs. This result is proved in Sec- 
tion 3. 

2. The D L S P  with Wagner-Whitin costs 

We consider a single-item single-machine produc- 
tion planning problem with a planning horizon of T 
periods in each of which the production is either zero 
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or at full capacity, say, one unit. This is often a rea- 
sonable assumption in short-term production planning, 
when the time periods are small. The demand in period 
t, denoted by dr, is either zero or one, and has to be 
satisfied in time, i.e., backlogging is not allowed. Fur- 
thermore, if production occurs in period t, but not in 
period t - 1, then a startup has to take place in pe- 
riod t, which incurs a cost ft. In multi-item problems 
startup costs also arise when the machine switches 
from the production of one item to the production of 
another item. Apart from startup costs, a production 
cost Pc and a unit inventory cost he are given for each 
period t. Now DLSP is the problem of determining 
a production schedule that satisfies the above restric- 
tions at minimum costs. 

The problem can be mathematically formulated us- 
ing two types of binary variables: xt, which indicates 
whether production occurs in period t or not, and y:, 
which equals one if a startup occurs in period t and 
zero otherwise. For notational convenience we write 
x,,.t~ instead of ~'/_,, xt, d,,,,~ instead ofZtt~l,  d,, etc. 
Now DLSP is modelled as follows: 

(DLSP) min 

s.t. 

T 

(J) y, + c,x,) 
I=1 

(1) 

xl., ~> dl., (1 ~<t < T) (2) 

xt.r = d l . r  (3) 

& <~xt-i + y, (l <~ t <<. T, xo=O)  

(4) 

x , , y t E { 0 , 1 }  (1 ~<t~<T). (5) 

In (1) we have ct = p, ÷ ht, r. The latter term is 

obtained by expressing the inventory costs as }-~,tr i 
d r ht '  (Xl.t - l.t) = ~ t= l  ht, rxt minus a constant, which 

is omitted from the objective function. Inequalities (2) 
yield that the total production up to period t equals at 
least the total demand up to this period. Furthermore, 
overproduction is prohibited by (3). Constraints (4) 
force that a startup takes place in period t if produc- 
tion occurs in this period but not in the preceding 
one. 

Although the single-item DLSP is polynomially 
solvable, the convex hull of  the set of feasible solu- 
tions of ( 2 ) - (5 )  is not known explicitly. Van Hoesel 

[7] discusses several classes of facet-defining inequal- 
ities. Magnanti and Vachani [2] and Sastry [5] de- 
rive inequalities for a slightly more general problem 
in which also setup costs are involved. 

The following inequalities are adapted from the 
interval left supermodular inequalities derived by 
Constantino [1, Section 2.2], for the capacitated 
lot-sizing problem with startup costs. This prob- 
lem is a generalization of DLSP in which the 
production in period t can attain any value be- 
tween zero and the available capacity in this pe- 
riod. 

Lemma 1. L e t t  E {1 . . . . .  T } a n d j  c {0 . . . . .  dt+l,r}. 
Then all feasible solutions o f  D L S P  satisfy 

J 
Xl.t ÷ Z (Xt+' ÷ Yt+i+l.sa,., .,) >/dl,t + j .  

i=l 

(6) 

Throughout, we denote by s~, k E{1 . . . . .  dl,r}, 
the kth demand period. Thus, sa,.,+i denotes the ith 
demand period after period t. Before proving the va- 
lidity of  (6), let us briefly explain the idea behind 
these inequalities. Observe that xt+i + Yt+i+l,Sd,,,,, is 
nonnegative and integral for any feasible solution 
(y ,x )  of DLSP. Moreover, x~+i + yt+i+l,s<.,., = 0  
if and only if no production occurs in the interval 
{t + i . . . . .  Sd,.,+i }. Rewrite (6) as x,., - da,t >/ ~J=l 
(1 - -Xt+i  - -  Y t + i + l , s a  . . . . .  ) and observe that the left-hand 
side of this inequality denotes the stock at the end 
of period t. Now one immediately sees that this 
constraint forces an increase of the stock at the end 
of period t by one for each index i for which no 
production occurs in the interval {t + i,...,Sd,.,+i}. 
Note that there exist only O(Tdl, T) constraints of the 
form (6). 

Proof of Lemma 1. First, note that inequalities (2) 
are a special case of (6) (take j = 0). Hence, for 
every t and j = 0, (6) is valid. Consider an arbitrary 
(integral) feasible solution of DLSP, say (y,x). By 
rk, k E {1 . . . . .  dr,r}, we denote the kth production 
period in this solution. By definition, we have sl < 
S2 ~ " " " ~ SdI,T--1 ~ S d l , r ,  r l  < r2 < " " " < rdi, T--I  

rd,,.  Moreover, by (2) rk ~< sk, k E {1 . . . . .  dl, r}. 
Let i0 be the highest index i c {0 . . . . .  j}  such 

that ra,,+i < t + i. Then, obviously, rd,.,+i < t + i 
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for all i ~< i0 and xt+ i -q- Yt+i+l,Sd,,,÷~ /> 1 for i > i0. 
Hence, 

J 

Xl,t +E(Xt+i+Yt+i+l ,sd, . , .~)  
i=l 

J 
Xl,t + Xt+l,t+io + ~ (Xt+i + Yt+i+l,sd ..... ) 

i:i0+1 

>~ dl.t + io + j - io = dl,t + j. 

This establishes the validity of (6). 

Recall that the costs are said to satisfy the Wagner- 
Whitin property if ht + Pt >~ pt+l, or, equivalently, 
ct >~ ct+l for all t. With Wagner-Whitin costs there 
always exists an optimal solution satisfying the zero- 
inventor), property, i.e., when a new production batch 
is started in period t, the stock at the end of period 
t -  1 is zero. 

Denote by RDLSP the LP-relaxation of DLSP 
where inequalities (6) replace (2). We claim that the 
following holds: 

Theorem 2. For cost functions that satisfy the 
Wagner--Whitin property, the objective value of 
RDLSP equals the objective value of  DLSP. 

When ct strictly decreases in t, an even stronger 
result can be proven, namely, that RDLSP solves 
DLSP. 

Theorem 3. I f  the objective function (1) satisfies 
ct > Ct+l for every period t, then any optimal solu- 
tion of  RDLSP is a convex combination of feasible 
solutions of DLSP, i.e., the set of  optimal solutions 
of  RDLSP has integral extreme points. 

The proof of the above theorems is postponed until 
the following section. 

Our purpose is to develop a branch-and-cut algo- 
rithm for solving multi-item problems. Due to the 
above result, the O(Tdl, r )  constraints of type (6) are 
expected to yield strong cutting planes. Furthermore, 
we will study the effectiveness of these inequalities 
for problems with more complicating features such as 
startup times. 

3. Proof of the theorems 

The major part of this section deals with the proof 
of Theorem 3. Therefore, assume that ct > ct+l for 
every t. The proof uses a partitioning of a solution 
(y ,x)  of RDLSP into a set of batches ~ ,  where a batch 
B = {pS, . . . ,  qB} is identified with the partial solution 
(ye ,xS)  defined by 

y8 = ( 0 . . . 0 1 0 . . . 0 0 . . . 0 )  

x B = ( 0 . . . 0 1 1 . . . 1 0 . . . 0 )  

1 p8 v 

The construction of the batches B from the solu- 
tion (y ,x)  will be discussed in more detail later. 
Furthermore, a value be, 0 < b e ~< 1, is attached 
to every batch B such that y >>, ~8~.e~bSy 8 and 
x = ~8c.~ bSxS" We say that ~' satisfies the parti- 
tioning condition if  

Vi~{ 1,...,a,.r} Z be = 1, (7) 
BE/~:siE1 B 

where 18 consists of the first IBI demand periods in 
{p~, . . . ,  T}. The partioning condition can be inter- 
preted as follows: if for every B E M we produce 
an amount be in each of the periods in {pB, . . . .  qS} 
and use this production to satisfy an amount b 8 of 
the demand in each of the first IBI demand periods in 
{pB, . . . .  T}, then all demand is completely satisfied. 
Note in particular that ~ o ~  bB(Y B,x8) is a feasi- 
ble solution of DLSP for which the zero-inventory 
property holds if (7) is satisfied by a set of batches 
~' with be = 1 for all B E ~ .  Thus, the partioning 
condition is equivalent to the zero-inventory property 
for integer solutions. 

The proof of Theorem 3 consists of the follow- 
ing two steps. First, we prove that the partitioning 
condition is a sufficient condition for (y ,x)  to be a 
convex combination of solutions of DLSP that sat- 
isfy the zero-inventory property (Lemma 4 and Corol- 
lary 5). Second, we present a greedy algorithm that 
partitions any optimal solution (y* x*) of RDLSP into 
a set of batches ~ with values b B, B E .~, such that 
Y* >~ ~ B ~  bSY B, x* = ~8~.~ bBxB, and the parti- 
tioning condition is satisfied. Combining these results 
yields that all extreme points of the set of optimal so- 
lutions of RDLSP are integral (and satisfy the zero- 
inventory property). 
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Lemma 4. Given a set o f  batches ~ with values b ~, 
0 < b  ~ ~< 1, B E ~ ,  such that (7) is satisfied Then 
(y ,x)  := ~B~.~ bB(yB,x ~) is a convex combination 
of  solutions of  DLSP  that satisfy the zero-inventory 
property. 

Proof.  The lemma is proven by induction on the 
number of  batch-pairs (B,D) in ~ with intersect- 
ing demand sets I ~ and 1 ~, which is denoted by 
v. Thus, v --- ]{(B,D) : B,D E ~ , B  ~ D, and I B N I  ~ 

0}1. 
If  v = 0, i.e., if no two batches have an intersecting 

demand set, then, by (7), each batch B in .~ has value 
b B =  1. We already observed that in this case (y ,x)  
is a feasible solution of  DLSP that satisfies the zero- 
inventory property. 

Now let v > 0 and suppose that the result has been 
established for sets of  batches that satisfy the parti- 
tioning condition and for which at most v - 1 batch- 
pairs have intersecting demand sets. In order to show 
that (y,x)  can be written as a convex combination of  
solutions of  DLSP, we introduce the following defi- 
nition: a subset ~ of  ~ is said to yield a partition of 
the set of  demand periods {sl . . . . .  sj}, 1 <<,j <<, d~,r, 
i f  UBE~I B = {Sl . . . .  , S j }  and no two batch-pairs in 
.& have intersecting demand set. We will construct 
a subset ~ of  M that yields a partition of  the set 
{s~ . . . . .  sa,~}. First, we take a batch B whose de- 
mand set contains the first demand period s~ and set 

= {B}. Suppose that we have found a set o f  batches 
that yields a partition of  the first i < d h T demand 

periods. Then there exists a batch D E 2,#\@ such that 
the demand set 1 D contains si+~ but not si. This fol- 
lows from 

Z b B =  ~ b B =  1 

BE,~\~: &+l ~I B B~.~: &, i El t~ 

= ~-~ b ~ >  ~ b ~ . 
BEY~:s, EI ~ B~,q~\6~::siEl B 

Set b = min{be: B E ~ }  and define ~ = M\{B E 
~S : be=/~}. Note that, by (7) and the assumption that 
v > 0, we have b < 1. Set ~B = (b ~ _ b)/(1 - b) for 
B E ~ and b B = be/(1 - b) fo rB E ~ \ ~ .  Let i E 
{ 1 . . . .  , d~,r}. Since there is exactly one batch B E 
such that si E 18, we have 

Z be- - + Z be 
l - b  1 - b  

BE.7~: s, El B BG~: si GI ~ BEM\~: s, El ~ 

S B E ~ : s ,  EIB b B - b 

1 - b  

Hence, ~ satisfies the partitioning condition. Since 
/~ < 1, there is at least one batch-pair (B,D) with B E 
7~ and D E M \ ~  such that I ~ ~ I ° ¢ O. This implies 
that the number of  pairwise intersecting demand sets 
in M is less than v, the number of  pairwise intersect- 
ing demand sets in ~ .  Now the induction hypothesis 

yields that ( y" , x" )  := ~BE~ bB(yB'xB) is  a convex 
combination of  integral solutions satis_fijing the zero- 
inventory property. Thus, so is (y, x)  = b(y', x' ) + ( 1 - 
b)(y",x"). 

Using the above lemma it is not hard to show the 
following: 

Corol lary 5. I f (y ,  x) is a feasible solution of  R D L S P  
and.~ a set o f  batches B with values ba,BE ~ ,  such 
that x = ~BEJ~ bBxB, Y >~ ~ece~ bey  B, and the par- 
titioning condition is satisfied, then (y ,x)  is a convex 
combination of  solutions of  DLSP  that satisfy the 
zero-inventory property. 

In the sequel, let (y*,  x* ) denote an optimal solution 
of  RDLSP. From the above results it follows that, in 
order to prove Theorem 3, it suffices to show that 
( y* ,x* )  can be partitioned into a set o f  batches ~ with 
values be, B E ~ ,  such that y* >1 ~ B ~ ¢  bBY B,x* = 
~ B ~  bBx B, and the partitioning condition is satisfied. 
We claim that the following algorithm provides a set 
o f  batches ~ with the desired properties. 

The demand set of  D is {si+, . . . . .  si,} for some 
i' E {i + 1 . . . . .  d l , r} .  Adding D to ~ gives a partition 
of  the demand periods {sl . . . . .  si,}. We proceed in 
this way until ~ yields a partition of  {Sl . . . . .  sd,.r}. 
By construction, the integral vector ( y ' , x ' )  := 
~Be~(yB ,x  B) is a feasible solution of  DLSP that 
satisfies the zero-inventory property. 

begin CONSTRUCT-BATCHES 
f o r t = l  t o T d o  
begin 

~, := x*; ~, := yT; d, := d, 
end; 

{~, is called the residual production, etc.} 
9 : = 0 ;  
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while  ~ 1, r > 0 do 
begin 

qD := last period with positive residual 
production; 

p9 := last period in {1 . . . . .  qD} with positive 
residual startup; 

D := {pO . . . . .  qD}; 
jD := set of demand periods with positive 

residual demand in {pD . . . . .  T}; 
b D := min{fipD, mintro Yct, mintrjD ~lt}; 
Pp~ := 5p~ - bD; 
for tED do£t : : ~ t  - bO; 
for t 6jD do dt := d t -  bD; 

:= ~ U {D}  
end; 

end. 

Observe that 2~, )3 t, and dt are non-increasing and 
nonnegative during the execution of the algorithm. 
Moreover, the residual demands d ,  are non-increasing 
in i. It is also easily seen that 2t ~< 33t+2t_l and j3 t ~< ~t 
hold for all t. Therefore, 2qD = minted xt, and i f J  D 

0, then de=mint~s~ d ,  where g denotes the last period 
with positive residual demand. 

To prove that the batches constructed by the algo- 
rithm satisfy the partitioning condition, we show that 
during the execution of the algorithm the following 
invariants hold: 

(11) Vtr{1,..., r} x* --- Yet + ~-]~8E~:trB bB; 
(I2)  VtE{1,...,T} Y t  = f~t q- E B c ~ : t = p  s bB; 
(I3) ViC{I....,d,,z} 1 = ~ls, Aw EBE~:siEjB bB; 
(14) VBr~ ]jB] ___ Ia[; 
(I5) Vtr{1,...,r_l} YCl.t >1 ~lLt and£1,v = dl.r .  

Note that (I1)-(I3 ) relate the residuals of the variables 
and parameters to the batch sizes, whereas (15) states 
that (4) remains valid during the algorithm. Finally, 
(I4) relates the production periods to the demand pe- 
riods, in a way similar to the zero-inventory property 
if integrality of the variables were true. 

Suppose that (I1)-(I5) hold during the execution 
of the algorithm. At termination of the algorithm we 
have 2t =0,)~t ~> 0, and, by (15), dt = 0 for all t. 
Hence, by (I1) and (I2), the set of batches ~ provided 
by CONSTr~UCT_BATCHES satisfies x* = ~ 8 ~  bBxB and 

Y* >~ ~8~:~ bRY B" Since ds, ~> ds,~, during the exe- 

cution of the algorithm, (14) implies that jB is the set 
of the first IBI demand periods in {pB . . . . .  T}. Thus, 
if (I3) and ( I 4 )  hold, then the set ~ satisfies the par- 
titioning condition with 18 = jB for all constructed 
batches B E ~ at the end of the algorithm. Now Corol- 
lary 5 yields that (y*,x*) is a convex combination of 
feasible solutions of DLSP. Hence, the validity of the 
invariant during the execution of the algorithm implies 
the validity of Theorem 3. 

The invariant is easily checked to hold initially. We 
will prove that if the invariant holds at the beginning 
of an iteration, then it also holds at the end of that it- 
eration. In the sequel the current iteration is the one 
for which validity of the invariant is proven. We de- 
note the batch constructed in the current iteration by 
D. The set of batches that are constructed in previous 
iterations is denoted by 9 .  Now (I1)-(I3) are easily 
checked to hold at the end of  the current iteration, and 
(15) follows from (I4). The latter holds at the end of 
the current iteration if ]jD[ = [D[. Hence, we are left 
with the proof of [jD[ = [D[. 

Proof  of  IjD[ =_ [D[. We first show that [jD] > [D[ 
implies that (y*,x*) is not optimal. Next, we show 
that if ]jD] < ID], then (y*,x*) violates a constraint 
of type (6). Both results contradict the assumption that 
(y*,x*)  is an optimal solution of RDLSP, which leads 
to the conclusion that ]jD] = ]D]. 

Part 1: [jD[ <~ [D[. Assume that [jD[ > [D[. We 
claim that in this case we can move an amount e > 0 
from the production in period qD to period qD + 1 
while maintaining feasibility. Since cqD > Cqf~+l, this 
yields a cheaper solution than (y*,x*),  which con- 
tradicts the optimality of (y*,x*).  In order to prove 
our claim, it suffices to show that the following con- 
straints have positive slack, i.e., they are not satisfied 
at equality: 

(i) x ~  ~> 0; 

(ii) * XqD+I ~ 1; 
(iii) * * *"  XlqD+l ~ yqo+l -]-Xqo, 
( iv)  Vt, j:t+j=qD 

X* "q'~J (X* + * )>/ dl,t + j .  1,t -[- z..~i=l~, t+i Yt+i+l,sdLt+i 
• >>.£qD > 0. For the By definition of qD, we have Xqo 

proof f * o Xq~+l < 1, we use the following important 
observation: if period s has positive residual demand in 
the current iteration, then s E J  B for every batch B E 
with pB ~< s. From the assumption that IJDI > IDI it 
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follows that there is at least one demand period after qD 
with positive residual demand. Thus, d~, > 0, where 
s t denotes the first demand period after qO. Hence, if  
B E @ satisfies qD + 1 E B, then s ~ E J B. Together with 
XqD+I = 0,  this  yields 

, , _ {I,) Z bB<~ Z ba XqD+l =XqD+l --XqD+l 
B:qn+IEB B:s~EJ B 

= 1 - d s '  < 1 .  

In order to show that (iii) is not satisfied at equality, 
notice that whenever 2q~+~ decreases in an iteration, 
one of  the variables .~qD o r  yqt~+l decreases by the 
same amount. At the beginning of  the current iteration, 
strict inequality holds since 0 = 2q~+1 < 2q,. 

We omit the proof  that (iv) has positive slack, since 
it is rather technical and does not provide any further 
insight. The interested reader is referred to [6]. 

We conclude that none of  the constraints ( i ) - ( i v )  
is satisfied at equality, which establishes the validity 
of  Ig l-<< IDI. 

Part 2: IJDI >/ IDI. Suppose that [JD I < IDI. We 
claim that in this case constraint (6) with t = pO _ 1 
a n d j  = [JD I is violated by (y* ,x*) ,  i.e., 

IJDI 

X* * * 1,pD_l-~ Z ( X p D 4 _ i _ I  + Yptg+i,s,¢L, D i., ) 
i=1 

.< dl,pD 1 q_ [jD]. 

First, suppose that [JD I = 0. Then x* -- - 1,pD--1 -- XI,pD--1 

< Yq,p~ ~ dLr  = d L p , _  1 = dLpv_  1, which estab- 
lishes our claim. In the sequel, we therefore assume 
that IJDI > 0. In the proof  we use the following ob- 
servation: 

VtE{pD+I.....sl );Z ---- O, (8 )  

where # denotes the last period with positive residual 
demand. For t E { pD + 1 . . . .  , qD} this is by choice 
of  pt). Therefore, suppose that )5 > 0 tbr some z E 
{qO + 1 . . . . .  if}. Similar as in Part 1, we claim that 
in this case we can obtain a cheaper solution than 
( y * , x * )  by moving an amount e > 0 from the pro- 
duction in period qD to period r. In order to prove 
our claim, it again suffices to show that the constraints 
( i ) - ( i v )  that were considered in Part 1 are not satis- 
fied at equality. For most cases the same arguments 

as in Part 1 can be used. The reader is again referred 
to [6] for the details. 

Since Sd,.po,+lJOl is the last period with positive 
residual demand, the right-hand side of  the constraint 
under consideration equals dl,t + IJDI = d L#. We have 

Ijt)[ 
XI,pD--1 q- S (XpD_l+i -Jr- ypD--I+i+I'Sd t pD i +i) 

i = 1  , - 

IJVl 
(|I),([2),(S) - 

= XI'pD--I+IJD[ + Z Z 
i=1 BE~:qB>~pD_I+i, 

pB~Sdl, pD l+i 
(,) IJDI 

<~ Xl'pt)--l+lJDI + Z Z bB 
i = l  BE~:Sdl.po l+iEJ8 

IJ't 

03) ~l,pDl+lJO] q_ Z (  1 _ ds~ ,pD-,") 
i=l 

(t) 
< dL~. 

b B 

Note that in the current iteration all demand periods 
in {pD . . . . .  #} have positive residual demand. Thus, 
for each B E M with pB ~ Sd, .pD,+i  ' i <~ IJDI, we 

have Sd,.pD_,+i E jB. This shows the validity of  ( . ) .  

Moreover, the assumption that IJDI < IDI yields that 
pD _ 1 + IJDI < qD, hence, by definition of  qD and 
(I5), we have Xl,pZg_l+ljDi < .~l,qD = da,e. From this 
the validity of  ( t )  immediately follows. 

This concludes the proof  of  [jD] = [D I and, hence, 
the proof  of  Theorem 3. [] 

As a corollary we can prove Theorem 2 as follows. 
For arbitrary e > 0 the cost function c~ := c t + ( T - t ) e  
satisfies the requirements of  Theorem 3. Therefore, 
for every ~ > 0 there exists an optimal solution of  
RDLSP that is an integral extreme point. Since the 
objective function is continuous in ~, there must be an 
integer optimal solution of  RDLSP for e =0 .  However,  
we do not necessarily find that for e = 0 all extreme 
points of  the set of  optimal solutions of  RDLSP are 
integral. 
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