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Abstract

A central unanswered question in economic theory is that of price formation in disequilibrium.
This paper lays the groundwork for a model that has been suggested as an answer to this question
in, particularly, Arrow [Toward a theory of price adjustment, in: M. Abramovitz, et al. (Ed.), The
Allocation of Economic Resources, Stanford University Press, Stanford, 1959], Fisher [Disequi-
librium Foundations of Equilibrium Economics, Cambridge University Press, Cambridge, 1983]
and Hahn [Information dynamics and equilibrium, in: F. Hahn (Ed.), The Economics of Miss-
ing Markets, Information, and Games, Clarendon Press, Oxford, 1989]. We consider sellers that
monopolistically compete in prices but have incomplete information about the structure of the
market they face. They each entertain a simple demand conjecture in which sales are perceived
to depend on the own price only, and set prices to maximize expected profits. Prior beliefs on
the parameters of conjectured demand are updated into posterior beliefs upon each observation of
sales at proposed prices, using Bayes’ rule. The rational learning process, thus, constructed drives
the price dynamics of the model. Its properties are analysed. Moreover, a sufficient condition is
provided, relating objectively possible events and subjective beliefs, under which the price process
is globally stable on a conjectural equilibrium for almost all objectively possible developments
of history.
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1. Introduction

In economic theory, a key role in the coordination of behavior is played by prices. As a
consequence, the so-called price mechanism is much debated, and the need for it operating
freely often stressed. Yet, there are many open research questions on the matter of prices,
especially on how they come to take on equilibrium values. For one thing, it is generally left
unexplained whose business it actually is to call and change prices. Particularly in models
in which price-taking behavior is assumed, this is a pressing question. Reliance on a unigque
price vector indicates it is left to a single person or institution, and a number of models
has been presented in which the central person is in fact an altruistic auctioneer, e.g. in the
tatonnement process, the Edgeworth process, and the Hahn pfocess.

Apart from the fact that it seems odd, if not plainly inconsistent, to model all behavior but
that of the auctioneer as resulting from constrained rational choice, at least two things meet
the eye in these explanations. First, these processes need an exogenous central coordinator
to explain the rise of equilibria that are meant to be the outcome of decentralized competitive
economies. Second, the conditions these processes need for convergence on equilibrium
price values for arbitrary initial prices, i.e. for global stability of the disequilibrium process—
have been found to be pretty strong.

A number of suggestions has been made to study the disequilibrium behavior of prices
more seriously. An early one is krrow (1959) in which Arrow proposed to make price
a choice variable of individual firms, that consequently need to come equipped with some
local monopoly power, at least as a disequilibrium phenomenon. To Arrow, the construct
of perfect competition did not allow for an explanation of price behavior. More recently,
Fisher (1983)evelops an elaborate model of disequilibrium behavior in which there is
clarity on who is setting prices. Itis done by dealers, who specialize in differentiated goods,
which gives them the local monopoly power to act as a coordinator and set prices. How
prices are adjusted with changes in perceptions, however, is not discussed in depth in the
monograph, yet indicated as an area of promising further research. Fin&lighim(1989)
several partial examples are given of perception changes and associated behavior that may
indeed be plausible for monopolistically competing price-setters to develop—including a
rudimentary version of the behavior we study in this paper. Yet, the consequences of such
behavior, particularly when performed in general equilibrium settings, are only hinted upon.

When prices are choice variables of firms, the way firms perceive their market position,
and especially changes in these perceptions, can account for the dynamics of prices. This
idea is used in the present paper to construct a model of individually rational price adjust-
ment and study its limit behavior, particularly its stability properties. In the present model,
each of a number of firms is in monopolistic price competition, but does not have perfect
information on the market demand it faces. At each moment in time, based on its infor-
mation to date on past prices and sales, each firm entertains a demand conjecture instead.
Naturally, this conjecture has a structural form different from that of objective demand.
Particularly, we consider the most extreme case where firms only consider their own price
as an explanatory variable, and do not consider the price effects of competing products.

1 For an extensive survey of the disequilibrium literature and its problems, as well as pointers to an alternative
modeling route on which the present model takes a small stefS(serkel, 2001)
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Within their conjectured structures, firms learn in a Bayesian way about the value of the
demand parameters it has modeled. A fleshed out conjecture serves as a basis for an optimal
price through expected profit maximization.

It is shown that for initial beliefs that do not assign zero probability to developments
of prices and sales that can actually happen, the incomplete beliefs converge to a finite
limit, and, therefore, prices converge as well. This is called ‘No Statistical Surprise’. Con-
vergence takes place on a set of ‘conjectural equilibria’. Under ‘No Statistical Surprise’,
therefore, the price process is globally stable in that it reaches an equilibrium for ev-
ery initial belief-structure. Which particular equilibrium is reached depends on the ini-
tial beliefs. This path-dependency result runs solely over beliefs, since the model assumes
absence of trade at disequilibrium prices. The stability result does not rely on specific
conditions on the structure of objective demand. Instead, the condition of ‘No Statistical
Surprise’ is sufficient for the perceived structure to absorb all price effects on objective
demand.

The literature on Bayesian or rational learning is quite recent and large. Our paper builds
on several of its results. One focus has been the concern to justify the use of rational
expectations equilibria. ParticularBray and Savin (1986)andBray and Kreps (1987)
work in this direction, and establish convergence results for myopic Bayesian learners on
rational expectations equilibrium in versions of the cobweb-model. Early woiioye
and Easley (1982, 198 also concerned with the influence learning has on the eventual
equilibrium situation reached, but in a general equilibrium setting. Particularly, they focus
on conditions under which Bayesian learners will identify the true model among several
models.

In partial equilibrium models of single firms learning their demagadsley and Kiefer
(1988)among others, study the influence of active learning on firms’ optimization problems.
Actively learning firms are aware of the fact that their behavior influences their options
for learning. In a discrete game theoretical settikglai and Lehrer (1993, 1995)ave
obtained results for rational learning behavior. The former referekakai and Lehrer
(1993) considers learning in a correctly specified structure, and states conditions under
which it converges to a Nash equilibrium of the perfect information game that are similar
to ours.

Another, much less extensively traveled route has been to study the influence of structural
mis-specification on the convergence process and its equiliirrman (1975, 1983, 1995)
sets up an early example of two firms learning, in a least squares way, in a mis-specified
structure of their game. However, he does not establish general convergenceMgsuks.
(1991)constructs an example of a single, actively learning monopolist whose beliefs do not
settle, due to a very particular structural specification ekalai and Lehrer (1995xtends
the 1993 convergence conditions to structurally mis-specified models to identify the usable
notion of equilibrium. However, their article does not present explicit convergence results.

This paper is organized as followSection 2presents the model structurgection 3
introduces the way in which information is processed, as well as an associated equilibrium
concept.Sections 4 and troduce the convergence result, the nature of which is subse-
quently discussed iBection 6Section Ppresents the global stability of the price process on
the equilibria of the model, introducing the concept of ‘No Statistical Surpr&stion 8
closes with some concluding remarks on possible extensions of the model.
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2. Themod€

Consider an economy with different firms. Each firm has the ability to produce its
own commodity, that is, it is supposed to take decisions on, particularly, price and quality
of the commaodity it produces. In this paper, we will assume that the aggregate of all these
strategic choices to be made by firrare incorporated into one single action spBged-or
technical reasons eaéh is assumed to be a convex and compact metric space.

2.1. Objective demand

The objective demand for each commodity assumed to be non-deterministic. In order
to model this, let the commaodity space of fiilbe denoted by;. One can think of this
space as being the collection of all possible realized demands for its commodiyrfigint
face. From a technical point of view, we only need few restrictions on this commodity space
though, and we will only assume it is a compact metric space.

Suppose that firmhhas decided to take actigm in P;. We write p := (p;)ieny € P =
IT; P; for the entire vector of decisions taken. Now the demand for commbuditgupposed
to be given by the density function

fixilp)

with respect to the probability measuredefined on the Boret-algebraB3(X;) generated

by the metric on the commodity spae For technical reasons, we assume that for any
open sel/ C X; we havev;(U) > 0. Further, byf;(x;| p) being defined with respect g

we mean that

/ fitxilp) dv; = 1.

Xi

We will also assume that the functigh: X; x P — R is continuous.
2.2. Perceived demand

None of the firms is fully aware of the mechanism that generates the demand it faces.
Instead, each firmh has a collectior®; of ‘worlds’ it deems possible. In world; € ©;,
it conjectures that it serves a demand function that is distributed according to the density
function

&i(xilpi, 0;)

with respect ta;. Again, we assume for technical reasons that a compact metric space
and thatg;: X; x P; x ®; — Ris continuous.

Note that subjective demand conjectures deviate importantly from objective demand:
each firm only considers the effect of its own decision on the demand for its commaodity,
and neglects the influence of the decisions of the other commaodities. In effect, each firm
believes that it is a monopolist on its own market. This structural mis-specification reflects
incomplete information on the side of the firms. We focus on this extreme situation where
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only the effect of a firm’s own decision is considered for reasons of exposition. The analysis
could be extended to include less severe forms of incomplete information, e.g. structures in
which the effects of the actions taken by several of the nearest competitors are included.

2.3. Expected profits

Within its structural mis-specification of how the world works, each fitmelieves that
there exists a ‘true’ world. However, it does not know which of possible world3;irs
the true one. Instead, the firm’s perception of the world is stochastic. This means that each
firm i has a belief represented by an element of thé?§et) of probability measures on
©®;. Such a belieft; € P(®;) assigns to each Borel subgedf ®; a real number;(A) that
reflects the probability firnnassigns to the event that the real world is an elemeAt of
Further, let

wi(pi,xi)) €R

be the net profit of demangwhen firmi decides to take actiqn (we willassume throughout
the paper that; is continuous). Then, given a beligf of firm i, the amountT;(p;, ;) of
money firmi expects to earn is given by

Ui(Pi,Mi)=/ / i (pi, x1)&i(xi, 0;| pi) dv; dpe;.
O;J X;

Since each firmi is assumed to be rational it will aim to maximizg (p;, ;) and take
an optimal decision. In the remainder of this paper, we need each firm to have a unique
optimal decision given the beligf;. In other words, we need to know that there is exactly
one decision irP;, which we will denote byp;(u;), for which I7;(p;(w;), ;) is larger than
or equal tol1(p;, ;) for any other possible actign of firm i in P;. In order to guarantee
the existence of such a unique optimal decision, we make the following assumption.

Assumption 1. Given the beliefu; of firm i the functionlT;(p;, «;) is strictly concave.

This is, for example, the case if for eaghando; the integrandr; (p;, x;)gi (x;, 6;| pi) is
strictly concave irp;.

Note thafp;(u;) need not maximize expected profits in an objective sense. Thisis so since,
although the world is in fact stochastic, it is stochastic in a way different from perception.
More specifically, given the vector(it) := (p;(i1;))ien Of individual decisions, objective
demand is distributed oX; according to

filxilp(w)),

which shows how the true sales opportunities depend on the beliefs of all firms. And in turn
these opportunities determine the objective expected net profit. In other words, the objective
expected net profit of firmis in fact given by

[ 7itpi i)

Xi

No firm is, of course, capable of tuning its behavior to this true expected net profit.
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3. Information processing and conjectural equilibrium

Beliefs are updated according to the Bayesian updating rule, as follows. Suppgsge that
is the current belief of firm in P(®;). Now the observation of demamdin X; induces the
updated belieB;(u;)(%) in P(©;) that assigns to a Borel sgtc ©; the probability

e Ja8i@i i), xi) du
Bi(ui)(x)(A) = f@igi(9i|pi(lul.), Y

provided of course that the denominator is not equal to zero. In order to guarantee that this
is the case, independent of the beligfwe make the following assumption.

Assumption 2. For allp;, 6; andx;,
gi(xi|pi, 0;) > 0.
Given this assumption it can be shown that the above formula indeed yields a mapping
B 1 P(®) x X; — P(6)),

from the space of probability measures times the space of quan{jtleack to the space

of probability measure$This particular updating method, known as Bayesian updating, is
firmly founded in probability theory. It is, therefore, sensible from the firms’ perspective to
extract information from past observations in this way.

Although it does make perfect sense from the perspective of the firms, the learning process
described is ill-founded in objective terms since it is based on an unrecognized structural
mis-perception of demand. Hence, in general it cannot be hoped that subjective perceptions
will come to explain the true demand for a commodity. Yet, there is a natural candidate
for beliefs that are in ‘equilibrium’ with the objective world. Consider a single firm. The
firm’s beliefs are in equilibrium if perceived optimal decisions made on the basis of this
belief return quantities that are no ground for a revision of beliefs. This is the concept of
individual conjectural equilibrium.

Definition 1. An individual conjectural equilibrium for firmis a beliefu; for which for
all xi € X;

Bi (i) (xi) = ;.

Since the observed sales depend on the decisions of all firms, it is quite special for a
single firm to be in individual conjectural equilibrium. Yet, if all firms simultaneously are
in individual conjectural equilibrium, none has a reason to deviate unilaterally from its
decision, since no firm believes it can improve its position by doing so. This leads us to
consider the following notion of an equilibrium for our economy.

Definition 2. A conjectural equilibrium is a vectqr = (u;);cn Of beliefs such that each
w; is an individual conjectural equilibrium.

2 The technicalities supporting this statement can be fourfgpjvendices A and B
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4. Learning dynamics, infinite histories and beliefs

In Section 3we saw that firms have mis-specified models of the true state of the world
and they are not aware of this false interpretation of their environment. Nevertheless, given
their mis-specification of the way the world works, they are aware of the fact that they are
not fully informed about the true state of the world. This lack of information is modeled as
a probability distributionu;o (the initial belief) over the collectio®; of all worlds that firm
i deems possible. This belief reflects the amount of prior informationifiras concerning
the true state of the world.

Now since each firmis a profit maximizer and since itis aware of the fact thatitis not fully
informed, it is eager to learn more about the true state of the world from market experience.
It does so in the following way. Given its prior beligfo firm i sets its (subjective) optimal
decisionp;(11;0). Once each firm has made this move, the objective demand density function
establishes the quantities that can actually be sold given the agtiaes p; (i;0)icn- This
means that for each firira quantityx;, is drawn from the probability measure that assigns
to each Borel sett C X; the probability

/ fi(xilpo) dv;.
A

This new information is ground for a revision of beliefs via Bayesian updating. Repeating
this procedure yields a learning process with the following properties.

Atagiventimer =0, 1, ..., each individual firm has recorded a history of consumer
demands

hir = (xi'[);::]_

of finite lengtht. This market information is the basis of the belief (h;;) of firm i at
time T concerning the state of the world. It then takes a new agign. (h;;)) based on its
current belief. Given the vectar; := (p;(ui:(hi7)))ieny Of new decisions, firnh observes

a new quantity;; 1 drawn from the probability distribution that assigns to each Borel set
A C X; the probability

/ fi(xi| p-) dv;.
A
Subsequently, beliefs are updated according to the Bayesian updating rule. Formally,

Wir+1(hic, Xiz+1) = Bi(iz (hiz)) (Xiz41)-

Note that the decision gn(u;.(h;;)) the firm takes at time is a function only of the beliefs
at timez, which in turn derive from the initial beliefg;o and the recorded history up until
7. Hence, it is sufficient to record sequences of observed quantities, as the firms do.

We have, thus, constructed a well-specified process in which beliefs lead to perceived
optimal decisiong,, which serve as endogenous signals to obtain new information about
the parameters of the distribution of objective demand. This new information, in turn, leads
to an update of beliefs and, therefore, to new optimal decisiqng in a disequilibrium
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K10 — Pio Ti11 = 11 = P T2 = ...
Kjo —* Pjo Zj1 = Kj1 — Pj1 Tjz2 = ...
Hno = Pno Tnl = Bnl — Pnl Tn2 = ...

Fig. 1. The development of beliefs and prices over time.

price dynamics that embodies both subjectively rational learning and subjectively rational
actions Fig. ).

In order to study the dynamic properties of this decision process, we make use of martin-
gale convergence theory. For that purpose, we need to construct an underlying probability
space on which we can identify martingales. This is the space of all possible future devel-
opments of history a firmforesees at the beginning of tirid=ormally, let

T
H;; = l_[Xi
=1

be the space of all historids, of lengtht. B(H;;) denotes the Boref-algebra orH;,.
Further, letH; := [[;2;X; be the space of infinite histories. A specific elemenHpis
denoted byn;. By B(H;) we denote the Boret-algebra generated by the product topology
onH;.

To complete the probability space of all future histories, we need a megsund3(H;).
Formally thisa; is defined inductively on histories of finite length, combined with infinite
extensions. We will now go through this construction step by step. First note that it is in
fact sufficient to specify the numbers

for each Borel seéD, in H;;. Because, once these numbers are known, there is a unique way
to extendi; to B(H;). So we only need to specify the numbers

T
hir (]‘[a) :
=1

where);; is the probability measure induced by the beliefs of firap till time 7. Once
these numbers are knowiy, follows straightforwardly. In fact,

T o T
Mo [T Xi| =2 (HDI>,
=1 t=1+1 t=1

3 We deviate somewhat from the structure generally chosen for this purpose, Eagléy and Kiefer (1988)
though in essence the spaces are the same.
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the probability that an infinite history starts with a histbgy in the sef[[;_; D;. In order
to specify these numbers we naturally start wii(¥) := 1. Further, forr = 1,

Ain(D1) ::/ /gi(x,'ﬂilpi(uio)) duio dv;.
D1JO;

In order to now defing.;; 1 inductively, assume that;,; is known. Leth;; be a history
of lengthz. Then the transition probability;;+1(h;;)(D.+1) of ending up inD,y1 C X;
provided we have observed histdry is equal to

Vie41(hiz)(Dr41) 3=/ / 8i(xi, 0;| pi (i (hiz))) Apiz (hiz) dv;.
D117 6;

The transition probability gives the subjective probability of an observation being in
D.41 given that the firm has already observed histigryand subsequently believes that
wiz(hi7) is the appropriate probability distribution ov®;. We then have

+1
Ai D; )= 1 i h; A
A (H t) /;‘1,' Xi l_[t;rJ:.LDf d]/n+l( lr) d "

- [ N, / 1p,,1 yie+1(hiz) dhir
Hir N X,'

= / ey, Yirr1(hin) (Dey1) die
H;

:/T Yirw1(hiz) (Dr41) Az

t:lDf

The definition reflects how;,1 derives as the weighted ‘sum’ (i.e. the integral) of all
transition probabilities, where the weights are the probabilitieshe firm assigns to the
observation that conditions the particular transition probability. The first step easily follows
from rewriting the indicator function on the product set as a product of indicator functions.
It is then observed that the inner integral equals1(h;)(Djz+1). Finally, the indicator
function is replaced by the restricted integral.

Now notice that, since the above computation implies that for allBeia B(H;;), we
have

Airg1(Dr x X;) = / Vier1(hiz)(X;) diir = / 1Hl-, diir = Air (D7),
D D

the measures;; are consistent. Therefore, by the theorem of Kolmogorov, there is a unique
probability measure; on B(H;) such that

o
M| Dex T Xi | = rie(Do).
t=1+1

for all Borel setd; in B(H;;).
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An appealing way to think aboui is as the probability firminitially assigns to observing
the infinite history:; € H;, based onits prior beliefs and its awareness of the learning process
it is about the engage in. An example may help to clarify this.

Example 1. A stochastic variabl&X takes on one of two values; or xo. The probability
of x; (and, hencexp) depends on a parametgrthat is eithep; or 6,. Let Pr(x1, x2|01) =
(1/3,2/3) and Prx1, x2162) = (1/2, 1/2) be the conditional probabilities of andx,,
and supposeg = (1/4, 3/4) are the prior beliefs org(, 0,). Over time, a sequence of
observationgx;),cy molds beliefs. We have

1 1 3
X§+ZX

ri(X1=x1) =3 % = %—}1 = A (X1 = x1),
yi(X1=x2) =3 x §+ 3 x 3 =53 = h(X1=x2).
of

SupposeX1 = x1. Application of Bayes’ rule now gives posterior beliefs

3x}3 )_(2 9)

1,3 1) \11v11/)"

14341 11" 11
Similarly, X1 = x would return

1 2 3 1
mxl:xz):(l ek BN L3 1):(13).
IX3tzx3 3X3+t7%X3 1313

We then have the conditional transition probabilities

1.1

4
uil(X1=x1) = | +—1—
ZX§+Z

EN
X

R REREREES
e R AR RS |
pde= it = fx i+ fx 3= 5
R PE RS PR

Thei-measure for the = 2 paths is now constructed by combining the conditional transi-
tion probabilities, as follows.

A(X1=x1, X2 =x1) = M(X1 =x1)y2(X2 = x1|X1 = x1) = %—411 X 3—% = %p

Similarly, we find

11 35 _ 35
ro(X1=x1, X2 =x2) = 53 X & = 111
13 _ 35 _ 35
A2(X1=x2, X2 = xl) = 54 X 78 = 144’
13 _ 43 _ 43
ho(X1=x2, X2 =x2) = 53 X 75 = 11a-

Finally, the posteriors follow from Bayes’ rule as

p2l(X1 = x1, X2 =x1) = (3% %—I) ,



M.P. Schinkel et al./ Journal of Mathematical Economics 38 (2002) 483-508 493

p2l(X1 = x1, X2 = x2) = (3—5 2—;) = p2l(X1 = x2, X2 = x1),

=
(e}
N
Wi~

p2l(X1 = x2, X2 = x2) = (4—3, —) .

5. Convergence of beliefsand actions

The prime interest in this paper is to know whether, given initial beliefs, the process of
Bayesian updating will eventually converge to a conjectural equilibrium. That is, we ask
whether learning will teach some invariable posterior ideas, or whether perceptions, and
thus decisions, will keep on changing forever. In order to address this question we will
employ a convergence theorem concerning martingales. For that, we will show that on the
probability spaceH;, B(H;), A;) constructed above beliefs indeed form a martingale. To
that end, we first need to introduce some notation.

Consider an infinite history; = (xit);2; in H;. The finite historyh;; = (xit);_; in Hiz
is called theruncation of h; till time t. Further, letA be a Borel set ilB(®;). Consider the
functionu;; (A) from H; to R that assigns to an infinite histohy the real number

it (A)(hi) ‘= iz (hiz)(A).

Secondly, notice that the above truncation of infinite histories to histories of length
induces a natural identification of each elemepf the o-algebral3(H;;) with the set

o]

D, x ]_[x,»

=1+1
in B(H;). The subalgebra d8(H;) of sets of this form is denoted 3, (H;).

First notice thatB.(H;) is a subset of3;.1(H;) and that each functiom;; (A) is
B.(H;)-measurable. We will now show that the sequefeg(A))72, is even a martin-
gale. In order to do that we need the following.

Lemmal. Let ¢ abounded and B, 1(H;)-measurable function. Then we have
/ ¢(h;)dr; = f / o(hiz, xir+l)/ 8i (Xiz+16;| pic) Aptiz (hiz) dv; dAz.
H; HiJX; O

Proof. Let D x D;41 X ]'[j’iTHXi be a Borel set iB;;1(H;). Then

/H 1D Drpax[12, X Ghi
i

= f 1pxp,y1 QAizy1 = Aizg1(D X Dy) = f 1pVir+1(hiz) (Dry1) drje
Hir41 i

=/ /1D><DT+1/ 8&i(Xiz41, 0i| piv) Aiz (hir) dv; dAr.
itV Xi O;

The same equality now easily follows for an arbitrary integrable function. O
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Now, we can prove the following.

Theorem 1. Let A be a Borel set in B(®;). Then the sequence (u;;(A))22; of random
variablesis a martingale with respect to A;.

Proof. Let Abe a Borel set ifB(®;) and letC be a Borel set i, (H;). We have to check
that

/Mir+1(A)(hi) dr; = /Mir(A)(hi) dx;.
c c

SinceC is an element oB; (H;), we know it can be written as
D; x HXi
=1
for some Borel seb, in H;;. So, since\; agrees with;;11 on B,1(H;), Lemma lyields
/ Miz+1(A) (h;) dA;
D x[]1 Xi
= f Mir—i—l(hira xir-i—l)(A) dkir—ﬁ—l
DIXXI'
= / / tir+1(hiz, xir+l)(A)/ 8i(Xiz41, 0i| pir) Aueiz (hiz) dv; dije.
v Xi O

Plugging Bayes’ rule into this expression yields

/ / S a8 (Xizt1. il pic) Aptiz (hiz)
D;JX;

T i Grinsr, 6 pio) de () Ogi(xir+1vgi|17ir) duiz (hic) dv; i
@[ l T s Y1 T T T &i

and the two integrals oved; cancel out. Which reduces the above expression to

///Agi(xirﬂ,9i|Pir)dMir(hir)dvid/\ir-
T Xi

To this expression we can apply the theorem of Fubini and switch the order of integration
overX; andA. This yields

/ // 8&i(Xir+1, 0l piv) dy; d/’Li‘[(hiT) dAiz
D.JAJX;

=/ Al@[ dMit(hir) d)\ir =/ Wiz (hiz)(A) d)\ira
T D-

where the first equality results from the fact tigats a density function with respect tg.
This concludes the proof. O

The result that beliefs form a martingale may not be very surprising. It states that the
nature of Bayesian learning is such that a firm does not expect to change its beliefs in
the future. Of course, an actual observation will in general change beliefs, but based upon
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current beliefs on future realizations of sales, a firm ex ante predicts it will not. One way
to interpret this is as Bayesian learning being sufficient, in that the information present at a
given time is used to the full.

Example2. Inourearlierexample, itis easy to see that beliefs have the martingale property.
The expectatioli; (-) taken with respect ta is

En(u1(6) = 35 x Z + 33 x 15 = 7 = nuo(6),
and similarly
E(12(01) = 14 ¥ 31+ £04 X 26 + 1 ¥ 43 = § = 1o(01).

With the above result in hand, we can apply martingale convergence theory to study the
limit beliefs of agents, and hence of decisions, as follows.

Take an infinite histonyh; in H;. Let w;.(h;) be the probability measure iR(®;) that
assigns to each Borel s&tof ®; the real numbep;.(h;)(A).

Theorem 2. There existsa Borel set Sof infinite historiesin H; with 2;-probability one, on
which the sequence (- (h;)) 32 4 of probability measures converges weakly to a probability
measure ;o (h;) for every history h; in S.

Proof. We will first constructS. Since®; is compact and metric, we know that there exists
a countable basis of the topology. lZébe the collection of finite intersections of elements
of this basis. Take a fixed elemedtof ¢/. By Theorem 1the sequencéu;.(U))2, is a
martingale. So, by the martingale convergence theorem (seBaaly (1990) Theorem 4.1
(iv)) there is a se§(U) of infinite histories irH; with A;(S(U)) = 1 suchthati;. (h;)(U))32,
converges for every histoty; in SU).

Now sincel( is the collection of finite intersections of a countable collection, it is a
countable set itself. This implies that

S = ﬂS(U)

Ueld

has A;-probability one, since it is a countable intersection of td), all having A;-
probability one.

The construction of the limit probability measure can be done as follows. Take a history
h; in S First observe that, sin@®; is compact, Theorem 6.1 8illingsley (1968)states that
P(©;) is sequentially compact. So, we know that a subsequenge;af:;))2° ; converges
weakly to some probability measure, ay, (k;). We will show that the original sequence
converges weakly to this probability measure. To this end, notice that

wir(hi)(U) = piso(hi)(U), forallU e

for the original sequence, since this sequence is convergent for every elerépi by
construction of, and so the above also holds for the weakly convergent subsequence. More-
over,U is closed under finite intersections and each open set is obviously a countable union
of elements ot/ sinceld contains a countable basis of the topology@rby construction.
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Hence, by Theorem 2.2 @illingsley (1968) (u;:(h;))32, converges weakly tou;oo (h;)
and the proof is complete sinbewas chosen arbitrarily i. O

From now on we will automatically assume that we only consider histdrien S
whenever we talk about;. (%;). Effectively, we only consider the domain gf.,. We
can now prove the following result.

Theorem 3. Thesequence p; (i (h;))32 ; of actions;-almost-surely convergesto thelimit
decision p;(iico (hi))-

Proof. By the continuity ofp; established ihemma 4of Appendix A we know that the se-
quencep; (ui: (h;))32, of optimal decisions given beliefs at time&onverges t@; (i (h;))
whenever the sequenge.(h;)22; of beliefs converges teu;(h;). This happens with
A;-probability one byrheorem 2 O

6. Thenatureof limit beliefs and limit actions

We now know that in our model beliefs, and consequently decisions, converge to limit
beliefs and unique limit decisions, respectively, fpralmost-all developments of history.
In this section, we will derive some properties of the limit beliefs and decisions. We will
show that a limit belief is unique in the sense that, roughly speaking, it only puts weight on
worlds that generate the same probability distribution over demands. In other words, any
two worlds in the support of a limit belief will have identical probability distributions over
demands. Thus, a limit belief selects a unique possible world out of the collection of worlds
that are possible initially, up to the identification of worlds of course that generate identical
probability distributions. Furthermore, we will show that the limit beliefs obtained support
a conjectural equilibrium.

6.1. Unique limit beliefs

For an analysis of the limit properties of beliefs and decisions, consider the following
construction. Lefu; be a probability measure aB;. Evidently ®; is a compact set with
1i(®;) = 1. So, the collection

K :={K C ©;|Kiscompactang;(K) = 1}
is not empty. Thus, we can define the supportpby
Supp(ui) = m K.
Kek
The only question is whether this set has probability one according f this end, no-
tice that the topology 0®; has a countable basis, 8ysince®; is separable and metric. So,
suppu) =[] O\B.
BeB:p;i(B)=0

Hence,u; (supu;)) = 1 by the subadditivity oft;.
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A more colloquial definition of the support of a probability measuyen ©; is to say
that it is the smallest compact subkedf ®; with 1;(K) = 1. In any event, it enables us to
give the following definition.

Definition 3. A belief u; does not distinguish between signals if there exists a function
h; © X; — R, such that for any; in suppf;) and for allx; in X;

&i(xilpi(ui), 0;) = hi(x;).

This condition onu; states that every worlg; in the support ofx; generates the same
density function or¥;. In other words, each signal has the same probability in each world
in the support ofr;. Consequently, no signgl will give firm i a reason to change its belief.

A more interesting fact is that the converse of this observation is also true. This is reflected
in the following result.

Theorem 4. Abelief u; does not distinguish between signalsif and only if
Bi(pi)(xi) = pi
holdsfor all x; in X;.

Proof. Suppose that; does not distinguish between signals. Then we caniakel; —
R, such that

hi(xi) = gi(xi|pi(ni), 6;), forallg; e suppu;).
Consequently, for any; € X; and any Borel seA in ®; we have
Ja&i (il pi(psd), 0 Ay [ i (xi) Lsuppipy) disi
Jo,8i(xilpi(ui), 0) dii [ hi(xi) Lsuppiyey) Aiti
_ hi(xi)pi(A) _
hi(xi) i (©;)

Suppose, on the other hand, tpadistinguishes between signals. Then we know that there
is a pairg;, y; € supfu;), and anx} e X; for which

Bi(ui)(xi)(A) =

wi(A).

gi(xf1pi(i), &) > &i(x} I pi(ui), vi)-

So, we can find two positive numbeais> L € R and open neighborhood#¢;) > ¢; and
N(y;) o y; such that for alb; in N(¢;)

gi(x7 |pi(ui), 6;) = U
and for allg; in N(y;)
gi(x} | pi(ui), 6;) < L.

Now notice thage; (N(¢;)) > 0 since otherwise sugp;)\ N(¢;) would be a compact set with
wi-probability one that is strictly included in supp{. For the same reasen(N(y;)) > 0.
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This implies that

Bi(u) CHWN@) _ vy Ulen i Upi(NG@) (N )
Bi (i) (X)) (N(yi) — fN(yl,)Lle,- dui  Lui(N(yv) — wi(N(v))

So, at least

Bi () (X)) (N(8i) # pi(N(&i)
or
Bi(ui) () (N(vi) # 1 (N(11)).
In any casep;(u;)(x}) does not equak; and the proof is complete. O

The interpretation of this result is straightforward. A beligfdoes not distinguish be-
tween signals if and only if Bayesian updating has no effect on the belief for any possible
signalx;. This fact has important implications. Particularly, since we can show that the limit
beliefsu;o(h;) in fact are fixed points of the Bayesian updating method, as we will do next,
upon the following preliminary result.

Let B be a countable basis of the topologyXinLet W be the collection of sample paths
(xit)s24 in H; for which there is a basis eleméiin 3 such that{xit|xjt € B} is finite. We
will show first that the following is true.

Lemma?2. A;(W)=0.

Proof. LetB be an element oB and letT be a natural number. Define
W(B, T) := {(xit);q|xit ¢ B}, forallr > T.

Note that this construction is such thét = ( Jp ; W(B, 7). So,W s the countable union
of setsW(B, T). Hence, by the subadditivity af; it suffices to prove that;(W(B, 7)) = 0
for any choice oB andT.

To this end, notice that

T-1 00
W(B,T) = HX,- X HBC.
=1 t=T

Now take some > T. Denote the subsﬂf;llx,- x [1;—7 B¢ of the seH;, of finite histories
up till time = by W;;. Then, for a historyh;; in W;;, the one-step transition probability
Vir+1(hir)(B) toBis

Yier1(hir)(B) :Z//Ogi(xivez‘“’it) dutiz (hir) dv; > //;Sdﬂiz(hiz) dv; = ev;(B).
BJ ®; B i

Here,e > 0 is chosen such that(x;, 6;| piz) > ¢ for all x; andé;, which can be done by
the compactness of;, the continuity ofg; and the assumption thgtis larger than zero on
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X;. Consequentlyy;;+1(hiz)(B%) < 1 — ev;(B). Using this result, we get that

Air41(Wizq1) = / Vir+1(hiz) (BY) dAir < (1 — v (B)Air(Wir).

W

Now, backwards substitution yields
Mirp1(Wirr1) < (L — evi(B) ™ T 0 (Wir) < (L — evi(B))" T+

Further, sinc®is an open set, we know thg{( B) > 0 by assumption. So,8 1—sv;(B) <
1 and, hence,

lim Airr1(Wirr1) =0.
T—00

Finally, notice that

T-1 T oo
0<n(WB,T) <r | [[xix[]Bx [ Xi | =rie(Wi)
=1 t=T t=1+1

where the second inequality follows from the monotonicityapfand the equality from
consistency ok; with A;;. Hence, it follows that.;(W(B, T)) = O. O

The interpretation of this result is that firms expect a priori that the signals they will
receive are persistently exciting. That is, they expect to observe all possible quantities
infinitely many times over the course of their learning process, so that they will be able
to indeed extract sufficient information from them. The sufficiency of the information is
reflected in this theorem.

Theorem 5. Thereis a subset Z of Swith A;-probability one such that the belief ;o ()
does not distinguish between signals for any h; in Z.

Proof. Let Sbe as inTheorem 2and letW be as inLemma 2 Write Z := S\W. Clearly,
Ai(Z) = 1, sincer;(S) = 1 andx; (W) = 0. Now take a history:; = (x;;)22 4 in Z. Then,
sinceh; is an element oS we know thatu;«(h;) exists. We will show that it does not
distinguish between signals.

By Theorem 4it suffices to show thaB(t;00 (7)) (x;) = wico(h;) for all x; in X;. To
this end, take an; € X;. Then, sincé:; = (x;;)2  is not an element AV, we know that
it intersects each element of the baSimfinitely many times. So, sinck¥; is metric, this
implies that we can find a subsequeneg,r))72 1 of (xi;)72; such thatviy) — x7 as
T — o0. Then, on the one hand,

B(ptio(ry(hia()) Kie(r)+1) = Mia@+1Nie+1) = Hia@)+1(hi) = Wico(hi)

in the weak topology since the above sequence is a subsequefeg @f))22 ; which

converges tqu;o(h;) in the weak topology by the choice 8f On the other hand,

B(tia(r)(hia(r)) Kiam)+1) = B(lioo (hi))(x7)
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since B is continuous byTheorem 9of Appendix A Hence, since the spa@®®,) is
Hausdorff, wioo (1) = Bjioo (hi)) (x*). -

Note that if we make the natural assumption that conjectured density functions of demand
are uniquely characterized by the valu@gthe result implies that the posterior distribution
converges to a measure that puts all mass on one particular @yanld; .

Assumption 3. For anyp; € P; we haveg; (x;|p:, &) = gi(xi|pi, y;) forall x; € X; if and
only if & = ;.

A measure that puts all probability on one specific waklds called a Dirac measure.
We now have the following result.

Corollary 1. Suppose we have Assumption 3Then ;o (h;) isa Dirac measure for every
hl' inZ.

Proof. Let h; be a history inZ. Then u;0(h;) does not distinguish between signals by
Theorem 5So, for any pair of worldg; andy; in the support oft;.(h;) we have that

&i(xilpi(hi), &) = gi(xilpi(hi), vi)

for the unique limit decisiorp;(h;) = pi(kico(h;)) in P; and allx; in X;. Further, by
Assumption 3 this can only be the case i = y;. Hence, the support gf;-(h;) is
inevitably a singleton and;,(h;) is a Dirac measure. O

6.2. Conjectural equilibrium

Provided that the structure of perceptions satisfissumptions 1-3we have shown
that with A;-probability one, firmi's belief is a Dirac measurg;«(h;). Consequently,
firm i's limit decision is p;(h;) ‘= pi(nico(h;)). Let 6;(h;) be the unique world in the
support of uiso(h;). The pair @;(h;), p;(h;)) then specifies the limit stochastic view of
the world of each firm. That is, each firmperceives demand to be distributed in the
limit as

gi(xi|pi(hy), 6;i(hi)).

We can now relate our results straightforwardly with our concept of equilibrium. We say
that convergence @most sureif it is A;-almost sure for every

Theorem 6. Thelearning process almost surely convergesto a conjectural equilibrium.

Proof. By Theorem Sve know that the beligf;, (h;) of firm i does not distinguish between
signals onZ. So, byTheorem 4it is a fixed point of the Bayes operator and, hence, an
individual conjectural equilibrium. Since this holds for every firm these beliefs form a
conjectural equilibrium. O
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7. Objective convergenceto conjectural equilibrium

We now know that for almost all developments of history to which a firm initially as-
signs non-zero probability, its beliefs on the parameters of conjectured market demand,
and thereby the decisions it takes, converge to a unique limit belief that puts all mass on a
single parameter of conjectured demand. For each firm, the limit decision is an individual
conjectural equilibrium.

Since these results hold for every individual firnwve are indeed close to conclusions on
the behavior of the complete economy. However, since the conjectures that firms entertain
are structurally mis-specified, their beliefs of possible developments of history need not
necessarily match with the objective sequence of market demand they face. Consequently,
actual histories may unfold that hakgprobability zero for some firms. Firms facing such
probability zero histories will be unable to cope with it: Bayesian learning breaks down
under such shocking surprises, and convergence fails. In order to exclude the rise of such
paths, therefore, we need a condition that relates beliefs to objective probabilities.

The objective probability measure on the space of sample paths of theé:foenH; is
potentially influenced by the behavior of all firms through the objective demand functions
fi(xilp). In fact, for given initial beliefsug of the population, the unfolding sequence of
individual actions that derives from the firms’ sequential individual application of Bayes’
rule within their conjectured demand structures, lays out a complete history of the world,
when performed in the interrelated objective demand structures. For given priors, the only
stochastic influence on the individually observed histgrig from f; (x;| p,) for eachr.

The construction of objective probabilities on spat;eequires an objective probability
measurey; on B(H;). Like A;, p; is formally defined inductively on histories of finite length,
combined with infinite extensions. Fer= 0, we naturally havey;o(¥) = 1. In order to
now definep; ;11 inductively, assume thai;, is known. Then, given that we have a history
h;; of lengthz, we can define the transition probabiligy 1 (;;)(D.+1) for each Borel
subsetD, ;1 of X; as

Sir4+1(hir)(Dry1) = fi(xilpr) dv;.
Dry1

Again we can define

+1
Pit+1 <1—[Dt> = /T 8ir41(hir)(Dry1) dpir
=1

X;_1D:

and apply again the Theorem of Kolmogorov. We now come to a crucial relationship between
the objective and subjective probability measyseanda;.

Assumption 4. The probability measurg; is absolutely continuous with respect to prob-
ability measure.; for every firmi.

In the interpretation that we have offered for the meashkyesdp;, absolute continuity
of p; with respect to\; implies that no actual development is possible that was not a priori
foreseen as a possibility by the firm concerned. There is, therefore, ‘No Statistical Surprise’



502 M.P. Schinkel et al./ Journal of Mathematical Economics 38 (2002) 483-508

on the side of firms. This may seem strong, but is an assumption that is in fact often
(implicitly) made in econometric specifications. Moreover, it seems a natural condition
necessary for beliefs to settle down, as one can hardly expect beliefs to converge if all the
time new and unforeseen events stir up the learning process. ‘No Statistical Surprise’ gives
us the following prime result.

Theorem 7. Beliefs almost surely converge to a conjectural equilibrium in the objective
sense.

Proof. By Theorem 6we have that the beliefs of each firntonverge to an individual
conjectural equilibriunk;-almost surely. Since; is absolutely continuous with respect to
A, this convergence is alsg-almost-surely. O

Finally, again sincey; is continuous, we can conclude the following on the behavior of
the individually rational disequilibrium price adjustment process.

Theorem 8. Thedecision vector p, converges p;-almost surely to a conjectural equilibrium
decision vector poo.

8. Concluding remarks

The groundwork laid in this paper for modeling individually rational disequilibrium
price adjustment by introducing elements of imperfect competition, imperfect and incom-
plete information and learning from self-generated signals, allows for a fairly strong global
stability condition for general equilibrium models, that of ‘No Statistical Surprise’. Apart
from being intuitively appealing, and doing away with the deus ex machina approach to
disequilibrium behavior, this condition extends quite naturally on ‘No Favorable Surprise’,
the global stability condition established kisher (1983) Our approach also calls for a
number of extensions.

Inthe present model, firms gradually estimate the parameters of their conjectured demand.
Naturally, provided they have some monopsony power as well, firms could likewise be taken
to learn about supply, proposing purchase prices in the process. ‘No Statistical Surprise’ is
likely to be strong enough to obtain convergence results in such a dealer-model as well.

A more demanding extension of the model would be to further specify the relationship
between objective demand and supply structures and their subjective counterparts on which
behavior is based. The present conjectures consider only the own price effect. Typically,
firms would take the prices of several of their nearest competitors into account, applying
econometric techniques in which the costs of including additional explanatory variables, or
sharper functional forms, are weighted against the expected benefits of more precise pre-
dictions, thus, determining the best structural specification to work with. Such an approach
would lead to an optimal level of mis-specification and introduce interesting problems
concerning the strategic behavior towards rivals.

Related to this is the concept of active learning, where firms reckon with the fact
that their prices will provide future information that can be used to increase profits. The
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type of non-myopic price setting that results from this has been studied in a partial set-
ting Easley and Kiefer (198&ndKiefer and Nyarko (1989)where convergence results
similar to the ones obtained here are established. The present price adjustment model
would benefit greatly from an extension of dealer behavior in this direction, even though
we expect ‘No Statistical Surprise’ to be powerful enough to again assure almost sure
convergence.

The model presented in this paper relies on a specific and exogenously given structure
of the market. Certain firms make it their business to act as intermediaries in the trade of
a particular good. Casually, this setup has been defended by an appeal to product differen-
tiation and transaction costs. It is to represent a socially accepted shopping-area structure.
Although the identification of commaodities with firms, which naturally leads to this market
structure, seems quite appropriate in many markets, further specification of these underlying
properties of markets is called for. Particularly, the consequences of entry and exit, and the
possibility to compete for locally dominant dealerships raises interesting questions. For one
thing, efforts to endogenize the market structure may well result in entry conditions that
have the model sound more than presently like a disequilibrium story with a competitive
ending.

Finally, the present model is altogether silent on the issue of social consequences of the
disequilibrium dynamics modeled. In accordance with the observatiodsroyw (1959)
referred to earlier, it trades efficiency of competitive equilibrium for global stability by intro-
ducing monopolistic competition as an essential disequilibrium phenomenon. The precise
welfare consequences of this seem a promising area of further research.

In the appendices we have collected those parts of the theoretical framework needed in
the paper that would disrupt the flow of the argument too much when presented in the main
body of the paperAppendix A provides a detailed and complete proof of the continuity
of the Bayes operatoAppendix Bprovides proofs concerning the support of some of the
probability measures used in the text. These two appendices are largely baSasien
and Kiefer (1988)
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Appendix A. Continuity of the Bayes operator

In this appendix, we will show that the Bayes operator definé&kiction 3s continuous.
First of all, notice that the denominator in its definition is larger than zerbéwma 6
So, it is easy to see th&(u;)(x;) is a non-negative function on the Borelalgebra on
©®;. Theo-additivity of B(u;)(x;) follows from theo-additivity of the integral and finally it
is obvious thatB(u;)(x;)(®;) = 1. S0,B(u;)(%) is indeed a probability measure, and the
Bayes operator, thus, only takes on valueB(@®). Back to our aim, its continuity, we first
need to establish some technicalities.
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Lemma3. Supposethat we havea sequence (pik);< ; that convergesto somep;. Then there
isa number K such that for all k > K, all x; and all 6;

[l7; (pik, Xi) &i (xi| pik, 6i) — mi(pi, xi)&i (xi1pi, 6] < &.

Proof. Suppose not. Then for every numbrethere is a numbek(n) > n and points;(n)
ando;(n) such that

[177; (Piken) » Xi (1)) &i (xi (1) | pik(ny, 6: (1)) — i (pi, xi(n)) gi (x;(n)| pi, 6;(n))]| > e.

Since bothX; and ®; are compact we may assume w.l.0.g that the sequefieg? ;
converges to a poink; and the sequeneg(n);> ; converges to a poirtt;. However, since

k(n) = n by construction, we know that,,, — p;. Hence, taking limits yields
0 = ||mi(pi,xi) gi(xil pi, 6;) — wi(pi, xi)gi (xi|pi, O] = €
which is a contradiction. O

Lemma4. Thefunction p; : P(®;) — P; iscontinuous.

Proof. Part (i): First, we will show that the expected payoff function
Il; . P; x H‘D(@,) — R

is continuous. Of course, we suppose tha;) is endowed with the weak topology. Notice
that his topology is metrizable byheorem Sof Appendix Il in Billingsley (1968) There-
fore, it is sufficient to establish convergencel@f over sequences. So, take a sequence
(pik, mik) = (pi, ni). We want to show that, given> 0, there exists a natural number
such that for alk > K,

[11T; (piks ik) — ITi(pi, p)|| < 2e.
By the triangle inequality, we only need to show that
[117;(pik, wik) — i (pi, i)l + [1Ti (i, pik) — i (pi, pi)ll < 2¢

for sufficiently largek. We will show that both terms on the left hand side of the inequality
sign are smaller than or equalddor sufficiently largek. The first term reads

[IT; (pik, mik) — IT;(pi, mik) |l

= H/O [7i (pik, x1)&i(xi, Oi| pik) — i (pi, X)) gi(x;, 6;1 pi)] dv; Apsik
O J Xi

< / / 1721 ik 1) Cxis 611 i) — 71 (prs 5000t 611 po)1] vy i
O;J X;

Now takeK as inLemma 3 Then, since); andu;; are all probability measures, for each
k > K the latter expression is smaller than or equal to

f / 81@,-><X,- dvid,uik:g_
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Furthermore, the second term reads

//Ni(Pivxi)gi(xiv9i|Pi)dUidMik_/ / ﬂi(Pi,xi)gi(xi,9i|Pi)dVidMi'.
O;JX; O;J X;
Because, we assume tif©;) is endowed with the weak topology, it suffices to show that

Fy(6:) 1=/ mi(pi» Xi)&i(xi| pi, 0;) dv;

i

is continuous irv;. To that end, take a sequengg — 6;. Lete > 0 be an arbitrary real
number. LeiG, be a positive real number such that

[l (pi, x)|| < Gp, forallx; € X;.

This number exists becausg(p;, x;) is continuous irx; andX; is compact. Now take a
natural numbeM,, such that for alln > M,

£
[lgi (xil pi, Oim) — &i(xilpi, ODI| < —.
Gp

Then for allm > M,
[ Fp(Bim) — Fp(O)l]

= H/ i (pi, xi)(gi (xi| pi, Oim) — gi(xil pi, 6;)) dv;
Xi

5/ e (pis 201 1 et i Ghan) — el i 611 .
X
Consequently, since (X;) = 1,
£
11 Fy6m) — Fy(@)l] s/ ot dv = .
Xi GP

Part (ii): Now let(uik);>, be a sequence convergingaein the weak topology. Then,
sinceP; is a compact metric space, every sequence has a converging subsequence. So, we
may assume without loss of generality tbgj.;x) converges to some decisigfi. We will
now show thap} = p;(u;).

Sincep; (i) is the optimal decision given the beligf;, we know that for an arbitrary
p; in P; it holds that

IT;(pi(1ik)» pik) = ITi(pi, pi),  forallk.
So, by the continuity of7; we get that
I (pf, wi) = i(pi, wi),

and p? is an optimal action given beligf; sincep; was arbitrarily chosen. Hencg; =
pi(i) by Assumption 1 -
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Furthermore, notice that; : X; x P; x ®; — R is also continuous. So, the function
h:X; xP(®;) x ® — Rby

h(xi, (i, 0;) == gi(xi, pi(ui), 6;)

is continuous as well. Now suppose we have a sequengguin);- ; converging to some
limit (x;, u;). Define the function§, andf from ©®; to R by

fn(0i) = h(xin, in, 6;) and  f(6;) = h(x;, wi, 0;).
Now take an arbitrary > 0. We then have the following lemma.

Lemmab. Thereexistsanatural number Nin N suchthat || f;, — flleo < eforaln > N.

Proof. Suppose not. Thenthere is asubsequefiog” ; of (f,);>, and asequendéix);> ;
such that

| fx @) — f6iw| = ¢, forallk e N.

Since®; is compact we may assume that the sequefigg” ; converges to some lim;.
Then for allk e N

e < | fx(Bi) — fOi| = |h(xik, ik, Oik) — B (xi, (i, Gk |-
However, sinceix — x;, ik — i anddix — 6;, the continuity ot yields
& < |h(xi, pi, 6;) — h(xi, i, 0;)]
so that we arrive at a contradiction. O

The lemma is instrumental in the proof of the following.
Theorem 9. The Bayes operator is continuous.

Proof. Suppose thatuin, xin);-; converges toy;, X;). It has to be shown that
B; (iin) (xin) — B; (i) (x;)

asn goes to infinity. To this end, It be a closeds;-continuous subset a®;. By the
Portmanteau theorem it is sufficient to show that

Bi(pin) (xin) (F) = Bi(wi)(xi) (F).
By the definition of the Bayes operator,

Jrgixil p(ui), 6;) dus;

Bi(pi) (xi) (F) = Jo,8i(xil pQui), 6:) di’

Now Lemma 6in Appendix Bguarantees that the denominator is strictly positive. So,
since ©; itself is an instance of a closed detwhose boundary has measure zero (the
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boundary of®; is the empty set after all), it suffices in turn to show that, giwen 0,

< 2¢

‘/ng(xinm(ﬂin),@i) dMin—/ng(xHP(Mi),@i)dﬂi

for sufficiently largen. This is what we set out to do.
First, takeN as inLemma 5 Then for alln > N,

‘/ng(xin“?(l/«in)»@i)dﬂin—/ng(xi|l7(l/«i)»9i)dllin

< /F () — (6] dptin < /O @) — O] dptin
sfonfn—f||oodumssum<@,»>=e,

where the last inequality follows from the choicerdindN. So, now we only have to show
that for alle > O, there exists aiv € N such that for alh > N

< €.

‘/ng(xﬂp(ui),@i)dﬂin—/ng(xﬂp(ui),@i) du;

In other words, we have to show the existence of a natural nuhbach that for every
n > N, u;, is an element of the set of probability measurgwith

‘/f(@‘)dvi—/f(@i) du;
F F

However, since this set is open in the weak topology @ng) ;> ; weakly converges ta;,
such anN exists. O

< E&.

Appendix B. Sufficiently wideworld views

For the Bayesian learning process to be well specified, we need that there are no objec-
tively possible events that are assigned probability zero at any time by the firm. A Bayesian
learner, namely, would simply not be able to deal with such events. Formally, it means that
the denominator of the updating rule might become zero. In this appendix, we will show
thatAssumption 2avoids this problem. Although also several somewhat weaker conditions
would guarantee that the Bayesian learning process is well defined, we prefer to work with
the above condition because of its simplicity. And that it is indeed sufficient is expressed in
the following lemma.

Lemma6. Let u; beabelief in P(®;) and suppose that Assumption zholds. Let further a
decision p;, a demand x;, and a Bol set A C ®; with ;(A) > 0 be given. Then

/gi(9i|l7i,xi) du; > 0.
A
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Proof. Take a decisiom; and a demand;. Then we know thag;(6;| p;, x;) is a contin-

uous function in the variablé; since we even assumed thgatis continuous in all three
variables together. Moreove®; is compact. So, there exists a real number 0 such that
gi(6;|pi, x;) > e forall 9; € ®;. Consequently,

/;gi(ei|]7i,xi) du; > /;81@i du; = 8/A1(~>,- du; = eu;(A)

which is positive since bothandu;(A) are positive by assumption. O
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