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Abstract

A central unanswered question in economic theory is that of price formation in disequilibrium.
This paper lays the groundwork for a model that has been suggested as an answer to this question
in, particularly, Arrow [Toward a theory of price adjustment, in: M. Abramovitz, et al. (Ed.), The
Allocation of Economic Resources, Stanford University Press, Stanford, 1959], Fisher [Disequi-
librium Foundations of Equilibrium Economics, Cambridge University Press, Cambridge, 1983]
and Hahn [Information dynamics and equilibrium, in: F. Hahn (Ed.), The Economics of Miss-
ing Markets, Information, and Games, Clarendon Press, Oxford, 1989]. We consider sellers that
monopolistically compete in prices but have incomplete information about the structure of the
market they face. They each entertain a simple demand conjecture in which sales are perceived
to depend on the own price only, and set prices to maximize expected profits. Prior beliefs on
the parameters of conjectured demand are updated into posterior beliefs upon each observation of
sales at proposed prices, using Bayes’ rule. The rational learning process, thus, constructed drives
the price dynamics of the model. Its properties are analysed. Moreover, a sufficient condition is
provided, relating objectively possible events and subjective beliefs, under which the price process
is globally stable on a conjectural equilibrium for almost all objectively possible developments
of history.
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1. Introduction

In economic theory, a key role in the coordination of behavior is played by prices. As a
consequence, the so-called price mechanism is much debated, and the need for it operating
freely often stressed. Yet, there are many open research questions on the matter of prices,
especially on how they come to take on equilibrium values. For one thing, it is generally left
unexplained whose business it actually is to call and change prices. Particularly in models
in which price-taking behavior is assumed, this is a pressing question. Reliance on a unique
price vector indicates it is left to a single person or institution, and a number of models
has been presented in which the central person is in fact an altruistic auctioneer, e.g. in the
tâtonnement process, the Edgeworth process, and the Hahn process.1

Apart from the fact that it seems odd, if not plainly inconsistent, to model all behavior but
that of the auctioneer as resulting from constrained rational choice, at least two things meet
the eye in these explanations. First, these processes need an exogenous central coordinator
to explain the rise of equilibria that are meant to be the outcome of decentralized competitive
economies. Second, the conditions these processes need for convergence on equilibrium
price values for arbitrary initial prices, i.e. for global stability of the disequilibrium process—
have been found to be pretty strong.

A number of suggestions has been made to study the disequilibrium behavior of prices
more seriously. An early one is inArrow (1959), in which Arrow proposed to make price
a choice variable of individual firms, that consequently need to come equipped with some
local monopoly power, at least as a disequilibrium phenomenon. To Arrow, the construct
of perfect competition did not allow for an explanation of price behavior. More recently,
Fisher (1983)develops an elaborate model of disequilibrium behavior in which there is
clarity on who is setting prices. It is done by dealers, who specialize in differentiated goods,
which gives them the local monopoly power to act as a coordinator and set prices. How
prices are adjusted with changes in perceptions, however, is not discussed in depth in the
monograph, yet indicated as an area of promising further research. Finally, inHahn (1989)
several partial examples are given of perception changes and associated behavior that may
indeed be plausible for monopolistically competing price-setters to develop—including a
rudimentary version of the behavior we study in this paper. Yet, the consequences of such
behavior, particularly when performed in general equilibrium settings, are only hinted upon.

When prices are choice variables of firms, the way firms perceive their market position,
and especially changes in these perceptions, can account for the dynamics of prices. This
idea is used in the present paper to construct a model of individually rational price adjust-
ment and study its limit behavior, particularly its stability properties. In the present model,
each of a number of firms is in monopolistic price competition, but does not have perfect
information on the market demand it faces. At each moment in time, based on its infor-
mation to date on past prices and sales, each firm entertains a demand conjecture instead.
Naturally, this conjecture has a structural form different from that of objective demand.
Particularly, we consider the most extreme case where firms only consider their own price
as an explanatory variable, and do not consider the price effects of competing products.

1 For an extensive survey of the disequilibrium literature and its problems, as well as pointers to an alternative
modeling route on which the present model takes a small step (seeSchinkel, 2001).
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Within their conjectured structures, firms learn in a Bayesian way about the value of the
demand parameters it has modeled. A fleshed out conjecture serves as a basis for an optimal
price through expected profit maximization.

It is shown that for initial beliefs that do not assign zero probability to developments
of prices and sales that can actually happen, the incomplete beliefs converge to a finite
limit, and, therefore, prices converge as well. This is called ‘No Statistical Surprise’. Con-
vergence takes place on a set of ‘conjectural equilibria’. Under ‘No Statistical Surprise’,
therefore, the price process is globally stable in that it reaches an equilibrium for ev-
ery initial belief-structure. Which particular equilibrium is reached depends on the ini-
tial beliefs. This path-dependency result runs solely over beliefs, since the model assumes
absence of trade at disequilibrium prices. The stability result does not rely on specific
conditions on the structure of objective demand. Instead, the condition of ‘No Statistical
Surprise’ is sufficient for the perceived structure to absorb all price effects on objective
demand.

The literature on Bayesian or rational learning is quite recent and large. Our paper builds
on several of its results. One focus has been the concern to justify the use of rational
expectations equilibria. ParticularlyBray and Savin (1986), andBray and Kreps (1987)
work in this direction, and establish convergence results for myopic Bayesian learners on
rational expectations equilibrium in versions of the cobweb-model. Early work byBlume
and Easley (1982, 1986)is also concerned with the influence learning has on the eventual
equilibrium situation reached, but in a general equilibrium setting. Particularly, they focus
on conditions under which Bayesian learners will identify the true model among several
models.

In partial equilibrium models of single firms learning their demand,Easley and Kiefer
(1988)among others, study the influence of active learning on firms’ optimization problems.
Actively learning firms are aware of the fact that their behavior influences their options
for learning. In a discrete game theoretical setting,Kalai and Lehrer (1993, 1995)have
obtained results for rational learning behavior. The former reference,Kalai and Lehrer
(1993), considers learning in a correctly specified structure, and states conditions under
which it converges to a Nash equilibrium of the perfect information game that are similar
to ours.

Another, much less extensively traveled route has been to study the influence of structural
mis-specification on the convergence process and its equilibria.Kirman (1975, 1983, 1995)
sets up an early example of two firms learning, in a least squares way, in a mis-specified
structure of their game. However, he does not establish general convergence results.Nyarko
(1991)constructs an example of a single, actively learning monopolist whose beliefs do not
settle, due to a very particular structural specification error.Kalai and Lehrer (1995)extends
the 1993 convergence conditions to structurally mis-specified models to identify the usable
notion of equilibrium. However, their article does not present explicit convergence results.

This paper is organized as follows.Section 2presents the model structure.Section 3
introduces the way in which information is processed, as well as an associated equilibrium
concept.Sections 4 and 5introduce the convergence result, the nature of which is subse-
quently discussed inSection 6. Section 7presents the global stability of the price process on
the equilibria of the model, introducing the concept of ‘No Statistical Surprise’.Section 8
closes with some concluding remarks on possible extensions of the model.
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2. The model

Consider an economy withn different firms. Each firmi has the ability to produce its
own commodity, that is, it is supposed to take decisions on, particularly, price and quality
of the commodity it produces. In this paper, we will assume that the aggregate of all these
strategic choices to be made by firmi are incorporated into one single action spacePi. For
technical reasons eachPi is assumed to be a convex and compact metric space.

2.1. Objective demand

The objective demand for each commodityi is assumed to be non-deterministic. In order
to model this, let the commodity space of firmi be denoted byXi. One can think of this
space as being the collection of all possible realized demands for its commodity firmi might
face. From a technical point of view, we only need few restrictions on this commodity space
though, and we will only assume it is a compact metric space.

Suppose that firmi has decided to take actionpi in Pi. We writep := (pi)i∈N ∈ P :=
ΠiPi for the entire vector of decisions taken. Now the demand for commodityi is supposed
to be given by the density function

fi(xi|p)
with respect to the probability measureνi defined on the Borelσ-algebraB(Xi) generated
by the metric on the commodity spaceXi. For technical reasons, we assume that for any
open setU ⊂ Xi we haveνi(U) > 0. Further, byfi(xi|p) being defined with respect toνi
we mean that∫

Xi

fi(xi|p)dνi = 1.

We will also assume that the functionfi : Xi × P → R is continuous.

2.2. Perceived demand

None of the firms is fully aware of the mechanism that generates the demand it faces.
Instead, each firmi has a collectionΘi of ‘worlds’ it deems possible. In worldθi ∈ Θi,
it conjectures that it serves a demand function that is distributed according to the density
function

gi(xi|pi, θi)
with respect toνi. Again, we assume for technical reasons thatΘi is a compact metric space
and thatgi: Xi × Pi ×Θi → R is continuous.

Note that subjective demand conjectures deviate importantly from objective demand:
each firm only considers the effect of its own decision on the demand for its commodity,
and neglects the influence of the decisions of the other commodities. In effect, each firm
believes that it is a monopolist on its own market. This structural mis-specification reflects
incomplete information on the side of the firms. We focus on this extreme situation where
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only the effect of a firm’s own decision is considered for reasons of exposition. The analysis
could be extended to include less severe forms of incomplete information, e.g. structures in
which the effects of the actions taken by several of the nearest competitors are included.

2.3. Expected profits

Within its structural mis-specification of how the world works, each firmi believes that
there exists a ‘true’ world. However, it does not know which of possible worlds inΘi is
the true one. Instead, the firm’s perception of the world is stochastic. This means that each
firm i has a belief represented by an element of the setP(Θi) of probability measures on
Θi. Such a beliefµi ∈ P(Θi) assigns to each Borel subsetA of Θi a real numberµi(A) that
reflects the probability firmi assigns to the event that the real world is an element ofA.

Further, let

πi(pi, xi) ∈ R

be the net profit of demandxi when firmi decides to take actionpi (we will assume throughout
the paper thatπi is continuous). Then, given a beliefµi of firm i, the amountΠi(pi, µi) of
money firmi expects to earn is given by

Πi(pi, µi) =
∫
Θi

∫
Xi

πi(pi, xi)gi(xi, θi|pi)dνi dµi.

Since each firmi is assumed to be rational it will aim to maximizeΠi(pi, µi) and take
an optimal decision. In the remainder of this paper, we need each firm to have a unique
optimal decision given the beliefµi. In other words, we need to know that there is exactly
one decision inPi, which we will denote bypi(µi), for whichΠi(pi(µi), µi) is larger than
or equal toΠ(pi, µi) for any other possible actionpi of firm i in Pi. In order to guarantee
the existence of such a unique optimal decision, we make the following assumption.

Assumption 1. Given the beliefµi of firm i the functionΠi(pi, µi) is strictly concave.

This is, for example, the case if for eachxi andθi the integrandπi(pi, xi)gi(xi, θi|pi) is
strictly concave inpi.

Note thatpi(µi) need not maximize expected profits in an objective sense. This is so since,
although the world is in fact stochastic, it is stochastic in a way different from perception.
More specifically, given the vectorp(µ) := (pi(µi))i∈N of individual decisions, objective
demand is distributed onXi according to

fi(xi|p(µ)),
which shows how the true sales opportunities depend on the beliefs of all firms. And in turn
these opportunities determine the objective expected net profit. In other words, the objective
expected net profit of firmi is in fact given by∫

Xi

πi(pi, xi)fi(xi|p(µ))dνi.

No firm is, of course, capable of tuning its behavior to this true expected net profit.
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3. Information processing and conjectural equilibrium

Beliefs are updated according to the Bayesian updating rule, as follows. Suppose thatµi
is the current belief of firmi in P(Θi). Now the observation of demandxi in Xi induces the
updated beliefBi(µi)(xi) in P(Θi) that assigns to a Borel setA ⊂ Θi the probability

Bi(µi)(xi)(A) :=
∫
A
gi(θi|pi(µi), xi)dµi∫

Θi
gi(θi|pi(µi), xi)dµi

provided of course that the denominator is not equal to zero. In order to guarantee that this
is the case, independent of the beliefµi we make the following assumption.

Assumption 2. For all pi, θi andxi,

gi(xi|pi, θi) > 0.

Given this assumption it can be shown that the above formula indeed yields a mapping

Bi : P(Θi)×Xi → P(Θi),

from the space of probability measures times the space of quantitiesXi back to the space
of probability measures.2 This particular updating method, known as Bayesian updating, is
firmly founded in probability theory. It is, therefore, sensible from the firms’ perspective to
extract information from past observations in this way.

Although it does make perfect sense from the perspective of the firms, the learning process
described is ill-founded in objective terms since it is based on an unrecognized structural
mis-perception of demand. Hence, in general it cannot be hoped that subjective perceptions
will come to explain the true demand for a commodity. Yet, there is a natural candidate
for beliefs that are in ‘equilibrium’ with the objective world. Consider a single firm. The
firm’s beliefs are in equilibrium if perceived optimal decisions made on the basis of this
belief return quantities that are no ground for a revision of beliefs. This is the concept of
individual conjectural equilibrium.

Definition 1. An individual conjectural equilibrium for firmi is a beliefµi for which for
all xi ∈ Xi

Bi(µi)(xi) = µi.

Since the observed sales depend on the decisions of all firms, it is quite special for a
single firm to be in individual conjectural equilibrium. Yet, if all firms simultaneously are
in individual conjectural equilibrium, none has a reason to deviate unilaterally from its
decision, since no firm believes it can improve its position by doing so. This leads us to
consider the following notion of an equilibrium for our economy.

Definition 2. A conjectural equilibrium is a vectorµ = (µi)i∈N of beliefs such that each
µi is an individual conjectural equilibrium.

2 The technicalities supporting this statement can be found inAppendices A and B.
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4. Learning dynamics, infinite histories and beliefs

In Section 3, we saw that firms have mis-specified models of the true state of the world
and they are not aware of this false interpretation of their environment. Nevertheless, given
their mis-specification of the way the world works, they are aware of the fact that they are
not fully informed about the true state of the world. This lack of information is modeled as
a probability distributionµi0 (the initial belief) over the collectionΘi of all worlds that firm
i deems possible. This belief reflects the amount of prior information firmi has concerning
the true state of the world.

Now since each firm is a profit maximizer and since it is aware of the fact that it is not fully
informed, it is eager to learn more about the true state of the world from market experience.
It does so in the following way. Given its prior beliefµi0 firm i sets its (subjective) optimal
decisionpi(µi0). Once each firm has made this move, the objective demand density function
establishes the quantities that can actually be sold given the actionsp0 := pi(µi0)i∈N . This
means that for each firmi a quantityxi1 is drawn from the probability measure that assigns
to each Borel setA ⊂ Xi the probability∫

A

fi(xi|p0)dνi.

This new information is ground for a revision of beliefs via Bayesian updating. Repeating
this procedure yields a learning process with the following properties.

At a given timeτ = 0,1, . . . , each individual firmi has recorded a history of consumer
demands

hiτ = (xit)
τ
t=1

of finite lengthτ. This market information is the basis of the beliefµiτ(hiτ) of firm i at
timeτ concerning the state of the world. It then takes a new actionpi(µiτ(hiτ)) based on its
current belief. Given the vectorpτ := (pi(µiτ(hiτ)))i∈N of new decisions, firmi observes
a new quantityxiτ+1 drawn from the probability distribution that assigns to each Borel set
A ⊂ Xi the probability∫

A

fi(xi|pτ)dνi.

Subsequently, beliefs are updated according to the Bayesian updating rule. Formally,

µiτ+1(hiτ, xiτ+1) := Bi(µiτ(hiτ))(xiτ+1).

Note that the decision onpi(µiτ(hiτ)) the firm takes at timeτ is a function only of the beliefs
at timeτ, which in turn derive from the initial beliefsµi0 and the recorded history up until
τ. Hence, it is sufficient to record sequences of observed quantities, as the firms do.

We have, thus, constructed a well-specified process in which beliefs lead to perceived
optimal decisionspτ , which serve as endogenous signals to obtain new information about
the parameters of the distribution of objective demand. This new information, in turn, leads
to an update of beliefs and, therefore, to new optimal decisionspτ+1 in a disequilibrium
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Fig. 1. The development of beliefs and prices over time.

price dynamics that embodies both subjectively rational learning and subjectively rational
actions (Fig. 1).

In order to study the dynamic properties of this decision process, we make use of martin-
gale convergence theory. For that purpose, we need to construct an underlying probability
space on which we can identify martingales. This is the space of all possible future devel-
opments of history a firmi foresees at the beginning of time.3 Formally, let

Hiτ :=
τ∏
t=1

Xi

be the space of all historieshiτ of lengthτ. B(Hiτ) denotes the Borelσ-algebra onHiτ .
Further, letHi := ∏∞

t=1Xi be the space of infinite histories. A specific element ofHi is
denoted byhi. By B(Hi) we denote the Borelσ-algebra generated by the product topology
on Hi.

To complete the probability space of all future histories, we need a measureλi onB(Hi).
Formally thisλi is defined inductively on histories of finite length, combined with infinite
extensions. We will now go through this construction step by step. First note that it is in
fact sufficient to specify the numbers

λi


Dτ ×

∞∏
t=τ+1

Xi




for each Borel setDτ in Hiτ . Because, once these numbers are known, there is a unique way
to extendλi toB(Hi). So we only need to specify the numbers

λiτ

(
τ∏
t=1

Dt

)
,

whereλiτ is the probability measure induced by the beliefs of firmi up till time τ. Once
these numbers are known,λi follows straightforwardly. In fact,

λi


 τ∏
t=1

Dt ×
∞∏

t=τ+1

Xi


 := λiτ

(
τ∏
t=1

Dt

)
,

3 We deviate somewhat from the structure generally chosen for this purpose, e.g. inEasley and Kiefer (1988),
though in essence the spaces are the same.
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the probability that an infinite history starts with a historyhiτ in the set
∏τ

t=1Dt . In order
to specify these numbers we naturally start withλi0(∅) := 1. Further, forτ = 1,

λi1(D1) :=
∫
D1

∫
Θi

gi(xi, θi|pi(µi0))dµi0 dνi.

In order to now defineλiτ+1 inductively, assume thatλiτ is known. Lethiτ be a history
of lengthτ. Then the transition probabilityγiτ+1(hiτ)(Dτ+1) of ending up inDτ+1 ⊂ Xi

provided we have observed historyhiτ is equal to

γiτ+1(hiτ)(Dτ+1) :=
∫
Dτ+1

∫
Θi

gi(xi, θi|pi(µiτ(hiτ)))dµiτ(hiτ)dνi.

The transition probability gives the subjective probability of an observationxiτ+1 being in
Dτ+1 given that the firm has already observed historyhiτ and subsequently believes that
µiτ(hiτ) is the appropriate probability distribution overΘi. We then have

λiτ+1

(
τ+1∏
t=1

Dt

)
:=
∫
Hiτ

∫
Xi

1∏τ+1
t=1Dt

dγiτ+1(hiτ)dλiτ

=
∫
Hiτ

1∏τ
t=1Dt

∫
Xi

1Dτ+1 dγiτ+1(hiτ)dλiτ

=
∫
Hiτ

1∏τ
t=1Dt

γiτ+1(hiτ)(Dτ+1)dλiτ

=
∫
∏τ

t=1Dt

γiτ+1(hiτ)(Dτ+1)dλiτ.

The definition reflects howλiτ+1 derives as the weighted ‘sum’ (i.e. the integral) of all
transition probabilities, where the weights are the probabilitiesλiτ the firm assigns to the
observation that conditions the particular transition probability. The first step easily follows
from rewriting the indicator function on the product set as a product of indicator functions.
It is then observed that the inner integral equalsγiτ+1(hiτ)(Diτ+1). Finally, the indicator
function is replaced by the restricted integral.

Now notice that, since the above computation implies that for all setsDτ in B(Hiτ), we
have

λiτ+1(Dτ ×Xi) =
∫
Dτ

γiτ+1(hiτ)(Xi)dλiτ =
∫
Dτ

1Hiτ dλiτ = λiτ(Dτ),

the measuresλiτ are consistent. Therefore, by the theorem of Kolmogorov, there is a unique
probability measureλi onB(Hi) such that

λi


Dτ ×

∞∏
t=τ+1

Xi


 = λiτ(Dτ).

for all Borel setsDτ in B(Hiτ).
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An appealing way to think aboutλi is as the probability firmi initially assigns to observing
the infinite historyhi ∈ Hi, based on its prior beliefs and its awareness of the learning process
it is about the engage in. An example may help to clarify this.

Example 1. A stochastic variableX takes on one of two values,x1 or x2. The probability
of x1 (and, hence,x2) depends on a parameterθ, that is eitherθ1 or θ2. Let Pr(x1, x2|θ1) =
(1/3,2/3) and Pr(x1, x2|θ2) = (1/2,1/2) be the conditional probabilities ofx1 andx2,
and supposeµ0 = (1/4,3/4) are the prior beliefs on (θ1, θ2). Over time, a sequence of
observations(xt)t∈N molds beliefs. We have

γ1(X1 = x1) = 1
4 × 1

3 + 3
4 × 1

2 = 11
24 = λ1(X1 = x1),

γ1(X1 = x2) = 1
4 × 2

3 + 3
4 × 1

2 = 13
24 = λ1(X1 = x2).

SupposeX1 = x1. Application of Bayes’ rule now gives posterior beliefs

µ1|(X1 = x1) =
(

1
4 × 1

3
1
4 × 1

3 + 3
4 × 1

2

,

3
4 × 1

2
1
4 × 1

3 + 3
4 × 1

2

)
=
(

2

11
,

9

11

)
.

Similarly,X1 = x2 would return

µ1|(X1 = x2) =
(

1
4 × 2

3
1
4 × 2

3 + 3
4 × 1

2

,

3
4 × 1

2
1
4 × 2

3 + 3
4 × 1

2

)
=
(

4

13
,

9

13

)
.

We then have the conditional transition probabilities

γ2(X2 = x1|X1 = x1) = 2
11 × 1

3 + 9
11 × 1

2 = 31
66,

γ2(X2 = x2|X1 = x1) = 2
11 × 2

3 + 9
11 × 1

2 = 35
66,

γ2(X2 = x1|X1 = x2) = 4
13 × 1

3 + 9
13 × 1

2 = 35
78,

γ2(X2 = x2|X1 = x2) = 4
13 × 2

3 + 9
13 × 1

2 = 43
78.

Theλ-measure for thet = 2 paths is now constructed by combining the conditional transi-
tion probabilities, as follows.

λ2(X1 = x1, X2 = x1) = λ1(X1 = x1)γ2(X2 = x1|X1 = x1) = 11
24 × 31

66 = 31
144.

Similarly, we find

λ2(X1 = x1, X2 = x2) = 11
24 × 35

66 = 35
144,

λ2(X1 = x2, X2 = x1) = 13
24 × 35

78 = 35
144,

λ2(X1 = x2, X2 = x2) = 13
24 × 43

78 = 43
144.

Finally, the posteriors follow from Bayes’ rule as

µ2|(X1 = x1, X2 = x1) =
(

4
31,

27
31

)
,
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µ2|(X1 = x1, X2 = x2) =
(

8
35,

27
35

)
= µ2|(X1 = x2, X2 = x1),

µ2|(X1 = x2, X2 = x2) =
(

16
43,

27
43

)
.

5. Convergence of beliefs and actions

The prime interest in this paper is to know whether, given initial beliefs, the process of
Bayesian updating will eventually converge to a conjectural equilibrium. That is, we ask
whether learning will teach some invariable posterior ideas, or whether perceptions, and
thus decisions, will keep on changing forever. In order to address this question we will
employ a convergence theorem concerning martingales. For that, we will show that on the
probability space (Hi, B(Hi), λi) constructed above beliefs indeed form a martingale. To
that end, we first need to introduce some notation.

Consider an infinite historyhi = (xit)
∞
t=1 in Hi. The finite historyhiτ := (xit)

τ
t=1 in Hiτ

is called thetruncation of hi till time τ. Further, letA be a Borel set inB(Θi). Consider the
functionµiτ (A) from Hi to R that assigns to an infinite historyhi the real number

µiτ(A)(hi) := µiτ(hiτ)(A).

Secondly, notice that the above truncation of infinite histories to histories of lengthτ

induces a natural identification of each elementDτ of theσ-algebraB(Hiτ) with the set

Dτ ×
∞∏

t=τ+1

Xi

in B(Hi). The subalgebra ofB(Hi) of sets of this form is denoted byBτ(Hi).
First notice thatBτ(Hi) is a subset ofBτ+1(Hi) and that each functionµiτ (A) is
Bτ(Hi)-measurable. We will now show that the sequence(µiτ(A))

∞
τ=1 is even a martin-

gale. In order to do that we need the following.

Lemma 1. Let φ a bounded and Bτ+1(Hi)-measurable function. Then we have∫
Hi

φ(hi)dλi =
∫
Hiτ

∫
Xi

φ(hiτ, xiτ+1)

∫
Θi

gi(xiτ+1θi|piτ)dµiτ(hiτ)dνi dλiτ.

Proof. LetD×Dτ+1 ×∏∞
t=τ+1Xi be a Borel set inBτ+1(Hi). Then∫

Hi

1D×Dτ+1×
∏∞

t=τ+2Xi
dλi

=
∫
Hi,τ+1

1D×Dτ+1 dλiτ+1 = λiτ+1(D×Dτ) =
∫
Hiτ

1Dγiτ+1(hiτ)(Dτ+1)dλiτ

=
∫
Hiτ

∫
Xi

1D×Dτ+1

∫
Θi

gi(xiτ+1, θi|piτ)dµiτ(hiτ)dνi dλiτ.

The same equality now easily follows for an arbitrary integrable function. �
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Now, we can prove the following.

Theorem 1. Let A be a Borel set in B(Θi). Then the sequence (µiτ(A))
∞
τ=1 of random

variables is a martingale with respect to λi.

Proof. Let A be a Borel set inB(Θi) and letC be a Borel set inBτ(Hi). We have to check
that ∫

C

µiτ+1(A)(hi)dλi =
∫
C

µiτ(A)(hi)dλi.

SinceC is an element ofBτ(Hi), we know it can be written as

Dτ ×
∏
t=1

Xi

for some Borel setDτ in Hiτ . So, sinceλi agrees withλiτ+1 onBτ+1(Hi), Lemma 1yields∫
Dτ×

∏
t=1Xi

µiτ+1(A)(hi)dλi

=
∫
Dτ×Xi

µiτ+1(hiτ, xiτ+1)(A)dλiτ+1

=
∫
Dτ

∫
Xi

µiτ+1(hiτ, xiτ+1)(A)

∫
Θi

gi(xiτ+1, θi|piτ)dµiτ(hiτ)dνi dλiτ.

Plugging Bayes’ rule into this expression yields∫
Dτ

∫
Xi

∫
A
gi(xiτ+1, θi|piτ)dµiτ(hiτ)∫

Θi
gi(xiτ+1, θi|piτ)dµiτ(hiτ)

∫
Θi

gi(xiτ+1, θi|piτ)dµiτ(hiτ)dνi dλiτ

and the two integrals overΘi cancel out. Which reduces the above expression to∫
Dτ

∫
Xi

∫
A

gi(xiτ+1, θi|piτ)dµiτ(hiτ)dνi dλiτ.

To this expression we can apply the theorem of Fubini and switch the order of integration
overXi andA. This yields∫

Dτ

∫
A

∫
Xi

gi(xiτ+1, θi|piτ)dνi dµiτ(hiτ)dλiτ

=
∫
Dτ

∫
A

1Θi dµiτ(hiτ)dλiτ =
∫
Dτ

µiτ(hiτ)(A)dλiτ,

where the first equality results from the fact thatgi is a density function with respect toνi.
This concludes the proof. �

The result that beliefs form a martingale may not be very surprising. It states that the
nature of Bayesian learning is such that a firm does not expect to change its beliefs in
the future. Of course, an actual observation will in general change beliefs, but based upon
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current beliefs on future realizations of sales, a firm ex ante predicts it will not. One way
to interpret this is as Bayesian learning being sufficient, in that the information present at a
given time is used to the full.

Example 2. In our earlier example, it is easy to see that beliefs have the martingale property.
The expectationEλ(·) taken with respect toλ is

Eλ(µ1(θ1)) = 11
24 × 2

11 + 13
24 × 4

13 = 1
4 = µ0(θ1),

and similarly

Eλ(µ2(θ1)) = 11
144 × 4

31 + 35
144 × 8

35 + 43
144 × 16

43 = 1
4 = µ0(θ1).

With the above result in hand, we can apply martingale convergence theory to study the
limit beliefs of agents, and hence of decisions, as follows.

Take an infinite historyhi in Hi. Let µiτ(hi) be the probability measure inP(Θi) that
assigns to each Borel setA of Θi the real numberµiτ(hi)(A).

Theorem 2. There exists a Borel set S of infinite histories in Hi with λi-probability one, on
which the sequence (µiτ(hi))∞τ=1 of probability measures converges weakly to a probability
measure µi∞ (hi) for every history hi in S.

Proof. We will first constructS. SinceΘi is compact and metric, we know that there exists
a countable basis of the topology. LetU be the collection of finite intersections of elements
of this basis. Take a fixed elementU of U. By Theorem 1, the sequence(µiτ(U))∞τ=1 is a
martingale. So, by the martingale convergence theorem (see, e.g.Doob (1990), Theorem 4.1
(iv)) there is a setS(U) of infinite histories inHi withλi(S(U)) = 1 such that(µiτ(hi)(U))∞τ=1
converges for every historyhi in S(U).

Now sinceU is the collection of finite intersections of a countable collection, it is a
countable set itself. This implies that

S :=
⋂
U∈U

S(U)

hasλi-probability one, since it is a countable intersection of setsS(U), all havingλi-
probability one.

The construction of the limit probability measure can be done as follows. Take a history
hi in S. First observe that, sinceΘi is compact, Theorem 6.1 ofBillingsley (1968)states that
P(Θi) is sequentially compact. So, we know that a subsequence of(µiτ(hi))

∞
τ=1 converges

weakly to some probability measure, sayµi∞(hi). We will show that the original sequence
converges weakly to this probability measure. To this end, notice that

µiτ(hi)(U) → µi∞(hi)(U), for allU ∈ U
for the original sequence, since this sequence is convergent for every elementU of U by
construction ofS, and so the above also holds for the weakly convergent subsequence. More-
over,U is closed under finite intersections and each open set is obviously a countable union
of elements ofU sinceU contains a countable basis of the topology onΘi by construction.
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Hence, by Theorem 2.2 ofBillingsley (1968), (µiτ(hi))∞τ=1 converges weakly toµi∞(hi)

and the proof is complete sincehi was chosen arbitrarily inS. �

From now on we will automatically assume that we only consider historieshi in S
whenever we talk aboutµi∞(hi). Effectively, we only consider the domain ofµi∞. We
can now prove the following result.

Theorem 3. The sequencepi(µiτ(hi))∞τ=1 of actions λi-almost-surely converges to the limit
decision pi(µi∞(hi)).

Proof. By the continuity ofpi established inLemma 4of Appendix A, we know that the se-
quencepi(µiτ(hi))∞τ=1 of optimal decisions given beliefs at timeτ converges topi(µi∞(hi))
whenever the sequenceµiτ(hi)∞τ=1 of beliefs converges toµi∞(hi). This happens with
λi-probability one byTheorem 2. �

6. The nature of limit beliefs and limit actions

We now know that in our model beliefs, and consequently decisions, converge to limit
beliefs and unique limit decisions, respectively, forλi-almost-all developments of history.
In this section, we will derive some properties of the limit beliefs and decisions. We will
show that a limit belief is unique in the sense that, roughly speaking, it only puts weight on
worlds that generate the same probability distribution over demands. In other words, any
two worlds in the support of a limit belief will have identical probability distributions over
demands. Thus, a limit belief selects a unique possible world out of the collection of worlds
that are possible initially, up to the identification of worlds of course that generate identical
probability distributions. Furthermore, we will show that the limit beliefs obtained support
a conjectural equilibrium.

6.1. Unique limit beliefs

For an analysis of the limit properties of beliefs and decisions, consider the following
construction. Letµi be a probability measure onΘi. EvidentlyΘi is a compact set with
µi(Θi) = 1. So, the collection

K := {K ⊂ Θi|K is compact andµi(K) = 1}
is not empty. Thus, we can define the support ofµi by

supp(µi) :=
⋂
K∈K

K.

The only question is whether this set has probability one according toµi. To this end, no-
tice that the topology onΘi has a countable basis, sayB, sinceΘi is separable and metric. So,

supp(µi) =
⋂

B∈B:µi(B)=0

Θi\B.

Hence,µi(supp(µi)) = 1 by the subadditivity ofµi.
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A more colloquial definition of the support of a probability measureµi onΘi is to say
that it is the smallest compact subsetK of Θi with µi(K) = 1. In any event, it enables us to
give the following definition.

Definition 3. A belief µi does not distinguish between signals if there exists a function
hi : Xi → R, such that for anyθi in supp(µi) and for allxi in Xi

gi(xi|pi(µi), θi) = hi(xi).

This condition onµi states that every worldθi in the support ofµi generates the same
density function onXi. In other words, each signal has the same probability in each world
in the support ofµi. Consequently, no signalxi will give firm i a reason to change its belief.
A more interesting fact is that the converse of this observation is also true. This is reflected
in the following result.

Theorem 4. A belief µi does not distinguish between signals if and only if

Bi(µi)(xi) = µi

holds for all xi in Xi.

Proof. Suppose thatµi does not distinguish between signals. Then we can takehi : Xi →
R, such that

hi(xi) = gi(xi|pi(µi), θi), for all θi ∈ supp(µi).

Consequently, for anyxi ∈ Xi and any Borel setA in Θi we have

Bi(µi)(xi)(A)=
∫
A
gi(xi|pi(µi), θi)dµi∫

Θi
gi(xi|pi(µi), θi)dµi

=
∫
A
hi(xi)1supp(µi) dµi∫

Θi
hi(xi)1supp(µi) dµi

= hi(xi)µi(A)

hi(xi)µi(Θi)
= µi(A).

Suppose, on the other hand, thatµi distinguishes between signals. Then we know that there
is a pairζi, γi ∈ supp(µi), and anx∗

i ∈ Xi for which

gi(x
∗
i |pi(µi), ζi) > gi(x

∗
i |pi(µi), γi).

So, we can find two positive numbersU > L ∈ R and open neighborhoodsN(ζi) � ζi and
N(γi) � γi such that for allθi in N(ζi)

gi(x
∗
i |pi(µi), θi) ≥ U

and for allθi in N(γi)

gi(x
∗
i |pi(µi), θi) ≤ L.

Now notice thatµi(N(ζi)) > 0 since otherwise supp(µi)\N(ζi)would be a compact set with
µi-probability one that is strictly included in supp(µi). For the same reasonµi(N(γi)) > 0.
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This implies that

Bi(µi)(x
∗
i )(N(ζi))

Bi(µi)(x
∗
i )(N(γi))

≥
∫
N(ζi)

U1Θi dµi∫
N(γi)

L1Θi dµi
= Uµi(N(ζi))

Lµi(N(γi))
>

µi(N(ζi))

µi(N(γi))
.

So, at least

Bi(µi)(x
∗
i )(N(ζi)) �= µi(N(ζi))

or

Bi(µi)(x
∗
i )(N(γi)) �= µi(N(γi)).

In any case,Bi(µi)(x∗
i ) does not equalµi and the proof is complete. �

The interpretation of this result is straightforward. A beliefµi does not distinguish be-
tween signals if and only if Bayesian updating has no effect on the belief for any possible
signalxi. This fact has important implications. Particularly, since we can show that the limit
beliefsµi∞(hi) in fact are fixed points of the Bayesian updating method, as we will do next,
upon the following preliminary result.

LetB be a countable basis of the topology onXi. Let W be the collection of sample paths
(xit)

∞
t=1 in Hi for which there is a basis elementB in B such that{xit|xit ∈ B} is finite. We

will show first that the following is true.

Lemma 2. λi(W) = 0.

Proof. Let B be an element ofB and letT be a natural number. Define

W(B, T) := {(xit)
∞
t=1|xit /∈ B}, for all t ≥ T.

Note that this construction is such thatW = ⋃
B,TW(B, T). So,W is the countable union

of setsW(B, T). Hence, by the subadditivity ofλi it suffices to prove thatλi(W(B, T)) = 0
for any choice ofB andT.

To this end, notice that

W(B, T) =
T−1∏
t=1

Xi ×
∞∏
t=T

Bc.

Now take someτ ≥ T . Denote the subset
∏T−1

t=1 Xi×
∏τ

t=TBc of the setHiτ of finite histories
up till time τ by Wiτ . Then, for a historyhiτ in Wiτ , the one-step transition probability
γiτ+1(hiτ)(B) to B is

γiτ+1(hiτ)(B) :=
∫
B

∫
Θi

gi(xi, θi|piτ)dµiτ(hiτ)dνi ≥
∫
B

∫
Θi

εdµiτ(hiτ)dνi = ενi(B).

Here,ε > 0 is chosen such thatgi(xi, θi|piτ) ≥ ε for all xi andθi, which can be done by
the compactness ofXi, the continuity ofgi and the assumption thatgi is larger than zero on



M.P. Schinkel et al. / Journal of Mathematical Economics 38 (2002) 483–508 499

Xi. Consequently,γiτ+1(hiτ)(B
c) ≤ 1 − ενi(B). Using this result, we get that

λiτ+1(Wiτ+1) :=
∫
Wτ

γiτ+1(hiτ)(B
c)dλiτ ≤ (1 − ενi(B))λiτ(Wiτ).

Now, backwards substitution yields

λiτ+1(Wiτ+1) ≤ (1 − ενi(B))
τ−T+1λiT(WiT) ≤ (1 − ενi(B))

τ−T+1.

Further, sinceB is an open set, we know thatνi(B) > 0 by assumption. So, 0≤ 1−ενi(B) <

1 and, hence,

lim
τ→∞ λiτ+1(Wiτ+1) = 0.

Finally, notice that

0 ≤ λi(W(B, T)) ≤ λi


T−1∏

t=1

Xi ×
τ∏

t=T
Bc ×

∞∏
t=τ+1

Xi


 = λiτ(Wiτ)

where the second inequality follows from the monotonicity ofλi and the equality from
consistency ofλi with λiτ . Hence, it follows thatλi(W(B, T)) = 0. �

The interpretation of this result is that firms expect a priori that the signals they will
receive are persistently exciting. That is, they expect to observe all possible quantities
infinitely many times over the course of their learning process, so that they will be able
to indeed extract sufficient information from them. The sufficiency of the information is
reflected in this theorem.

Theorem 5. There is a subset Z of S with λi-probability one such that the belief µi∞(hi)

does not distinguish between signals for any hi in Z.

Proof. Let S be as inTheorem 2and letW be as inLemma 2. WriteZ := S\W . Clearly,
λi(Z) = 1, sinceλi(S) = 1 andλi(W) = 0. Now take a historyhi = (xiτ)

∞
τ=1 in Z. Then,

sincehi is an element ofS we know thatµi∞(hi) exists. We will show that it does not
distinguish between signals.

By Theorem 4it suffices to show thatB(µi∞(hi))(xi) = µi∞(hi) for all xi in Xi. To
this end, take anx∗

i ∈ Xi. Then, sincehi = (xiτ)
∞
τ=1 is not an element ofW, we know that

it intersects each element of the basisB infinitely many times. So, sinceXi is metric, this
implies that we can find a subsequence(xiα(τ))

∞
τ=1 of (xiτ)∞τ=1 such thatxiα(τ) → x∗

i as
τ → ∞. Then, on the one hand,

B(µiα(τ)(hiα(τ)))(xiα(τ)+1) = µiα(τ)+1(hiα(τ)+1) = µiα(τ)+1(hi) → µi∞(hi)

in the weak topology since the above sequence is a subsequence of(µiτ(hi))
∞
τ=1 which

converges toµi∞(hi) in the weak topology by the choice ofS. On the other hand,

B(µiα(τ)(hiα(τ)))(xiα(τ)+1) → B(µi∞(hi))(x
∗
i )
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sinceB is continuous byTheorem 9of Appendix A. Hence, since the spaceP(Θi) is
Hausdorff,µi∞(hi) = B(µi∞(hi))(x

∗). �

Note that if we make the natural assumption that conjectured density functions of demand
are uniquely characterized by the value ofθi, the result implies that the posterior distribution
converges to a measure that puts all mass on one particular worldθi in Θi.

Assumption 3. For anypi ∈ Pi we havegi(xi|pi, ζi) = gi(xi|pi, γi) for all xi ∈ Xi if and
only if ζi = γi.

A measure that puts all probability on one specific worldθi is called a Dirac measure.
We now have the following result.

Corollary 1. Suppose we have Assumption 3. Then µi∞(hi) is a Dirac measure for every
hi in Z.

Proof. Let hi be a history inZ. Thenµi∞(hi) does not distinguish between signals by
Theorem 5. So, for any pair of worldsζi andγi in the support ofµi∞(hi) we have that

gi(xi|pi(hi), ζi) = gi(xi|pi(hi), γi)

for the unique limit decisionpi(hi) := pi(µi∞(hi)) in Pi and all xi in Xi. Further, by
Assumption 3, this can only be the case ifζi = γi. Hence, the support ofµi∞(hi) is
inevitably a singleton andµi∞(hi) is a Dirac measure. �

6.2. Conjectural equilibrium

Provided that the structure of perceptions satisfiesAssumptions 1–3, we have shown
that with λi-probability one, firmi’s belief is a Dirac measureµi∞(hi). Consequently,
firm i’s limit decision ispi(hi) := pi(µi∞(hi)). Let θi(hi) be the unique world in the
support ofµi∞(hi). The pair (θi(hi), pi(hi)) then specifies the limit stochastic view of
the world of each firm. That is, each firmi perceives demand to be distributed in the
limit as

gi(xi|pi(hi), θi(hi)).

We can now relate our results straightforwardly with our concept of equilibrium. We say
that convergence isalmost sure if it is λi-almost sure for everyi.

Theorem 6. The learning process almost surely converges to a conjectural equilibrium.

Proof. By Theorem 5we know that the beliefµi∞(hi) of firm i does not distinguish between
signals onZ. So, byTheorem 4it is a fixed point of the Bayes operator and, hence, an
individual conjectural equilibrium. Since this holds for every firm these beliefs form a
conjectural equilibrium. �
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7. Objective convergence to conjectural equilibrium

We now know that for almost all developments of history to which a firm initially as-
signs non-zero probability, its beliefs on the parameters of conjectured market demand,
and thereby the decisions it takes, converge to a unique limit belief that puts all mass on a
single parameter of conjectured demand. For each firm, the limit decision is an individual
conjectural equilibrium.

Since these results hold for every individual firmi, we are indeed close to conclusions on
the behavior of the complete economy. However, since the conjectures that firms entertain
are structurally mis-specified, their beliefs of possible developments of history need not
necessarily match with the objective sequence of market demand they face. Consequently,
actual histories may unfold that haveλi-probability zero for some firms. Firms facing such
probability zero histories will be unable to cope with it: Bayesian learning breaks down
under such shocking surprises, and convergence fails. In order to exclude the rise of such
paths, therefore, we need a condition that relates beliefs to objective probabilities.

The objective probability measure on the space of sample paths of the formhi ∈ Hi is
potentially influenced by the behavior of all firms through the objective demand functions
fi(xi|p). In fact, for given initial beliefsµ0 of the population, the unfolding sequence of
individual actions that derives from the firms’ sequential individual application of Bayes’
rule within their conjectured demand structures, lays out a complete history of the world,
when performed in the interrelated objective demand structures. For given priors, the only
stochastic influence on the individually observed historyhi is fromfi(xi|pτ) for eachτ.

The construction of objective probabilities on spaceHi requires an objective probability
measureρi onB(Hi). Likeλi,ρi is formally defined inductively on histories of finite length,
combined with infinite extensions. Forτ = 0, we naturally haveρi0(∅) = 1. In order to
now defineρi,τ+1 inductively, assume thatρiτ is known. Then, given that we have a history
hiτ of lengthτ, we can define the transition probabilityδiτ+1(hiτ)(Dτ+1) for each Borel
subsetDτ+1 of Xi as

δiτ+1(hiτ)(Dτ+1) =
∫
Dτ+1

fi(xi|pτ)dνi.

Again we can define

ρiτ+1

(
τ+1∏
t=1

Dt

)
:=
∫
Xτ
t=1Dt

δiτ+1(hiτ)(Dτ+1)dρiτ

and apply again the Theorem of Kolmogorov. We now come to a crucial relationship between
the objective and subjective probability measuresρi andλi.

Assumption 4. The probability measureρi is absolutely continuous with respect to prob-
ability measureλi for every firmi.

In the interpretation that we have offered for the measuresλi andρi, absolute continuity
of ρi with respect toλi implies that no actual development is possible that was not a priori
foreseen as a possibility by the firm concerned. There is, therefore, ‘No Statistical Surprise’
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on the side of firms. This may seem strong, but is an assumption that is in fact often
(implicitly) made in econometric specifications. Moreover, it seems a natural condition
necessary for beliefs to settle down, as one can hardly expect beliefs to converge if all the
time new and unforeseen events stir up the learning process. ‘No Statistical Surprise’ gives
us the following prime result.

Theorem 7. Beliefs almost surely converge to a conjectural equilibrium in the objective
sense.

Proof. By Theorem 6we have that the beliefs of each firmi converge to an individual
conjectural equilibriumλi-almost surely. Sinceρi is absolutely continuous with respect to
λi, this convergence is alsoρi-almost-surely. �

Finally, again sincepi is continuous, we can conclude the following on the behavior of
the individually rational disequilibrium price adjustment process.

Theorem 8. The decision vector pτ converges ρi-almost surely to a conjectural equilibrium
decision vector p∞.

8. Concluding remarks

The groundwork laid in this paper for modeling individually rational disequilibrium
price adjustment by introducing elements of imperfect competition, imperfect and incom-
plete information and learning from self-generated signals, allows for a fairly strong global
stability condition for general equilibrium models, that of ‘No Statistical Surprise’. Apart
from being intuitively appealing, and doing away with the deus ex machina approach to
disequilibrium behavior, this condition extends quite naturally on ‘No Favorable Surprise’,
the global stability condition established inFisher (1983). Our approach also calls for a
number of extensions.

In the present model, firms gradually estimate the parameters of their conjectured demand.
Naturally, provided they have some monopsony power as well, firms could likewise be taken
to learn about supply, proposing purchase prices in the process. ‘No Statistical Surprise’ is
likely to be strong enough to obtain convergence results in such a dealer-model as well.

A more demanding extension of the model would be to further specify the relationship
between objective demand and supply structures and their subjective counterparts on which
behavior is based. The present conjectures consider only the own price effect. Typically,
firms would take the prices of several of their nearest competitors into account, applying
econometric techniques in which the costs of including additional explanatory variables, or
sharper functional forms, are weighted against the expected benefits of more precise pre-
dictions, thus, determining the best structural specification to work with. Such an approach
would lead to an optimal level of mis-specification and introduce interesting problems
concerning the strategic behavior towards rivals.

Related to this is the concept of active learning, where firms reckon with the fact
that their prices will provide future information that can be used to increase profits. The
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type of non-myopic price setting that results from this has been studied in a partial set-
ting Easley and Kiefer (1988)andKiefer and Nyarko (1989), where convergence results
similar to the ones obtained here are established. The present price adjustment model
would benefit greatly from an extension of dealer behavior in this direction, even though
we expect ‘No Statistical Surprise’ to be powerful enough to again assure almost sure
convergence.

The model presented in this paper relies on a specific and exogenously given structure
of the market. Certain firms make it their business to act as intermediaries in the trade of
a particular good. Casually, this setup has been defended by an appeal to product differen-
tiation and transaction costs. It is to represent a socially accepted shopping-area structure.
Although the identification of commodities with firms, which naturally leads to this market
structure, seems quite appropriate in many markets, further specification of these underlying
properties of markets is called for. Particularly, the consequences of entry and exit, and the
possibility to compete for locally dominant dealerships raises interesting questions. For one
thing, efforts to endogenize the market structure may well result in entry conditions that
have the model sound more than presently like a disequilibrium story with a competitive
ending.

Finally, the present model is altogether silent on the issue of social consequences of the
disequilibrium dynamics modeled. In accordance with the observations byArrow (1959)
referred to earlier, it trades efficiency of competitive equilibrium for global stability by intro-
ducing monopolistic competition as an essential disequilibrium phenomenon. The precise
welfare consequences of this seem a promising area of further research.

In the appendices we have collected those parts of the theoretical framework needed in
the paper that would disrupt the flow of the argument too much when presented in the main
body of the paper.Appendix A provides a detailed and complete proof of the continuity
of the Bayes operator.Appendix Bprovides proofs concerning the support of some of the
probability measures used in the text. These two appendices are largely based onEasley
and Kiefer (1988).
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Appendix A. Continuity of the Bayes operator

In this appendix, we will show that the Bayes operator defined inSection 3is continuous.
First of all, notice that the denominator in its definition is larger than zero byLemma 6.
So, it is easy to see thatB(µi)(xi) is a non-negative function on the Borelσ-algebra on
Θi. Theσ-additivity of B(µi)(xi) follows from theσ-additivity of the integral and finally it
is obvious thatB(µi)(xi)(Θi) = 1. So,B(µi)(xi) is indeed a probability measure, and the
Bayes operator, thus, only takes on values inP(Θ). Back to our aim, its continuity, we first
need to establish some technicalities.
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Lemma 3. Suppose that we have a sequence (pik)
∞
k=1 that converges to some pi. Then there

is a number K such that for all k > K, all xi and all θi

||πi(pik, xi)gi(xi|pik, θi)− πi(pi, xi)gi(xi|pi, θi)|| < ε.

Proof. Suppose not. Then for every numbern there is a numberk(n) ≥ n and pointsxi(n)
andθi(n) such that

||πi(pik(n), xi(n))gi(xi(n)|pik(n), θi(n))− πi(pi, xi(n))gi(xi(n)|pi, θi(n))|| ≥ ε.

Since bothXi andΘi are compact we may assume w.l.o.g that the sequencexi(n)
∞
n=1

converges to a pointxi and the sequenceθi(n)∞n=1 converges to a pointθi. However, since
k(n) ≥ n by construction, we know thatpik(n) → pi. Hence, taking limits yields

0 = ||πi(pi,xi)gi(xi|pi, θi)− πi(pi, xi)gi(xi|pi, θi)|| ≥ ε

which is a contradiction. �

Lemma 4. The function pi : P(Θi) → Pi is continuous.

Proof. Part (i): First, we will show that the expected payoff function

Πi : Pi × P(Θi) → R

is continuous. Of course, we suppose thatP(Θi) is endowed with the weak topology. Notice
that his topology is metrizable byTheorem 5of Appendix III in Billingsley (1968). There-
fore, it is sufficient to establish convergence ofΠi over sequences. So, take a sequence
(pik, µik) → (pi, µi). We want to show that, givenε > 0, there exists a natural numberK,
such that for allk ≥ K,

||Πi(pik, µik)−Πi(pi, µi)|| ≤ 2ε.

By the triangle inequality, we only need to show that

||Πi(pik, µik)−Πi(pi, µik)|| + ||Πi(pi, µik)−Πi(pi, µi)|| ≤ 2ε

for sufficiently largek. We will show that both terms on the left hand side of the inequality
sign are smaller than or equal toε for sufficiently largek. The first term reads

||Πi(pik, µik)−Πi(pi, µik)||
=
∥∥∥∥
∫
Θi

∫
Xi

[πi(pik, xi)gi(xi, θi|pik)− πi(pi, xi)gi(xi, θi|pi)] dνi dµik

∥∥∥∥
≤
∫
Θi

∫
Xi

||πi(pik, xi)gi(xi, θi|pik)− πi(pi, xi)gi(xi, θi|pi)|| dνi dµik.

Now takeK as inLemma 3. Then, sinceνi andµik are all probability measures, for each
k ≥ K the latter expression is smaller than or equal to∫

Θi

∫
Xi

ε1Θi×Xi dνi dµik = ε.
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Furthermore, the second term reads∥∥∥∥
∫
Θi

∫
Xi

πi(pi, xi)gi(xi, θi|pi)dνi dµik −
∫
Θi

∫
Xi

πi(pi, xi)gi(xi, θi|pi)dνi dµi

∥∥∥∥ .
Because, we assume thatP(Θi) is endowed with the weak topology, it suffices to show that

Fp(θi) :=
∫
Xi

πi(pi, xi)gi(xi|pi, θi)dνi

is continuous inθi. To that end, take a sequenceθim → θi. Let ε > 0 be an arbitrary real
number. LetGp be a positive real number such that

||πi(pi, xi)|| ≤ Gp, for all xi ∈ Xi.

This number exists becauseπi(pi, xi) is continuous inxi andXi is compact. Now take a
natural numberMp such that for allm ≥ Mp

||gi(xi|pi, θim)− gi(xi|pi, θi)|| ≤ ε

Gp

.

Then for allm ≥ Mp

||Fp(θim)− Fp(θi)||
=
∥∥∥∥
∫
Xi

πi(pi, xi)(gi(xi|pi, θim)− gi(xi|pi, θi))dνi

∥∥∥∥
≤
∫
Xi

||πi(pi, xi)|| ||gi(xi|pi, θim)− gi(xi|pi, θi)|| dνi.

Consequently, sinceνi(Xi) = 1,

||Fp(θim)− Fp(θi)|| ≤
∫
Xi

Gp

ε

Gp

dνi = ε.

Part (ii): Now let(µik)
∞
k=1 be a sequence converging toµi in the weak topology. Then,

sincePi is a compact metric space, every sequence has a converging subsequence. So, we
may assume without loss of generality thatpi(µik) converges to some decisionp∗

i . We will
now show thatp∗

i = pi(µi).
Sincepi(µik) is the optimal decision given the beliefµik, we know that for an arbitrary

pi in Pi it holds that

Πi(pi(µik), µik) ≥ Πi(pi, µik), for all k.

So, by the continuity ofΠi we get that

Πi(p
∗
i , µi) ≥ Πi(pi, µi),

andp∗
i is an optimal action given beliefµi sincepi was arbitrarily chosen. Hence,p∗

i =
pi(µi) by Assumption 1. �
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Furthermore, notice thatgi : Xi × Pi × Θi → R is also continuous. So, the function
h : Xi × P(Θi)×Θi → R by

h(xi, µi, θi) := gi(xi, pi(µi), θi)

is continuous as well. Now suppose we have a sequence(xin, µin)
∞
n=1 converging to some

limit (xi, µi). Define the functionsfn andf fromΘi to R by

fn(θi) := h(xin, µin, θi) and f(θi) := h(xi, µi, θi).

Now take an arbitraryε > 0. We then have the following lemma.

Lemma 5. There exists a natural number N in N such that ||fn − f ||∞ < ε for all n ≥ N.

Proof. Suppose not. Then there is a subsequence(fk)
∞
k=1 of (fn)∞n=1 and a sequence(θik)

∞
k=1

such that

|fk(θik)− f(θik)| ≥ ε, for all k ∈ N.

SinceΘi is compact we may assume that the sequence(θik)
∞
k=1 converges to some limitθi.

Then for allk ∈ N

ε ≤ |fk(θik)− f(θik)| = |h(xik, µik, θik)− h(xi, µi, θik)|.
However, sincexik → xi, µik → µi andθik → θi, the continuity ofh yields

ε ≤ |h(xi, µi, θi)− h(xi, µi, θi)|
so that we arrive at a contradiction. �

The lemma is instrumental in the proof of the following.

Theorem 9. The Bayes operator is continuous.

Proof. Suppose that(µin, xin)
∞
n=1 converges to (µi, xi). It has to be shown that

Bi(µin)(xin) → Bi(µi)(xi)

as n goes to infinity. To this end, letF be a closedµi-continuous subset ofΘi. By the
Portmanteau theorem it is sufficient to show that

Bi(µin)(xin)(F) → Bi(µi)(xi)(F).

By the definition of the Bayes operator,

Bi(µi)(xi)(F) =
∫
F
gi(xi|p(µi), θi)dµi∫

Θi
gi(xi|p(µi), θi)dµi

.

Now Lemma 6in Appendix Bguarantees that the denominator is strictly positive. So,
sinceΘi itself is an instance of a closed setF whose boundary has measure zero (the
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boundary ofΘi is the empty set after all), it suffices in turn to show that, givenε > 0,∣∣∣∣
∫
F

gi(xin|p(µin), θi)dµin −
∫
F

gi(xi|p(µi), θi)dµi

∣∣∣∣ < 2ε

for sufficiently largen. This is what we set out to do.
First, takeN as inLemma 5. Then for alln ≥ N,∣∣∣∣
∫
F

gi(xin|p(µin), θi)dµin −
∫
F

gi(xi|p(µi), θi)dµin

∣∣∣∣
≤
∫
F

|fn(θi)− f(θi)| dµin ≤
∫
Θi

|fn(θi)− f(θi)| dµin

≤
∫
Θi

||fn − f ||∞ dµin ≤ εµin(Θi) = ε,

where the last inequality follows from the choice ofn andN. So, now we only have to show
that for allε > 0, there exists anN ∈ N such that for alln ≥ N∣∣∣∣

∫
F

gi(xi|p(µi), θi)dµin −
∫
F

gi(xi|p(µi), θi)dµi

∣∣∣∣ < ε.

In other words, we have to show the existence of a natural numberN such that for every
n ≥ N, µin is an element of the set of probability measuresνi with∣∣∣∣

∫
F

f(θi)dνi −
∫
F

f(θi)dµi

∣∣∣∣ < ε.

However, since this set is open in the weak topology and(µin)
∞
n=1 weakly converges toµi,

such anN exists. �

Appendix B. Sufficiently wide world views

For the Bayesian learning process to be well specified, we need that there are no objec-
tively possible events that are assigned probability zero at any time by the firm. A Bayesian
learner, namely, would simply not be able to deal with such events. Formally, it means that
the denominator of the updating rule might become zero. In this appendix, we will show
thatAssumption 2avoids this problem. Although also several somewhat weaker conditions
would guarantee that the Bayesian learning process is well defined, we prefer to work with
the above condition because of its simplicity. And that it is indeed sufficient is expressed in
the following lemma.

Lemma 6. Let µi be a belief in P(Θi) and suppose that Assumption 2holds. Let further a
decision pi, a demand xi, and a Bol set A ⊂ Θi with µi(A) > 0 be given. Then∫

A

gi(θi|pi, xi)dµi > 0.
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Proof. Take a decisionpi and a demandxi. Then we know thatgi(θi|pi, xi) is a contin-
uous function in the variableθi since we even assumed thatgi is continuous in all three
variables together. Moreover,Θi is compact. So, there exists a real numberε > 0 such that
gi(θi|pi, xi) ≥ ε for all θi ∈ Θi. Consequently,∫

A

gi(θi|pi, xi)dµi ≥
∫
A

ε1Θi dµi = ε

∫
A

1Θi dµi = εµi(A)

which is positive since bothε andµi(A) are positive by assumption. �
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