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Abstract

Valuation of the prepayment option in Dutch mortgages is com-
plicated. In the Netherlands, mortgagors are not allowed to prepay
the full mortgage loan without a compensating penalty. Only a lim-
ited amount of the initial mortgage loan can be prepaid penalty-free.
We introduce a general model formulation for the valuation of lim-
ited callable mortgages, based on binomial trees. This model can be
used for determining both the optimal prepayment strategy and the
value of embedded prepayment options. For some mortgage types
the prepayment option can be valued exactly, other types require ap-
proximative methods for efficient valuation. The heuristic we propose
determines the prepayment option value efficiently and accurately for
general mortgage types.
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1 Introduction

A mortgage loan is a long term loan secured by a collateral, usually real es-
tate. The mortgagor borrows money from the mortgagee and pays back the
loan according to an agreed upon amortization schedule. Typical contracts
have a maturity of 30 years. Mortgage contracts are written with various
embedded options. For example, at periodic interest rate adjustment dates,
borrowers can be guaranteed the lowest interest rate over the last two years,
or borrowers can set the period over which the rate remains constant. The
most important option is the right to prepay the loan before maturity. Ra-
tional borrowers will prepay, or refinance, their mortgage if interest rates are
sufficiently low.

Prepayments are an important phenomenon in the Dutch mortgage mar-
ket. In a series of empirical studies of prepayments in the Dutch market,
Alink [1], Charlier and Van Bussel [2] and Hayre [4] report that the pro-
portion of newly issued and refinanced mortgages in the mortgage pool has
more than quadrupled in the last fifteen years. This increase is completely
due to refinancing existing loans, driven by the significant mortgage rate de-
crease in this period. Consequently, the importance of optimal interest rate
driven prepayment and refinancing has increased. But although various arti-
cles analyze observed prepayment behavior, less is known about the optimal
prepayment policies of borrowers.

Optimal strategies have been derived for mortgage prepayment behavior
in the US (see McConnell and Singh [8] and Kau, Keenan, Muller and Ep-
person [5, 6]). These studies develop techniques that are similar to valuation
methods for American options, based on binomial lattices. These techniques
are not applicable for Dutch contracts, since US and Dutch contracts differ
in one important aspect. In the US mortgage loans can be prepaid fully
and penalty-free. In the Netherlands, mortgagors are only allowed to pre-
pay a fixed percentage (usually 10% or 20%) of the initial mortgage loan
each calendar year. If a larger prepayment is made, a penalty equal to the
present value of the expected profit of the excess prepayment has to be paid.
Therefore, prepaying more than allowed is never optimal.

The partial prepayment option leads to much more complicated optimal
prepayment strategies. At any point in time, the option value of future
prepayments depends on the history of previous prepayments. This path-
dependence precludes an efficient solution using a backward recursion in a
binomial lattice, as in Kau, Keenan, Muller and Epperson [5, 6]). Instead, we
must apply a non-recombining tree approach, because the history of prepay-
ment decisions is relevant for the current mortgage value, thereby introducing
path dependencies.



In this paper we present two solution methods. The first is a general
LP formulation of the problem. This provides an exact optimal prepayment
solution within a full binomial tree. Since the number of nodes in a full bi-
nomial tree grows exponentially, the exact LP solution will not be efficiently
computable for large models with many time periods. For an efficient ap-
proximate solution we will reduce the full tree by considering a predefined
prepayment strategy. This is our second approach, based on a combina-
tion of a non-recombining tree method when required and an efficient lattice
method when possible. A conceptually similar approach is used by Nielsen
and Poulsen [9], to price mortgage contracts with delivery options (introduc-
ing path dependencies), where optimality decisions are only taken in a small
subset of time periods. Between decision dates the unique scenario path of
the mortgage value is given by a lattice. At decision dates the state space
behaves as a tree, branching out and not recombining. The number of states
increases exponentially with the number of decision dates.

In the following sections we formulate a linear programming model for
the valuation of partially callable annuity mortgages. The LP formulation
can also capture other amortization schemes, such as linear and interest-only
mortgages. All time periods in our model allow for prepayment of a part
of the mortgage loan, involving the use of a complete non-recombining tree.
Linear programming is applied both to obtain an exact mortgage value and
prepayment strategy and, using duality theory, to derive bounds on the op-
timal mortgage value whenever the optimal prepayment strategy cannot be
determined efficiently. The next section introduces the mathematical frame-
work and builds the LP model. The dual problem is formulated in section
3. The implications of the LP formulation for fully callable mortgages are
provided in section 4, based on duality theory. Section 5 solves an accurate
heuristic for the original LP model, obtaining bounds on the mortgage value.
We also narrow the gap between upper and lower bound on the mortgage
value, in order to derive an accurate approximation. Results are provided in
section 6.

2 Mathematical framework

The problem is formulated on a non-recombining tree. The states in a non-
recombining tree are labelled as in figure 1. The root node at ¢ = 0 has label
1, the two nodes at time t = 1 are labelled 2 and 3. Generally, the transitions



Figure 1: Non-recombining binomial tree

The figure shows the first four time steps of a non-recombining binomial tree
and the applied node labelling. Transitions have probability %
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are given by
2
1
N 20+ 1.

All transitions occur with probability % The time period (i) corresponding

to state ¢ is
t(7) = [*log(i)].

The final period T has nodes 27,...,27+1 — 1. The unique predecessor of
state i, if not the root node, is |i/2]. A state ¢, for which #(i) = T, is called a
leaf node. All nodes that are neither the root node nor a leaf node are called
intermediate nodes.

Nodes are associated with one-period interest rates r;. An interest rate
scenario is represented by a path from the root node to a leaf. These interest
rates determine the value of cash flows at each node of the tree. Formally,
the state price J; is defined as the root price of a security that pays out 1 in
state 7 and zero in all other states. The state price is recursively defined by

Moo= 1
; ELW, i>1 (1)
21+TLZ’/2J

(see Duffie [3]). State prices are used for discounting cash flows along a
scenario path. The present value of an asset, paying a cash flow of ¢; in state
¢ and zero in all other states, is equal to \;c;. Since a mortgage is a portfolio
of such assets, the mortgage value equals

We next develop a model for the cash flows. The mortgage has a maturity
of T' periods and starts with a principal U; at ¢ = 0. At every node 7 the
borrower must pay interest at a rate y on the remaining unpaid balance U|; 5
of the previous period. In addition the borrower makes two additional cash
flows: scheduled redemption of the principal and prepayments.

We will focus on mortgage contracts with a regular redemption schedule,
of which an annuity mortgage is most popular and well-known. An annuity
contract is characterized by constant scheduled cash flows over the remaining
lifetime of the contract. Let L > T be the initial maturity of the contract,
and n; = L — (i) the remaining lifetime at node i. Also define the unpaid
balance U; in state 7 as the amount of money still owed to the mortgagee at



this state. The annuity M; in state ¢ is equal to the unpaid balance in the
previous period times the annuity factor

. Y
f(yanz) - 1 - (1 +y)_ni’
leading to
M; =Uijg) - f(y,mi +1) (3)

Without prepayments the cash flow is constant over all states, that is M; =
M. In this case, the annuity M implies that the principal is repaid exactly
at maturity. Linear and interest-only mortgages are easily modelled by only
adapting f(y,n;) to y +n; ' and y, respectively.

An annuity mortgage with partial prepayments is defined by the principal
amount U;, a periodic contract rate y, a maturity L and K consecutive
subintervals Iy, of [0,...,T], containing all distinct ¢(¢) in increasing order.
The endpoints of all subintervals belong to the set {0, ..., T} such that each
time period is in exactly one interval. The first set starts at £ = 0, the last
set ends with ¢ = 7. We consider a single fixed rate period, ending at 7.
In each interval I, the total amount that can be repaid in this interval is
restricted to be less than or equal to X;. In most cases all intervals have
equal length (usually a calendar year) and the prepayment is restricted to at
most a fixed percentage a of the principal amount: X, = X = « - U; for all
k.

The actual prepayment in state ¢ is denoted by z;. Total cash flow at
state 7 is thus

At the end of each fixed rate period, the remaining loan balance can be fully
repaid without penalty. The mortgage price in leaf nodes is therefore equal
to the remaining unpaid balance. Consequently, in the optimization model
the prepayment amount x; can be set to zero in all leaf nodes. In fact, in
leaf nodes the mortgagor is indifferent to prepay. Furthermore, we assume
that no prepayment takes place at ¢ = 0 (this could be accounted for in the
initial loan amount).

The original unpaid balance U; can be scaled to 1. The first class of
constraints models the unpaid balance in an intermediate state :

Ui = Ulip- (14y) —c
Ui - (L +y = fly,mi+ 1) =z, 1<i<2h, (5)

Every period the unpaid balance increases at rate y. A regular amount M;
is paid in state i according to (3). Additionally, the mortgagor must decide



whether to prepay an amount up to the allowed X = « - Uy, with « the
maximally allowed prepayment percentage. Because no prepayment occurs
in a final state, the unpaid balance in such state equals

Ui=Ulij2) - (1 +y— fly,n+1)), i > 2T

The next class of constraints models the upper bound on the total pre-
payments within a given time interval. Let us denote by @ the set of all
paths for which the first state on the path belongs to the layer corresponding
to the begin point of interval I}, and the last state on the path belongs to the
layer corresponding to the end point of the interval I, kK =1,..., K. Then
the additional prepayment amount x; is restricted by

Y wi<X, QeQ, k=1,... K (6)
i€Q
We consider a constant prepayment amount X = X, and all subintervals
make up exactly one calendar year.

An optimal prepayment strategy for the mortgagor is the strategy that
minimizes the present value of all payments. These payments include regular
payments M;, additional payments z; and, if any, redemption of the remain-
ing contract value at the leaf nodes. Payments are discounted by means of
the state prices )\;. The mortgage value is now represented by

271 2T+l
V= Z AilUigey - f(y,mi + 1) + o] + Z AiUJij2) (1 +y). (7)
i=1 i=2T

Now, the linear programming objective for pricing annuity mortgages
with partial prepayments is to

2T 1 2T+1_1
minimize Z )\i[Ul_i/QJ . f(y, n; + 1) + SCZ] + Z )\iUl_Z'/QJ (1 + y)
=1 i=2T
subject to
U, = 1
w < X, QeEQ, k=1,... K
1€Q
U, > 0, Wi

The last two restrictions state that the borrower can never prepay more than
the unpaid balance and that prepaid amounts cannot be taken out again.

7



In practice, some mortgage contracts allow taking out earlier prepaid loan
amounts. In that case x; can be restricted to be larger than minus the
sum of all previous prepayments, or larger than some contract specification
restricting the maximal amount to take back.

An upper bound on the mortgage value can be obtained by constructing
a feasible solution to the general (primal) problem. No prepayment, equating
all x variables to zero, is a trivial feasible solution for which the objective
boils down to discounting future regular periodical payments. Consequently,
the value of a non-callable mortgage is a trivial upper bound on the value
of a partial prepayment mortgage with the same contract rate and time to
maturity. In order to find the mortgage value with partial prepayments,
the variables z; (and the resulting U;) of this LP model must be optimized.
Together, the variables x; constitute a prepayment strategy.

As an example of the model formulation, consider a problem instance
defined on the state space given in figure 1. We assume that we have two
time intervals, I; = [0,1] and I, = [2,3]. (Time intervals with the year
split through nodes, such that one time period belongs to both the previous
and the upcoming year, requires two prepayment variables for each end-of-
calendar year node. This can be achieved by assigning one of the prepayments
to each of the edges incident to the end-of-calendar year node. For the
purpose of the example, this would complicate the formulations and increase
the number of variables unnecessarily.) Furthermore, we face a constant
maximum prepayment percentage X and a contract lifetime of four periods,
that is, the final tree period marks the end of the contract. The model is
given below in standard format. For this small scale example the contract
is fully amortized at the end of the fixed rate period (that is, at ¢ = 4). In
case the mortgage lifetime is longer than the fixed rate period, an analogous
formulation can be applied, only changing n;. The objective of the example
is to

minimize )\Q[Ul . f(y, 4) + 5172] + ...+ )\15[U7 . f(’y, 2) + .2515]
+ )\16U8(1+y)+...+)\31U15(1+y)
subject to

Uy
UQ — U1(1 +y) + Ulf(y,4) +x9 = 0

Us —Ur(14+y) +Urf(y,2) + 215 = 0



—T9 > —-X
—x3 > —X
—x4 —xg3 > —X
—x7—x15 > —X
u > 0, Wi
r, > 0, Vi

3 Dual formulation

In order to make statements about the optimality of a solution, we apply
duality theory. Before deriving the general dual problem formulation, we
provide the dual of the example at the end of the previous section. Dual
variables v; and z; are introduced, the first correspond to the constraint set
(5), the second to the restrictions (6). For each state of the tree there exists
one v;, while a z; is required only for periods concluding a calendar year as
these determine the number of calendar year restrictions (6). Denote the
set of nodes concluding the calendar years by C'. Both v; and z; have labels
equal to the corresponding state, such that the z; labels are not continuous.
For instance, in the state space example z; does not exist because state 4
does not mark a calendar year end. The dual formulation of the four-period
example is given by

maximize -X Z zi + v
ieC
subject to

vr —va(1+y) +vaf(y,4) —vs(1+y) +usf(y,4) < Aaf(y,4) + Asf(y, 4)

vy — (1 +y) +vaf(y,3) —vs(1+y) +vsf(y,3) < Af(y,3)+Asf(y,3)

U3 — Uﬁ(l + y) + UGf(ya 3) - U7(1 + y) + U7f(y: 3) S )\ﬁf(y: 3) + )\7f(y7 3)
vy = via(1+y) +v1af(y,2) —vis(1 +y) +visf(9,2) < Aaf(y,2) + Aisf(y,2)

vs < (Mg +M7)(1+y)

vis < (A0 + As1)(1+v)



—2z04+vys < A9
—z3+vs < A3
—28—29tuvs < N\
—zio—2zn +vs < As
212 — 213+ V6 < Ag
—zia — 215 +v7 < A7
—28+vg < Ag
—z15+ V15 < As

zi > 0, Viel

Let C; C C denote the set containing all states, marking the end of the
calendar year to which state 7 belongs, that are attainable from state 7. For
instance, considering intermediate state 4, Cy, = {8,9}. Also, for notational
convenience, define the function g(i) to be

9(7) = (vai + vaip1) (L +y — f(y, 1)) + (Aai + Aaiga) f(y, 14).

Final period states ¢ = 27, ..., 27+ — 1 have v; = )\;, which can be observed
when including the balance constraints U; > 0 for these states explicitly
in the problem formulation and rewriting the objective to include the re-
maining unpaid balance U; for leaf nodes separately, discounted by A;. For
penultimate states, g(i) can therefore be simplified to

1+y

g(i) (Agi + Aaig1) (1 +y) T+r,

The complete definition of the function g(i) is then

(vo; + v241) (L +y — fy,m4)) + (Nai + Aai1) f(y, 1),
g(i) = i:L___,QT*l—l (8)

(A2i + Aoip1) (1 + ), i=2T-1 . . 2T —1.

Now, the general formulation of the dual problem to value annuity mort-
gages with partial prepayments is the following:

maximize —X Y .2 + v

subject to
v; < g(), i=1,...,2"T -1
_Zzec,-ZE“LUi < N, i=2...,2" -1
Zi > 0, VieC

10



Complementary slackness conditions can be used to find dual variables
based on the primal solution. If a primal inequality contains slack, then the
corresponding dual variable equals zero. For the restrictions in our mortgage
valuation problem, this implies:

Y wi< X =2z=0, (9)
1€Q

where /¢ is the last node, at the time interval end, of path . Typically,
prepayment is restricted per calendar year, such that path () covers one
year. Node /¢ is then the last node of the year. Condition (9) states that
if prepayment during scenario path interval () is less than the maximally
allowed amount, the dual variable z, can be fixed to 0.

When the dual solution is known, complementary slackness can be used
to obtain a partial solution to the primal LP problem:

2>0=) n=X. (10)

This complementary slackness condition states that if the dual variable z,
belonging to state /, is positive, then a maximal prepayment is optimal along
path @), which ends in node ¢ and covers exactly one year.

Complementary slackness conditions with respect to the inequalities of
the dual formulation can be derived similarly. These conditions read, Vi =
2,...,2T -1,

_ZZIZ“’UZ'<)\1‘ = ;=0 (11)
LeC;
z, >0 = _sz+vi:)\i (12)
LeC;
and

From the dual problem formulation follows that the dual variables v; must
be less than or equal to both g(i) and A+ ... 2, As v; (the dual variable
to be maximized) is determined by a backward recursion approach depend-
ing on all future v;, we may state that v; = min(g(i), \i + D _pcq, 20), Vi =
2,...,2T — 1. Hence for given z, the complete dual solution and the corre-
sponding mortgage value can be obtained by backward recursion. The opti-
mal prepayment strategy in state ¢ can be partly derived from this minimum
evaluation to obtain v;, as will be shown by the next two theorems.

11



Theorem 1 If A\i+),cc. 20 < g(i), then a final prepayment of the remaining
loan is optimal in state 1.

Proof Suppose that A\i+) ;.. 20 < g(i). Then v; = N+, 20 < g(i), and
U; = 0 because of complementary slackness condition 13. A full prepayment
of the remaining loan is optimal. Similarly, if full prepayment is not optimal
in state 7, then U; > 0. By complementary slackness condition 14, v; = g(i),
which can only be true if g(i) < A\ + >, 2. |

Theorem 2 If g(i) < A\; + Zlec,- 2¢, then no positive prepayment of a (par-
tially) callable mortgage is optimal in state i.

Proof Suppose that (i) < A\i+ e, 2. Then v; = g(i) < Ni+) 0. 20, and
x; = 0 because of complementary slackness condition 11. No prepayment is
optimal. Similarly, if a positive prepayment is optimal in state ¢, then z; > 0.
By complementary slackness condition 12, v; = \; +Zeeci 2y, which can only
be true if \; +>,c0 20 < g(9). |

As a direct result from complementary slackness, the theorems imply that
for a non-final partial prepayment,

A+ >z =g(i)
£ec;
must hold. The theorems on optimal prepayment are difficult to use for
partially callable mortgages, since all non-final partial prepayment decisions
cannot be determined by either \; + > ,. 20 < g(i) or Ai + D, 20 >
g(i). For fully callable mortgages however, the optimal prepayment strategy
follows easily, as will be discussed in the next section.

4 Implications for fully callable mortgages

Mortgage valuation including full prepayment is a relaxation of the original
problem formulated in section 2, omitting the limited prepayment restriction
(6). Stated differently, the mazimum prepayment amount X is infinite for
fully callable mortgages. Actual prepayments must still satisfy the conditions

Uu, > 0, Vi
As aresult, ZieQ x; < X, VQ is a valid constraint for fully callable mortgages
as well, assuming X to be infinitely large. By complementary slackness

condition (9),
20 =0, VYl € C;, Vi.
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The equations with respect to the dual variables v; follow directly from the
dual programming formulation and the fact that z; = 0, Vi € C. Therefore,
the value of a fully callable mortgage is equal to the dual objective v, where
vy is given by

v = g(l)a
v; = min(g(i),N\), i=2,...,27 —1. (15)

Terminal values to the backward recursion of v; are either provided at the
final states, for which v; = \;, or at the penultimate states, at which v; only
depends on state prices and the contract rate, according to the definition of
g(i) in (8). This approach is comparable to the standard backward recursion
applied for the valuation of American options.

Optimal prepayment conditions for a fully callable mortgage are based
on complementary slackness and can be easily derived from the theorems
on optimal prepayment in the previous section. The optimal prepayment
strategy of a fully callable mortgage depends solely on ¢(i) and the state
prices \;, according to (15). Theorem 1 implies that full prepayment of a
fully callable mortgage is optimal in state i if \; < g(i). (From the definition
of g(i), the recursive defining of the state prices and the restrictions of the
dual problem it is easily shown that if \; < ¢(i), then r; < y. This implies
that interest rates are lower than the contract rate whenever full prepayment
is optimal. The converse however, is not necessarily true.) No positive
prepayment of a fully callable mortgage is optimal in state i if A\; > g(i),
according to theorem 2. If \; = g(i), a mortgagor is indifferent to prepay or
not. In that case, ‘no prepayment’ or ‘full prepayment’ is not dominated by
any strategy involving partial prepayments.

Any dual feasible solution provides a lower bound on the mortgage value.
Consequently, the value of a partially callable mortgage is bounded from
below by the value of a fully callable mortgage with the same contract rate
and time to maturity. The lower bound can be improved by increasing z; for
some 7. Although, according to the dual problem formulation, this decreases
the lower bound directly, v; (and vy by backward recursion condition (15))
can increase due to constraint relaxation. If the increase in v, is larger than
the rise of X' ). _, 2, raising some 2; can improve the dual solution and hence
the lower bound on the mortgage price.

Since the problem formulation is based on a non-recombining tree only
small problem instances can be solved to optimality. For long term, partially
callable mortgage contracts the optimal prepayment strategy cannot be de-
termined efficiently. The next section introduces a heuristic to derive the
optimal prepayment strategy based on a lattice approach. This approxima-
tive strategy is used to improve the bounds on the mortgage price.

13



5 Improving the partial prepayment strategy

Small problem instances can be solved exactly by either primal or dual for-
mulation, based on a non-recombining tree approach. For large instances
(a common fixed rate period is 10 years; with monthly periods our problem
size equals 120 periods, resulting in 2'? final states), such formulation is
not efficiently solvable. Therefore, we must focus on obtaining upper and
lower bounds on the mortgage value by constructing primal or dual feasible
solutions respectively. Any primal feasible solution (that is, an allowed pre-
payment strategy) implies an upper bound on the optimal value of a partially
callable mortgage. This section constructs a primal feasible solution, based
on a lattice approach to retain computational efficiency.

The size of the original lattice equals the length of the first fixed rate
period. During this period a large number of prepayment decisions must
be taken. According to the proposed heuristic each prepayment originates a
new mortgage loan with a smaller unpaid balance, periodical payment and
time to maturity. These new mortgage loans are valued by a sublattice of
the original lattice, using the corresponding interest rates.

Figure 2 shows the decomposition process based on the full prepayment
boundary. This boundary is derived according to the optimal prepayment
strategy of a fully callable mortgage. Optimal valuation of fully callable mort-
gages and the derivation of the full prepayment boundary can be performed
efficiently. All nodes below the full prepayment boundary are considered as
states in which full prepayment (if allowed) is optimal. Full prepayment is
not optimal in nodes above the full prepayment boundary.

Optimal prepayment of a partially callable mortgage can be both earlier
and later than an optimal full prepayment. It might be optimal to postpone
a partial prepayment if only limited prepayment is allowed. The reason is
that higher interest payments are compensated by a lower future unpaid
balance. A later prepayment reduces this unpaid balance more than an early
prepayment, as regular redemption reduces the unpaid balance more before
than after an additional prepayment. A lower unpaid balance leads to lower
future periodical payments. If these lower payments (more than) offset the
disadvantageous higher interest payments due to postponing prepayment, a
later prepayment might be optimal. Consequently, for a partially callable
mortgage ‘no prepayment’ can be the optimal decision in a node below the
full prepayment boundary. Notice that postponing prepayments can only be
profitable for mortgages with a regular amortization schedule. Also, for fully
callable mortgages there is no gain of postponing a prepayment. The unpaid
balance after full prepayment is zero, the resulting periodical payments are
zero as well, and these payments can therefore not be used as compensation

14



Figure 2: Decomposition based on full prepayment boundary

The figure shows the main lattice and one of the first level sublattices af-
ter a decomposition based on the full prepayment boundary (the horizon-
tal dashed line). All encircled nodes are candidate prepayment nodes. All
solid encircled nodes are nodes in which a first prepayment is considered
and from which a new sublattice is constructed. Vertical dashed lines rep-
resent calendar years. The effective prepayment boundary (longer dashes)
is a combination of the full prepayment boundary and one of the calendar
year restrictions. Prepayment in the first candidate prepayment node of the
main lattice (that is, the root node of the sublattice) implies that the next
prepayment cannot be in the same calendar year.
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for higher interest payments.

An optimal prepayment strategy might also involve a partial prepayment
in a node above the full prepayment boundary. Such an early prepayment can
be optimal in December to exercise a prepayment option just before the end
of a calendar year, the option expiration date. An extra prepayment reduces
the future unpaid balance and periodical payments. If the resulting lower
payments more than offset the disadvantageous prepayment in December, an
early partial prepayment can be optimal. This effect holds for all partially
callable mortgages, independent of the amortization scheme.

Since an optimal partial prepayment can be both earlier and later than an
optimal full prepayment, the full prepayment boundary provides a feasible
prepayment strategy, but not necessarily the optimal strategy. To construct
a primal feasible solution we assume that no prepayment occurs in nodes
above the full prepayment boundary and a partial prepayment occurs in
nodes below the full prepayment boundary immediately after this boundary
is crossed. Additionally, we assume that a partial prepayment amount is
always equal to the maximally allowed amount, unless the remaining loan is
smaller than the maximal prepayment. In the latter case we assume a final
prepayment of the remaining loan.

Our approximation to the optimal prepayment strategy involves no pre-
payment in nodes above the full prepayment boundary. This part of the
valuation process can be performed by a single lattice approach. Further-
more, a maximally allowed prepayment (z; = X) is included whenever the
full prepayment boundary is crossed downwards. After each prepayment a
new sublattice is constructed based on the remaining mortgage lifetime and
unpaid balance. The prepayment boundary in each sublattice is similar to
the boundary in the original lattice, except for prepayment to start at the
first month of a new calendar year. The prepayment node in the parent
lattice is the root node of the sublattice.

One of the first level sublattices (after the first partial prepayment), in-
cluding full prepayment boundaries adapted for calendar year restrictions,
is depicted in figure 2. The number of levels of sublattices is equal to the
maximum number of prepayments. In case of prepayments limited to 20%,
the number of levels is bounded by five. The number of sublattices increases
with rate T per level. Denote the number of levels by K. A recursion through
each sublattice to determine the mortgage price requires a computation time
of O(T?), implying a total computational effort of O(T**2).

Although computation time is of a polynomial order (compared to ex-
ponential for a non-recombining tree), the polynomial degree is still large.
Efficiency can be improved by performing a recursion only once for all sub-
lattices rooted in the same node. Suppose node i can be reached by two
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different paths. For the first path a recursion is required to determine the
price P; corresponding to unpaid balance U; in node 7. The unpaid balance
according to the second path reaching node ¢ equals U;. Now the price can
be scaled to be P, = U,y - P;/U;. However, additional prepayments are not
scalable since these depend on the initial loan and not on the remaining loan.
These cash flows are excluded from the traditional valuation procedure, but
added separately and discounted at the appropriate discount factors. The
scaling approach is more efficient than the standard approach as long as the
decrease in the number of recursions is not outweighed by the preprocess-
ing phase of calculating discount factors. This is typically the case for large
instances with many prepayment opportunities. Computation time for the
scalable decomposition method is of O(T*), since at most one recursion of
O(T?) is required for each node in the original lattice.

Mortgage values following from the scalable decomposition method slightly
differ from values according to the standard decomposition method. Prepay-
ment in node ¢ according to the standard decomposition method is based on
the unpaid balance and price in node ¢ of the parent lattice. The scalable
method, having no recursion in most (sub)lattices and therefore no truly op-
timal strategy of consecutive prepayments, can only compare unpaid balance
and price at the root of the child lattice. The standard decomposition method
is more accurate, although differences in mortgage values are negligible.

Partially callable mortgages with a fixed rate period of five years can be
valued by the (scalable) decomposition method based on the full prepayment
boundary, providing an upper bound on the mortgage value. Since many
lattices must be stored in memory simultaneously for large instances, loans
with ten year fixed rate periods can only be valued when the number of
sublattices is limited. To obtain accurate approximations of the optimal
prepayment strategy, we have restricted prepayment opportunities in various
ways to improve efficiency. One could choose for allowing prepayment only
once or twice per calendar year. However, shifting the prepayment boundary
downwards provided the best upper bound on the mortgage value.

A lower bound on the optimal value of a partially callable mortgage is
provided by any dual feasible solution. The value of a fully callable mortgage,
having all z-variables equal to 0, is a straightforward lower bound. Lower
bound improvements are obtained by increasing the z-variables that corre-
spond to low interest rate states. Although we can achieve an improved lower
bound, this bound is worse than the upper bound derived previously. For
this reason, we will rely on a practical lower bound on the mortgage value in
the next section.
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6 Results

Results are provided in terms of fair rates. We define the fair rate as the
contract rate that makes the present value of the sum of all cash flows equal
to the principal value. If the contract rate is higher (lower) than the fair rate,
implying a mortgage value higher (lower) than the principal value due to
high (low) interest payments, the bank makes a profit (loss) on the contract.
Choosing an initial contract rate, the fair rate is determined iteratively by
increasing (decreasing) the contract rate when the mortgage value appears
to be lower (higher) than the principal value.

An upper (lower) bound on the mortgage value corresponds to a lower
(upper) bound on the fair rate. Consequently, a primal feasible solution to the
model formulated in section 2, obtained exactly or heuristically by applying
the approximative algorithm proposed in the previous section, provides a
lower bound on the fair rate. A dual feasible solution, providing a lower
bound on the optimal mortgage value, gives an upper bound on the fair rate.

The fair rate of a partially callable interest-only mortgage is a practical
upper bound on the fair rate of a partially callable annuity and can be de-
termined efficiently (see Kuijpers [7]). Since all term structures are upward
sloping, an interest-only mortgage faces an unattractive redemption sched-
ule. The fair rate of an interest-only mortgage is therefore higher than the
fair rate of an annuity or linear mortgage with similar characteristics.

Bounds on the fair rates are calculated for both 5 and 10 year fixed rate
periods. We consider partially callable mortgages excluding commission and
including a 1% commission on four dates. Annuity and linear mortgages are
included. The bounds define a range for the optimal fair rate of partially
callable annuity and linear mortgages. A narrow range between lower and
upper bound indicates that the proposed heuristic is accurate.

For five year fixed rate periods no computational problems arise. When
prepaying the maximally allowed amount in any node below the full pre-
payment boundary and not prepaying anything in any node above, a tight
lower bound on the fair rate is obtained. As can be concluded from table 1,
the lower bound differs between 3 and 8 basis points from the upper bound,
defined by the fair rate of an interest-only mortgage with similar conditions.
Therefore, the lower bound is a very accurate approximation of the opti-
mal fair contract rate. Also, the optimal prepayment strategy will not differ
largely from the full prepayment boundary.

Table 2 provides fair rate results for ten year fixed rate periods. Pre-
payment is restricted to the bottom 22 nodes (per period) of the original
lattice and the corresponding nodes in all sublattices, as long as these are
located below the full prepayment boundary. This prepayment strategy re-
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Table 1: Fair rates for a five year fixed rate period.

This table provides lower bounds on fair rates of partially callable
annuity and linear mortgages. Upper bounds correspond to fair rates
of partially callable interest-only mortgages. The underlying interest
rate lattice consists of monthly periods. Mortgage contracts have a five
year fixed rate period and exclude commission, respectively include a
1% commission.

no commission 1% commission
Type Date LB UB LB UB
Annuity Jan 1, 2002 4.72 4.75 4.41 4.46
Jan 1, 2003 3.73 3.76 3.43 3.48
Jan 1, 2004 3.74 3.77 3.44 3.49
Jan 1, 2005 3.26 3.29 2.96 3.00
Linear Jan 1, 2002 4.69 4.75 4.38 4.46
Jan 1, 2003 3.71 3.76 3.41 3.48
Jan 1, 2004 3.72 3.77 3.41 3.49
Jan 1, 2005 3.25 3.29 2.94 3.00

stricts the number of sublattices, although still capturing prepayment gains
from large interest rate declines. The difference between lower and upper
bound can rise up to 20 basis points, although the lower bound is consider-
ably improved compared to the initial lower bound, that is, the fair rate of
a non-callable mortgage.

7 Concluding remarks

A linear programming formulation has been introduced for the valuation and
optimal prepayment of (partially) callable mortgages. We have also derived
optimal prepayment conditions for fully callable mortgage contracts based
on state prices and following from duality theory.

A fully callable mortgage can be modelled by a lattice approach. Partially
callable annuity and linear mortgages can only be priced to optimality by an
inefficient non-recombining tree approach. To enhance efficiency, we propose
a lattice based method to obtain an accurate lower bound on the fair rate
for these mortgage types.

Since, for upward sloping term structures, the fair rate of a partially
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Table 2: Fair rates for a ten year fixed rate period.

This table provides lower bounds on fair rates of partially callable
annuity and linear mortgages. Upper bounds correspond to fair rates
of partially callable interest-only mortgages. The underlying interest
rate lattice consists of monthly periods. Mortgage contracts have a ten
year fixed rate period and exclude commission, respectively include a
1% commission.

no commission 1% commission
Type Date LB UB LB UB
Annuity Jan 1, 2002 5.32 5.44 5.11 5.24
Jan 1, 2003 4.45 4.56 4.25 4.38
Jan 1, 2004 4.46 4.58 4.26 4.39
Jan 1, 2005 3.87 4.01 3.67 3.81
Linear Jan 1, 2002 5.27 5.44 5.05 5.24
Jan 1, 2003 4.40 4.56 4.19 4.38
Jan 1, 2004 4.40 4.58 4.19 4.39
Jan 1, 2005 3.84 4.01 3.62 3.81

callable interest-only mortgage, which can be efficiently priced to optimality,
provides a practical upper bound on the fair rate of a partially callable an-
nuity, a narrow range for the optimal fair rate is derived. This indicates that
the proposed heuristic is accurate.

Related to the LP formulation, we propose two directions for future re-
search on the optimal valuation of partially callable annuities. First, a the-
oretical upper bound on the fair rate can be derived by improving the basic
dual feasible solution, represented by the full prepayment strategy. The up-
per bound can be improved by increasing z-variables corresponding to low
interest rate states. Then, by backward recursion, the dual objective (that
is, the mortgage value) increases and the fair rate decreases. The number of
z-variables is exponential and therefore many z-variables must be increased
from zero to an (a priori unknown) positive value to achieve a significant
improvement.

A second direction for further research is based on approximating the fair
rate of a partially callable annuity. Since not all states in a non-recombining
tree can be included, we might consider a tree defined on a subset of scenario
paths. Valuation based on this subtree generates approximative mortgage
prices and fair rates. Approximations are more accurate for finer subtrees.
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However, approximations can lead to both higher and lower fair rates than
optimal. As a consequence, measuring the accuracy of the approximative fair
rate is not possible without the use of fair rate bounds derived in this paper.
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