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Combinatorial auctions provide an important tool for mechanism design in multi-agent
systems. When implemented they require to solve combinatorial optimization problems such
as set packing and partitioning problems. We present in this paper an analysis of the com-
plexity of the problem to assign bids to bidders in combinatorial auctions. We show that the
case of identical assets can be solved in polynomial time. The case of non-identical assets is
in its general version NP-hard. Extra structure, like a complete ordering of assets, or mild side
conditions make the problem solvable. Finally, we present an algorithm to solve small and
medium sized instances in a limited time using standard software.
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1. Introduction

Communication on the Internet nowadays enables complete interaction between
consumers and providers in electronic markets. Participants in markets may even be
represented by digital representatives, calledagents, which act on behalf of consumers
and/or providers. A prominent example is the Kasbah market by MIT Media Lab [3].
Such electronic marketplaces are examples of Multi-Agent Systems (MAS).

In general, agents in MAS, or rather, programs that determine agent behavior, im-
plement ad hoc rules of how to react in certain situations. This is surprising as economic
research has created many theoretical models that could provide the rules for electronic
markets. We strongly underline the opinion of Binmore and Vulkan who state “game
theory is widely acknowledged to provide the best available set of tools for the design of
multi-agent systems” [1]. One of the tools for mechanism design of agent systems are
auctions [15].

When auctions are to be implemented, further complications appear. While cer-
tain rules guarantee desired economic features, it might not be trivial to implement these
rules efficiently, if not impossible. The implementation usually requires solving acom-
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binatorial optimization problem, which can be hard in the sense of complexity theory. At
this point electronic markets do not only require the game theory tools, but also methods
developed in combinatorial optimization.

This paper is meant to be an illustration of these requirements. Starting point of
our discussion are two recent papers: Gomber et al. investigate in [6] the computa-
tional tractability of combinatorial auctions in MAS-coordination. They consider differ-
ent types of combinatorial auctions, notably one where the assets are all identical. We
show in this paper that for this particular case a polynomial algorithm exists to com-
pute the optimal assignment of bids to bidders. Rothkopf et al. present in [11] a fairly
detailed investigation of combinatorial optimization problems underlying combinatorial
auctions. Their paper interprets the bids in a combinatorial auction in a way different
from Gomber et al. in the sense that a bidder is allowed to obtain multiple bids. We
show that this has some effects on the computational tractability, though both versions
of the problem are essentially the same, as we will show.

2. Combinatorial auctions

In auctionsbiddersmake bids forassets. An auctioneercollects these bids accord-
ing to some rule and finally decides who wins the bid. There is an extensive literature on
auction design, showing how different sets of rules affect the outcome of auctions and
what strategies should be followed by the bidders. See [15] for an introduction in the
context of MAS.

We are here interested incombinatorial auctions. In this type of auction bidders
make bids for subsets of assets. The rationale behind this is that a bidder’s valuation for
a subset may not be equal to the sum of the valuations of individual assets. Reasons for
that could be economies of scale or scope, i.e., combinations of bids may be more or
less valuable than single bids, or winning a bid for a large set of assets would require ex-
pensive investments. Moreover, capacity restrictions may make it impossible to process
combinations of bids.

The probably most famous case for an auction with scaling effects has been the
FCC auction for spectrum rights in the U.S. in 1994. McMillan gives a detailed descrip-
tion of the discussions that led to the final design of the auction [8]. It was essentially a
simultaneous auction for every frequency, but in several rounds such that bidders could
adjust their bids on individual frequencies depending on their chances for other fre-
quencies. A combinatorial auction was not considered since due to McMillan “In the
judgement of most of the economists involved in the auction design, the complexity costs
outweighed the potential efficiency gains: the full-combinational mechanism was ahead
of its time” [8].

Gomber et al. [6] report of an auction that assigns in a transportation company
customer requests to truck drivers. In this case requests for the next day are posted at an
electronic board. Drivers bid prices at which they would be willing to take over bundles
of tasks. They observe positive economies of scale if the place of delivery of one task
is equal to the place of pick up of another, or if several products have to be transported
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between the same places. The objective of the company headquarters is to minimize the
total price that they have to pay.

Emerging electronic markets on the Internet let us easily imagine that transporta-
tion auctions could place without a company headquarters involved. Customers could
place requests for transportation, while bidders make bids for bundles of orders from
different customers. Even further a customer’s request could be a bundle, like transport-
ing a good first by truck to the next harbor, then by ship to another harbor, and finally
by train to the destination. The electronic market will assign the items in the bundle to
different bidders, who again take care of items from different customers. Suchtwo-sided
bundle auctions have been proposed by Srinivasan [14] and Fan et al. [4] for financial
trading systems. However, their winner assignment algorithm allows the division of bids
into fractions. Electronic markets for transportation are currently operational, but to our
knowledge do only allow very limited combinatorial bids. In [13], Sandholm presents
eMediator, a prototype implementation of a combinatorial auction.NetExchange com-
bined value tradingoffers trading systems and lists various applications in finance, en-
ergy, transportation, industry, and services [10].

Many of these applications require intermediators in traditional markets. For ex-
ample, suppliers for logistics services buy capacity for transportation, and sell it to their
customers. The optimization problems that have to be solved to assign requests to avail-
able capacity are almost the same as those we will discuss in this paper for combinatorial
auctions. What differs is that customers will get a far more flexible instrument in terms
of time and price. Tangible capacity can be sold at the last moment, and customers might
be able to make use of such capacity at favorable prices. From a coordinators point of
view we have the advantage that logistics planning in a central manner requires detailed
information about constraints to be collected and fed into an optimization model. In a
decentralized auction such constraints are internalized in prices: if a truck driver finds
a combination of tasks almost infeasible he will price it very high and refuses to sub-
mit an offer. Therefore, almost the same operations research methods might give better
solutions in practice.

Let us turn back to the optimization problems underlying combinatorial auctions.
We omit hereby details of combinatorial auction lay-outs, not saying that they are not of
practical relevance, but saying that every lay-out of a combinatorial auction essentially
requires solving the following optimization problem. Given a set of bids on subsets of
the assets, the goal of the auctioneer is to assign subsets to the bidders such that the
total value of the chosen bids is maximized. An assignment of subsets to bidders is only
feasible if every item is assigned to at most one bidder, and every bidder gets at most
one bid. Variations of this problem occur generally with respect to the last condition.
As a generalization,XOR-bidsmay be introduced, saying that bidders explicitly exclude
certain combinations of bids [13].

The outline of the paper is as follows. We first define the optimization problem
involved with assigning bids to bidders. We then give an overview of the literature
on that problem, as far as known to us. We continue to show some negative results
on efficient solvability. Moreover, we identify some polynomially solvable cases. The
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paper is finished with some computational experiments on the more difficult problems
described.

3. Packing problems in combinatorial auctions

In a combinatorial auction there is a setS of assets to sell. A setB of bidders makes
bids of priceb(Sij ), i ∈ B, on subsetsSij ⊆ S of assets,j = 1, . . . , li . Without loss
of generality we assume bids to be integer. We defineS := {Sij | i = 1, . . . , n, j =
1, . . . , li} as the family of all the sets for which there exists a bid. A packing in a
combinatorial auction is a familyT ⊆ S of subsets, such that

(1) the sets inT are pairwise disjoint,

(2) for every bidderi there is at most oneSij in T .

Thevalue of a packingis defined as
∑

T ∈T b(T ).
An exact packingor partition is a packing where in addition

⋃
T ∈T T = S. The

maximum packing problem in a combinatorial auctionis to find a packing such that
its value is greater than or equal to the value of every other packing. Themaximum
partitioning problemis defined accordingly.

The packing and partitioning version are easily transformable into each other, in
the sense that an algorithm for the partitioning problem may be used for the packing
problem, and vice versa. Indeed, given an instance of the packing problem we may add
for every asset an artificial bidder who bids for this individual asset at price zero. The
optimal solution of the partitioning version now coincides with an optimal solution of the
packing problem, deleting the assignments to artificial bidders. In order to transform an
instance of the partitioning problem into an instance of the packing problem, we change
the price of every setT by a valueM|T |. HereM is a large number (for example, the
sum over all prices of bids plus 1). Every partition, i.e., exact packing of the assets, has
then a better objective value than an assignment that omits any asset. So, if there exists
a partition, the packing algorithm will find an optimal one.

3.1. Related work

In their paper Rothkopf et al. [11] model the problem as a set packing problem.
Set packing problems are well investigated in combinatorial optimization (see, e.g., [9]
for references). In general, they can be formulated as follows. Given a finite setV and
a system of subsetsU1, . . . , Uk ⊆ V with valuesbi , i = 1, . . . , k, find a subsystem
Ui1, . . . , Uil of pairwise disjoint subsets such thatbi1 + · · · + bil is maximized.

It is important to note that Rothkopf et al. discuss combinatorial auctions without
the constraint that a bidder is assigned at most one bid. However, as we mentioned in
the introduction, bidders may not like to get acknowledged two or more bids, since this
results in an assignment of the union of the underlying subsets. This is particularly a
problem in the case of absence of economies of scale. Consider, for example, a case
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with two biddersA andB and two assetsX andY , whereA bids 2 for{X}, 4 for {Y }
and 6 for{X,Y }, andB bids 4 for{X}, 8 for {Y } and 9 for{X,Y }. The best assignment
under the constraint that every bidder gets at most one bid is{X} for A and{Y } for B.
Without that constraint the two sets{X} and{Y } are assigned toB, not reflecting his low
valuation for{X,Y }.

From the viewpoint of complexity theory, both optimization problems can easily
be transformed into each other. Indeed, if we have an algorithm that solves the problem
under the one-bid-per-bidder constraint, we can use it for the Rothkopf model by just
assuming that two bids from the same bidder are by different bidders. The other way
round, we can as well use an algorithm for the Rothkopf model to solve the one-bid-per-
bidder case. Here we would add anartificial asset for every bidder and add this asset
to all his bids. The multiple-bid-per-bidder algorithm will automatically assign at most
one bid per bidder, since two bids would overlap in the artificial asset. We will see in
the next section that for cases with a special asset or bid structure the two models make
however a difference. Basically, the transformation does not preserve the structure.

In the setting of Gomber et al. the bids are prices for getting jobs, reflecting the
ability of units in organizations (the bidders) to take charge of these jobs. The company
headquarters (the auctioneer) wants to maximize overall ability. The actual price bidders
have to pay is computed according to a Generalized Vickrey Auction [15]. First, sets
of jobs are assigned such that the sum of all prices is maximized. Second, for every
bidderi to whom a set is assigned, we calculate the price he has to pay as follows. We
compute an optimal assignment on the problem where bidderi is left out, which gives
us the marginal contribution of the bids of bidderi. This contribution is the amount
that the auctioneer charges bidderi. To compute the prices does therefore require to
solve anotherk packing problems, wherek is the number of selected sets in an optimal
packing.

Gomber et al. consider as a special case the problem where all assets are identical.
In other words, bidders do not bid for subsets of assets but for numbers of assets. We
show that this problem is polynomially solvable in section 3.3.

Sandholm [12,13] describes the same model as in [11]. The paper gives an elab-
orate outline of literature on fixing inefficient allocations without using combinatorial
auctions. Concerning the complexity of the problem the paper observes that the general
problem is NP-hard and that there is no hope for polynomial time approximation algo-
rithms, due to recent results on the clique problem. A dynamic programming algorithm
based on an improved search tree is described and experimental results on randomly
generated instances are given.

3.2. Packing in combinatorial auctions is NP-hard

In this subsection we show that the general version of the problem is NP-hard.
While this was observed by other authors [6,11,13] we carry out our proofs in a way such
that we obtain stronger results. These results say that the problem is already NP-hard
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if we restrict to very simple combinatorial auctions. To be precise we first define the
decision problem PACKING IN COMBINATORIAL AUCTIONS (PCA).

Instance. A setB of bidders, a setS of assets, a familyS of subsets ofS with bids
b(T ), T ∈ S, an integerK.

Question. Does there exist a packing with value greater than or equal toK.

Theorem 1. Packing in combinatorial auctions is NP-complete.

Proof. It is clearly in NP. We give a polynomial transformation of NODE PACKING to
PCA. NODE PACKING is known to be NP-complete [5].

Given an instance(G(V,E), k) of NODE PACKING we construct the following
instance of a combinatorial auction. The bidders are given by the nodesV . The set of
assets is given byE. Every nodev bids exactly for one setSv, given bySv = {e ∈ E |
v ∈ e}. The price is equal to 1. ForU ⊆ V let TU := {Sv | v ∈ U }. We see immediately
thatU is a node packing inG if and only ifTU is a packing in this combinatorial auction.
Thus,G has a node packing with at leastk nodes if and only if there exists an assignment
of the auction with outcome greater than or equal tok. �

The proof actually shows a stronger result. That is to say, we constructed a special
instance and the numbers involved are constants. This shows:

Corollary 1. PACKING IN COMBINATORIAL AUCTIONS is strongly NP-complete even
if every bidder bids exactly for one subset, and all subsets have unit cost.

Does the problem become easier, if we allow bids for several subsets, but restrict
to sets with bounded cardinality? We observe that bounding the cardinality to 1 results
in a matching problem in a bipartite graph, which can be solved in polynomial time. If
the cardinality is less than or equal to 2 the problem becomes again NP complete.

Theorem 2. Packing in combinatorial auctions is strongly NP-complete even if every
bidder bids only for subsets of cardinality less than or equal to 2, and all subsets have
unit cost.

Proof. The problem 3-DIM -MATCHING can be reduced to this problem. 3-DIM -
MATCHING is known to be NP-complete [5]. In 3-DIM -MATCHING we are given three
setsU , V , andW of equal size and a collection of 3-element subsets ofU ∪V ∪W with
one element in each out of eachU , V , andW . The question is whether there exists a
sub-collection of the 3-element sets that exactly coversU ∪ V ∪W . In our reduction,
U becomes the set of bidders,V ∪W the assets. Every 3-element setu, v,w stands for
a bid ofu for {v,w}. �
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If only one bid per bidder is allowed, or if we allow several bids to go to the
same bidder, the case of cardinality 2 reduces to the standard matching problem and is
therefore polynomially solvable [11].

3.3. The case of identical assets

A natural special case of packing problems in combinatorial auctions is that of
identical assets. Different bids for different numbers of assets reflect for example
economies of scale (if the bid for the sum is larger than the sum of the bids) or ca-
pacity bounds (if the bid for the sum is smaller than the sum of the bids). Since both
effects can be present for one bidder we may have arbitrarily shaped valuations. The
packing problem for identical assets is tractable, as we will show below.

We interpret our notation from above by assuming thatSij is the subset ofj assets,
and definebij := b(Sij ) as the bid of bidderi for j assets. Recall thatB is the set of
bidders.

Theorem 3. If all assets in a combinatorial auction are identical then the packing prob-
lem can be solved in time O(|B||S|2).

Proof. We give a recursive formula for a dynamic programming formulation of the
problem. Letm(i, s) be the maximum value of a packing if the bidders are restricted to
1, . . . , i and the sum of cardinalities of the sets in the packing is less than or equal tos,
then

m(1, s) = max(b1,j | j 6 s)
and

m(i + 1, s) = max
(
bi+1,j +m(i, s − j) | j 6 s

)
.

Note that we have to determine|B||S| variablesm(i, s), each of which is computed
by comparing at most|S| numbers. �

Note that our algorithm requires polynomial time in the number of assets. As they
are all identical, the setS as well as bids can be represented in space logarithmic in|S|.
Under this representation our algorithm is only a polynomial algorithm if we assume
that the number of bids is at least of the same order as the number of assets. In practice,
this is a reasonable assumption.

Note further that our algorithm solves the packing as well as the partitioning prob-
lem. In the latter we require that every asset is assigned to a bidder.

3.4. The case of linearly ordered assets

A second natural special case that has also been discussed by Rothkopf et al. [11]
is that of linearly orderedassets. This means we have assets that have a position on
a linear scale. In assigning jobs in an auction the position could be the time when the
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job has to be performed. In a transmission frequency auction the scale could be the set
of frequencies. We now have non-identical assets, but we assume that bidders bid for
intervals, i.e., sets of assets that form a subset of consecutive assets on the linear scale.
This problem is called aninterval auctionproblem.

Theorem 4. The packing problem for interval auctions is solvable in polynomial time
if at least one of the following conditions is satisfied:

(1) every bidder bids for at most one interval,

(2) we allow to assign several intervals to the same bidder,

(3) the number of bidders is bounded by a constantc.

Proof. The first two cases are solvable by a straightforward dynamic programming
recursion, wherem(s) denotes the value of the optimal choice of the firsts assets.

m(s) = max
{
m(s − 1),max

(
m(j)+ bj+1,s | j 6 s

)}
.

Note that this recursion takes O(|S|2) time to be computed.
The third case is solved by a recursion that is a little more complicated. We use

the variablesm(U, s) which denote the value of the optimal division of the firsts assets
among the bidders of setU ⊆ {1, . . . , c}.

m(U, s) = max
{
m(U, s − 1),max

(
m
(
U\{b}, j)+ bb,j+1,s | j 6 s, b ∈ U

)}
.

Here,bb,j+1,s is the bid of bidderb on the assetsj + 1, . . . , s. This recursion takes
O(c2c|S|2) time to be computed, which is only polynomial in the input ifc is a con-
stant. �

Rothkopf et al. observed this result when condition 1 or 2 are valid. At this time
we do not know whether the problem becomes NP-complete if we have more than one
bid by each bidder and if we allow at most one acceptance per bidder.

4. Formulation and computation

The general problem is formulated by using a standard integer linear programming
formulation of the set packing problem and adding constraints for the one-set-per-bidder
requirement:

Let xi,j denote the 0–1 decision that models whether bidderi obtains subsetSi,j ,
at valuebi,j . Then the formulation becomes:

max
∑
i,j

bi,j xi,j (1)

∀k ∈ S
∑
i∈B

∑
j :k∈Si,j

xi,j 6 1, (2)
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∀i
∑
j

xi,j 6 1, (3)

∀i, j xi,j ∈ {0,1}. (4)

Here, the constraints (2) ensure that each asset is assigned at most once, and the
constraints (3) model the property that each bidder obtains at most one asset.

We tested the algorithm using AIMMS on a 400 Mhz PC with 64M memory.
AIMMS solves integer linear programming problems in a branch and bound approach,
using linear programming relaxations to compute the bounds. The tests consider two
types of randomly generated instances: instances of interval auctions and instances of
general auctions. The computational results for 12 instances of different size for each
type are presented in table 1. Time is given in minutes:seconds. The columnnodesin
the above table gives information about the number of nodes in the branch and bound
tree. We report two numbers: the first gives the total number of generated nodes, the
second gives the node where the optimal solution was found. As can be concluded from
the table the interval instances are very easy to solve. The linear programming relaxation
almost always solves the problem to optimality. The general instances are much more
difficult. Here, we see that they become rather time consuming as they get larger. De-
pending on the application it may be necessary to develop faster procedures for solving
the problem, for example, by adding additional valid inequalities to the above LP formu-
lation. Furthermore, our approach should be tested on data that are actually generated in
an auction.

Some remarks are in order. First, the integer programming model that we present
is very flexible. The XOR-constraints mentioned in section 2 can easily be added. They
are just variations of constraints (3). Second, our computational results are based on

Table 1
Computational results for randomly generated instances of interval auctions and general auctions.

Size Interval auction General auction
bidders assets bids time obj nodes time obj nodes

10 10 50 0:00 300 3/2 0:00 991 8/7
10 20 100 0:00 398 1/0 0:00 1896 141/75
10 30 150 0:00 426 2/1 0:07 2634 605/118

20 20 100 0:00 473 0/0 0:00 1972 90/45
20 30 200 0:00 455 0/0 0:06 2846 761/166
20 40 300 0:00 610 0/0 0:27 3645 1811/225

30 30 150 0:00 472 0/0 0:04 2763 334/96
30 40 300 0:00 747 0/0 0:27 3732 1794/269
30 50 450 0:00 757 0/0 2:16 4735 5508/392

40 40 200 0:00 721 0/0 0:03 3640 243/145
40 50 400 0:00 667 0/0 1:33 4631 4085/360
40 60 600 0:00 711 0/0 11:15 5471 20200/479



32 VAN HOESEL AND MÜLLER

the most direct approach from operations research one might think of. Already a better
modeling environment and solver would improve the performance by at least a factor
of 10. Then, the solver can be fed with further valid inequalities, like if there is a bid
for every two-element subset of a three element set, at most one of these bids can be
assigned. This is a so-called clique inequality, many other inequalities can be derived
from clique inequalities [9]. So the fact that a simple approach can solve already modest
problems should make us optimistic, as we know how to improve it. Just to indicate the
power of tailored algorithms for set packing we could compare computational results
obtained by Borndörfer [2] with the size of the FCC auction. Borndörfer solves a set
packing problem with a matrix with 531 rows, 5198 columns and 36359 nonzeroes in
2 s. In the FCC auction this size would suffice to model 5198 bids from 38 bidders for
the 493 frequencies with an average number of 6 frequencies in every bid. A problem
with 825 rows, 8627 columns and 65953 nonzeroes is solved in less than 20 s. If we
compare these numbers with the numbers reported in [13] our argument to use recent
combinatorial optimization technology is further supported. Reported computational
times for randomly generated instances with 100 items and 1000 bids need more than
100 s, instances with 400 assets and 2000 bids are solved in about 3000 s.

5. Conclusions

We have presented in this paper an analysis of the complexity of the problem to
assign bids to bidders in combinatorial auctions. We have shown that the case of iden-
tical assets can be solved in polynomial time, but many other cases are NP-complete,
implying that the existence of polynomial algorithms is unlikely. To design good algo-
rithms for packing problems in combinatorial auctions is however not hopeless. Packing
is a well investigated combinatorial optimization problem for which many heuristic al-
gorithms are known (see, e.g., [7]) and for which enumerative approaches are also well
understood. A branch-and-bound algorithm, such as reported in section 4, may solve the
majority of practical problems without any additional techniques involved. Moreover,
the more complex examples can be solved by adding valid inequalities to the LP relax-
ation of the formulation. So there is much hope that algorithms can compute optimal
solutions in reasonable time in practice, although not in polynomial time.
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