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1. INTRODUCTION

In recent years, several asymptotically efficient two-step and iterative estimators
for dynamic models with autocorrelated errors have been presented and resuits
on their finite sample properties have been obtained. Among closely related
Monte Carlo studies on small sample properties, we specifically note the com-
parison of the finite sample properties of several estimators for the regression
model with autoregressive errors by Rao and Griliches {1969] and by Park and
Mitchell [1980], and for the Koyck [1954] distributed lag model by Morrison
[19707 and Dhrymes [1971]. Hatanaka [1974] presents an efficient two-step
estimator for a single equation dynamic adjustment model with first order auto-
regressive errors and reports results of a simulation experiment. More detailed
results on the small sample performance of several estimators for the dynamic
adjustment model are reported in Maeshiro [1980] for a trended explanatory
variable and in Fomby and Guilkey [1983] for a stationary exogenous variable.
Hendry and Sbra [1977] investigated the small sample properties of instrumental
variables estimators in a simultaneous equation framework with autoregressive
errors. Harvey and McAvinchey [1981] compared the efficiency in small samples
of various two-step and iterative estimation procedures for regression models
with moving average errors.

In this paper, we report Monte Carlo results on instrumental variables, efficient
two-step and iterative Gauss-Newton estimators of a Koyck distributed lag model
with uncorrelated errors (model 1) and with first order autoregressive errors
(model 2). The distributed lag model with a Koyck scheme, perhaps the most
widely used distributed lag model, is simple in the sense that it involves a small
number of parameters. The parameter of the lag distribution can often be
interpreted in terms of economic behavior such as adaptive expectation formation
or partial adjustment. Still, the problems generally inherent in the estimation of
distributed lag models are also present here, so that Koyck’s model is a natural
candidate for a simulation study. We only consider models for stationary data.
As recent developments in time series modeling show, stationary processes are

* Manuscript received November, 1980; revised October, 1983.

** The authors wish to thank H. J. Blommestein and J. T. C. Kool for their help in carrying
out the computational work. They are indebted to D. F. Hendry and A. C, Harvey and three
unknown referees for their helpful comments. An earlier version of this paper was presented
at the Econometric Society European Meeting in Amsterdam, August 31-September 4, 1981,

579



580 PALM, VOGELVANG AND KODDE

very useful for the analysis of economic time series. We note that the Koyck
distributed lag model is a simple example of the rational transfer function model
frequently used in time series analysis.

In the last decade, dynamic specification analysis has received much attention
in the econometric literature. As econometric specification analysis usually
requires estimates of several alternative dynamic model specifications possibly
arranged as a uniquely ordered sequence of restricted models, the demand for
computationally convenient estimation methods with desirable small and large
sample statistical properties has arisen. Usually one has to choose between
consistent but inefficient or consistent and asymptotically efficient estimators,
which may or may not be iterative. The choice is usually based on criteria such
as computational costs involved, small sample properties and asymptotic
efficiency.

To offer some guidance for empirical work, we focus on the small sample
properties of one estimator in each of the three classes of estimators, i.e. Liviatan’s
consistent instrumental variables estimator, an efficient two-step and an iterative
Gauss-Newton estimator. The latter has been called minimum chi-square
estimator by Dhrymes [1971] (see also Dhrymes [1974]) who shows that it
becomes indistinguishable from the exact ML estimator in larger samples. The
estimates of the distributed lag parameter are restricted to be positive and smaller
than one. Similarly, the estimates of the autoregressive coefficient in the dis-
turbance process are restricted to lie inside the unit circle. As these restrictions
are plausible in many applications, we investigate the relevance of large sample
theory for the small sample properties of restricted estimators.

Two main questions have been considered:
(1) are asymptotically efficient estimators to be preferred to a consistent but an
inefficient instrumental variables estimator?
(2) does it pay to iterate asymptotically efficient estimators until convergence is
achieved?
In section 2, we present the models and the estimation procedures. A more
" detailed presentation of the estimation methods and their large sample properties
can be found in Dhrymes, Klein and Steiglitz [1970], Dhrymes [1971] or Harvey
[1981]. In section 3, we describe the experiments. Section 4 contains the results
of the simulations which are summarized using response functions. Instead of
generating a large number of runs for each experiment, we use the technique of
control variates to increase the precision of the outcome of the simulations.
In the last section, we present conclusions.

2. THE MODELS AND THE ESTIMATION PROCEDURES

We analyze the geometric distributed lag model

o0
(2'1) yt==a0+a1 igoiixt—i‘*'uu t= 19“-371:
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where y, is the endogenous variable, 0<A<]1, the explanatory variable x,-; is
independent of the error term u, for all ¢ and i, and T is the sample size. We
consider the cases where u,=¢, (model 1) with ¢, being a normally distributed white
noise with variance g2, and where u, is generated by a first-order autoregressive
process (model 2)

(2.2) U = phyy t+ &

with |p| <1, p#A4. First, we present the estimation methods for the more general
model. Then, we briefly indicate how these methods specialize for model 1.

When u, is generated by the process (2.2), the likelihood function, conditional
on initial values, is given by

(2.3) L(y, %, o0, 1, 4, P, 0?) = (\/2r0) T exp

2
The model can be written as
(2.4) Ve~ PYe-1 = %o(1—p) + o, (x¥—pxi,) + &,

where the variable x} is defined as

2.5) xt = 3 Mx,oy = 2 %

for a sequence of variables x, with L being the lag-operator.
The first-order conditions for a maximum of the log-likelihood function Wlth
respect to 8=(ay, a;, 4, p)’ are given by

olnL _ _ _, 08 _
(2.6) w - 696—-—0

where %13 the matrix of partial derivatives of the disturbance &, with respect to

the elements in 6;

l—p e 1=p

ds xt —px§ e X pxFog
oy (x§* —px¥Y) o oy (xFE —pxFEy)
uo 'ER) uT_‘l

with x}* =(—1—_:lm§ x, and s=(sl, £9,.--, &) 18 the vector of disturbances.

The first order conditions in (2.6) are nonlinear in the parameter vector 0.
We can solve them iteratively to obtain the conditional maximum likelihood
(ML) estimator. However, Fisher [1925] (see also Dhrymes and Taylor [1976]) .
showed that under certain conditions the following two-step procedure

2.8) b=8-r@2inL

=0
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has the same asymptotic properties as the ML estimator of 8. In particular,

the result holds provided that .

1) B is a consistent estimator of 6 such that ./ T(6 —0,), with 8, being the true
value of 6, has some limiting distribution, and

2) I'(d) is a non-singular matrix such that T~'I'(f) converges in probability to

the Hessian matrix at 8, of the log-likelihood function divided by . We denote

by “8” and "6" the first and second step parameter estimates respectively.

One way to obtain an asymptotically efficient estimate by implementing
(2.8) is to compute one step of the Gauss-Newton algorithm starting with a
consistent estimate of 8,. The formula for the Gauss-Newton algorithm is given
by

2 5 de 0&' 17! O
2.9) b=0- [W e %l
The right side of (2.9) is evaluated at a consistent estimate 8. If we iterate the
estimator (2.9) until convergence, we get the nonlinear least squares estimator or
the conditional ML estimator. Whether the nonlinear least squares estimator
is identical to the exact ML estimator depends on the treatment of the initial values
for x, and u,. Notice also that the difference between the two-step and the initial

consistent estimator, 80, in (2.9) can be computed by an ordinary least squares
regression of the residuals & on their partial derivatives with respect to 8, both
evaluated at §. These derivatives can be computed analytically as in (2.7) or
numerically (for numerically computed derivatives, see e.g. Harvey and
McAvinchey [1981]).

We now use the analytical formula for the derivatives and compute the two-
step estimator in (2.9) as follows:

1. Consistent parameter estimates are obtained by Liviatan’s instrumental
variables method applied to the transformed model

(2.10) y=0a(1=A) + Ay +ox+v, t=2,...,T

with v,=u,—Au,_ {, using x,_, as an instrument for y,_;. The restriction 0<i<1
is imposed on the estimate 4. If 7 lies outside the interval [.05, .95], it is fixed at
the corresponding boundary value and the parameters ay and «; are estimated in
a regression of y,—2y,_; on x,. The boundary values for 1 were chosen after
some experimentation with the model when A=.9. For a boundary value very
close to one and A=.9, the iterative estimator of A often has a cyclical behavior.
Next, we compute ﬂ,=ﬁ,+20,_1, t=3,..., T, #1,=0,, where #, is an instrumental
variables residual,

n T T
p=2 040,43 087 and
=3 t=2
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where
g =1, — ﬁat—l’

2. The two-step estimator in (2.9) can be computed by OLS applied to the fol-
lowing equation (which is obtained by adding the same terms to both sides of
equation (2.4))

(2.11) Lye—pyi g+ Ao (x5 — px%) + pu, 4]

= oo[1—p] + oy [xF —pxt ] + Loy (xf% — pxd)] +
+ plu-1 ]+, t=3.,T,

after evaluating the regressand and the regressors between brackets at consistent
first-step estimates. The variables involved in the regressand and in the regressors
of (2.11) are computed as

$F=x, + %%, and RF* = £F 4 Agxx

with 2% and £&* being set equal to the sample mean of x, and x* respectively,
divided by 1—4 (the process x, is stationary).

If the estimate A does not lie inside the interval [.05, .95], it is fixed at the
corresponding boundary value and g, o; and p are estimated using (2.11). The

runs, for which the restriction | [)I <1 is not satisfied, are disregarded. The latter
restriction has been satisfied in most cases, although we do not impose the
asymptotic independence between the estimates of p and those of the remain-
ing parameters by using a block-diagonal matrix I' in the two-step and iterative
estimation procedure. The iterative Gauss-Newton algorithm stops when the
change in the estimates of oy, A and p is smaller than .001 or when the number of
iterations is equal to 100. It also stops when the restriction on 1 is violated for
the second time or when the Hessian matrix becomes singular. The variance of
g, is estimated as in step 1 using the residuals of step 2 or those of the iterative
estimator respectively, For model 1 (p=0), the appropriate estimates are ob-
tained by deleting the last row of (2.7) and setting p=0. Observations for t=2,
..., T, are used to compute the twostep and iterative estimates for o, o, 4 and o2,
For both models we ignore the first observations.

We have not investigated whether this affects the conclusions about the finite
sample properties, as has been found by e.g. Beach and MacKinnon [1978] and
by Park and Mitchell [1980] for a linear regression model with autoregressive
errors and by Maeshiro [1980] and Fomby and Guilkey [1983] for the dynamic
adjustment model with autoregressive disturbances, With the exception of Fomby
and Guilkey [1983], these authors consider models with trended explanatory vari-
ables and find, for p>0, that the autoregressive transformation of x, (e.g.
x,— px,_ ) reduces the variability of the independent variable and thereby induces
a loss of efficiency. Notice, however, that for the Koyck distributed lag model,
the treatment of the initial conditions for x, can be expected to have a similar
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favorable effect on the efficiency of parameter estimates as the inclusion of the
first observation in GLS- or ML-estimation.

Finally, it should be noted that there are many other ways to generate two-
step estimators with the same asymptotic distribution as the ML estimator.
Any matrix I' satisfying the requirement for (2.8) characterizes a two-step estimator
which is asymptotically equivalent to the ML estimator. For example the esti-
mators proposed by Hannan [1965] and by Steiglitz and McBride [1965] have
this property. The small sample properties of these estimators and of Liviatan’s

instrumental variables estimator for model 1 have been investigated by Morrison
T1970].

3. THE DESIGN OF THE EXPERIMENTS

The complete model used to generate the data is defined by the following

(3.12) Cemmta 3 Mxotu, 0<i<l
(31b) Uy = Py t & P # ;L: Ipl <1
(3.1¢) g ~ IN(0, o®)Vt,

(3.1d) X, =9y%-1+1, 0<y<l1, and
(3.1e) n, ~ IN(O, 10)V1.

& and #,, are independent for all ¢ and ¢'.
The following parameter values are considered

060 ol 50, 061 = .9

1e{3, .6, .9}

pe{—.85 —.5,0,.5, .85}

r€{0, .7, 95}

o2e {5, 10}.
These values cover the range of plausible values for the parameters A and p and for
the theoretical R2, The sample size T is equal to 30 and 60. * The process for
X, is stationary. For y=.95, the spectrum for x, has approximately the *‘typical
shape of the spectrum of an economic variable’’. The random numbers are
generated from a uniform distribution using the FORTRAN subroutine RANF
available on the CDC CYBER 170-750 computer. They are transformed into

¢, and 7, according to (3.1¢) and (3.1e) using the probability integral theorem.
The random variables u, and x, are generated according to (3.1b) and (3.1d)

- respectively, with u1=31«/ i __1p2 and x; =’l1\/ 1_1),2 .
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Then, for a given set of parameters a,, @, and A, 60 independent samples of size
404 T are generated for the variable y, using the model (3.1a), with x,=0 for
t<0. To guarantee the independence of y, from the initial values of x,, only the
last T(i.e., 30 and 60 respectively) observations are used in the simulation study.
As an alternative, we could have generated y, using its marginal density function
implied by model (3.1) and the y,’s t=1,..., T'using equation (2.4).

4. THE RESULTS OF THE SIMULATIONS

For each of the 60 independent runs of an experiment, we estimate the para-
meters using Liviatan’s instrumental variables (IV) method, the two-step (25) and
the iterative Gauss-Newton (IGN) procedure as described in section 2. We
compute and analyze the simulation mean and standard errors (SE) for these esti-
mators., We investigate the relationships between simulation mean and SE’s and
the characteristics of the experiments. We model these relationships as response
function equations and estimate them by OLS. Our analysis focuses on the
appropriateness of large sample theory for finite sample sitvations. The existence
of finite sample moments of the estimators has not been investigated. Possibly,
the use of restricted estimators guarantees the existence of their finite sample
moments.

4.1 Control variates. To reduce the variance of the simulation results, we
use the technique of control variates (CV) (see Mikhail [1972, 1975]). (For a
more detailed description of this variance reduction technique, see Hendry and
Srba [1977] and the references therein). Suppose that we want to simulate the
finite sample mean (assumed to exist) of an estimator § of the parameter 6. We
can compute the sample mean of the outcome & ; of m independent runs

s 1
4.1) g =7 ng g,
Consider now an alternative estimator §° with known mean E(8°). Then, the
quantity §=8—8°+ E(F°) will have the same expectation as 8. Its variance

@2 var (6) = var (B) + var (8°) — 2 cov @, 8°)
will be smaller than the variance of 5, provided
(4.3) 2 cov (8, 8°) > var (7°).

The technique of CV’s consists in choosing an estimator 8° (called CV) with

known mean, satisfying (4.3) and using § instead of B to estimate the (unknown)
finite sample expectation of §. From (4.2), it is obvious that the precision of §

is very high when the CV 6° has approximately the same variance as 8 and is almost

perfectly correlated (positively) with 8. Therefore, we derive the CV §° from the
asymptotic distribution of §. We choose #° such that its finite sample first and
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second moments are equal to the corresponding large sample moments of 8,
As these moments only depend on the parameters of the model, which are known
in a simulation study, they can be computed and used to obtain §.

The IV estimator of 8=(8’, p)’, where f' = (o, &y, 4), is

(4.4) Biv =(Z'X)* Z'y, pry = (82, 4_,)"10L, 4,

with Z, X and fi_, =(;, 0,..., i)’ being the matrices of instruments,
regressors, and the vector of lagged residuals, respectively, of the first step estima-
tion of (2.10). The CV’s are given by

{(4.5a) w=EYZ'X)Zv + 8,
where v=(v,, v3,..., v7)’, and
o - ' / 1_ 2 ’
(4.5b) prv=E(ulju)ule+p= (_T——le)?i (ul18)+p.

The control variate 7, has as expectation . The variance of \/ T}y is equal to
the asymptotic variance of ./ TRy,

(4.6) Q= TE-NZ' X)E(Z'VZ)E-X(X'Z),

where ¥ is the covariance matrix of v. The variable v, is generated by an ARMA

_1-AL

(1, 1)'m0del Ut—-"l—__—lb-z
V as functions of 4, p and o2 (see Box and Jenkins [1970, p. 76]).

The control variate pj, is centered at p. The variance of \/T—1p;, equals

the asymptotic variance of \/Tii v
) Var (\/Tpp) = 1 — p2.

Notice that p;, and B, are independent in large samples. The CV’s given in
(4.5) are expected to be almost perfectly correlated with the IV estimates in large
samples. As the two-step and the iterative estimators have the same asymptotic
distribution, we use the same CV’s
(4.8) . 035 = 01y = E"Y(P'P)P'e + 0,
where P'= ———g% defined in (2.7) but for t=3,...T.

The mean of the control variates, E(035) is equal to the true parameter values,
The finite sample variance of \/ 10,5 is the same as the large sample variance of the
2S-estimator,

(4.9 Var (\/ngs) = gZTE~I(P'P).

The matrix E(P'P) will be given in the appendix. The CV’s for model 1 are

easily obtained from (4.5) and (4.8) by setting p=0 and deleting the last column
of P.

&, so that it is straightforward to express the elements of

4.2. Results for Some Selected Experiments. In table 1, we report detailed
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results for 12 experiments. The values of the parameters and the sample size in
these experiments are close to those often encountered in empirical econometric
work. The results of table 1 have not been used to estimate the response functions
in section 4.3. They have been kept back to investigate the predictive performance
of the response functions in section 4.4.

In columns 3, 8 and 14 of table 1, the simulation mean (M) for the IV, 2S and
IGN estimators respectively of a parameter 6, is given

0,
1

N

(4.10)

|

u ™Mz

_1_
m f J

where m=60 minus the number of times convergence as described in section 2
is not achieved. In columns 4, 9 and 15, the simulation standard errors (SSE)
for the estimators are computed as

1
o 1 m . 7 2
(4.11) SSE, = [ T 2, O ei)Z] .
In columns 5 and 10, the mean of the control variates for the I'V and 2S-estimator
respectively (MCV) is given by

(4.12) oy =L P

*

In columns 6 and 11, the standard deviation of the control variates (SDCV) is
computed as

1
(@.13) SDCV; = | i £, 05,-002 ]

In columns 12 and 16, the square root of the mean of the variances of the esti-
mators obtained from the conventional formula for the estimated standard errors
(ESE) is computed as

1

i1 = 2
(4.14) ESE; = [ m-1 & DEu] ;

where DE,; is the i-th diagonal element of $2[P;P ]~ for run j, with 67 and P,
being evaluated at the 2S and iterated estimates, respectively. For the IV esti-
mator, the appropriate formula for the estimated variance of B,y is given in (4.6),
with the moments replaced by their sample equivalents. As the formula is almost
never used in empirical work, we have not computed ESE’s for the 1V estimator.

In columns 7 and 13, the asymptotic standard errors (ASE) are equal to the
square root of the i-th diagonal element of the covariance matrices in (4.6) and
(4.9) divided by T. A CV estimate of the finite sample bias of the IV estimator
[2S, IGN] can be obtained by subtracting column 5 [10, 10] from column 3
[8, 14]. Similarly, a CV estimate of the variance of the IV estimator [2S, IGN]
can be obtained by subtracting the square of an element in column 6 [11, 11]
from that of the corresponding element in column 4 [9, 15] and adding that of the
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TABLE 1 SIMULATION RESULTS
(@o=>50, a;=.9,

Instrumental Variables Estimator
M SSE MCVY SDCV ASE M

T =40 oty 50.005 2.301 49.193 4,166 5.875 49.836
A =7 o .8677 1745 8644 1802 2386 0125
p=0 P 71539 10649 71616 .08378 10736 70710
m = 55 at 15.093 8.407 12,499
T =40 oo 49,501 9.428 50.258 2272 4.766 47.851
A=.9 a; 9341 1473 9239 1760 2898 1.0038
p =0 2 88990 .05165 .89488 04545 07568 .85544
m =50 ot 23.663 14.210 42285
T =60 2y 50,791 5.698 51.060 3.786 4,776 48.463
r=.7 oy 9478 1712 9459 1693 .1940 9225
p=20 A .67728 09156 .67863 07529 .08729 .69806
m = 58 o? 12,533 3.493 11.871
T =60 ap 48.685 8.924 50.641 2.530 3.875 50,094
A =.9 @y 9625 1587 9524 .1978 2356 | 9571
p= 0 2 87526 06006 .88706 .05089 06153 90785
m = 58 a* 38.678 29.175 49.140
T =40 ap 50.009 1.941 49,497 3.493 4.257 49,688
=7 @ .8740 1524 .8738 1586 1773 .9288
p = 4 a 70909 08603 70968 .07038 07978 68998
m =155 ) 39459 17761 37479 14873 .14491 30222

g2 10.235 2,747 10,227
T = 40 oo 48.753 8.556 50.095 1.915 3.172 51.975
A =9 ay 9236 1199 9121 1510 2078 9730
p = 4 A 89272 .04195 .89818 .03789 .05425 .89375
m=42 o .53732 16842 37954 14569 14491 .33946

a* 11.479 2.351 13.122
T = 60 o 50.640 4,651 50.783 3.281 3.460 45.122
A=.7 ay 9309 1575 9339 1476 1441 9285
p = 4 A 68304 07949 .68417 06504 06486 68677
m=>59 o .38905 12211 38143 11490 11832 32857

o* 10.542 2.199 10.435
T = 60 o 49,865 7.059 50.135 1.719 2.575 52.183
A=.9 a, 9343 1481 9137 1357 .1689 9554
p =4 A 89314 04117 .89737 .03471 .04411 .89228
m == 50 o .58553 .20494 35321 12091 11832 © | .40398

a? 12.356 3.862 13.272
T =40 Qo 50.878 11.332 49,458 3.319 4321 46.887
A =. ay 8967 .1376 .8957 1212 1646 9200
p = .8 2 .70761 08587 70933 .06326 .07406 .69019
m =60 0 ,66911 11181 80530 .08284 09487 64577

a* 9,913 2.339 10.111
T =40 Qo 48.846 13.879 49.640 1.781 2.428 59.561
A=.9 oy 9008 A112 .8801 1182 1646 .942¢%
p=.8 pi 90206 .05130 90772 .03525 .04297 .88346
m=45 ) 75950 12804 .80156 08662 09487 68367

I 10.278 2.526 10.302
T =60 oo 50.090 2.534 50.116 3.144 3.523 49,972
A= a 9082 1642 .9024 1550 1338 .8966
p=.8 A 70087 .03017 69706 06436 06021 70321
m =59 P 0770 09420 79902  .08609  .07746 70246

a2 9.535 1.596 9.661
=60 &o 50.489 9.008 50.181 1.565 1.962 52907
A =9 ay 9223 1171 9223 1216 1338 9404
p=.8 2 .89425 .03770 .85645 103009 03494 89786
m = 54 P 75118 12353 80652 .08705 07746 69698

a2 10.115 1.963 10.894

As the ASE’s for the IV and the 2S-estimators are divided by the number of observations
than those for the IV estimator.
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FOR SOME SELECTED EXPERIMENTS

7 =85, 62=10),
Two-Step Estimator Iterative Estimat
SSE MCV SDCV ESE ASE M SSE ater
1.667 49,988 466 1.178 .506 49,768 1.330 1.030
1127 .8954 0642 0818 0638 .9591 0975 .0846
.03887 .70284 .02107 .03847 02320 .69180 03171 04219
3.532 12.224 3.423
15.410 50.046 .536 5.390 .506 48.630 11,760 4,046
.2499 .9004 0150 0776 .0231 1.0461 .2531 .07%4
.03488 90031 .00228 .01866 .00308 .89112 03213 .02040
37.704 38.462 35.239
12,166 49.974 401 3.836 412 50.067 767 .658
.0839 9017 .0569 .0696 .0519 .9379 0738 0647
.03444 69940 .02132 .02889 01886 69224 02811 .02738
2,706 11.694 2,739
15.054 49,968 411 2.652 412 49,892 10.343 2.488
2140 9020 .0150 0707 .0188 1.0065 2023 .0580
02548 .89970 .00195 .01588 .00250 .89748 01852 .01097
43.768 ) . 45.533 42.699
2.100 50.063 5.026 1.820 .835 49,760 1.326 1.441
1009 .8900 .0968 1165 .0964 9310 0953 1128

04345 70377 031935 05500 03566 .69624 04102 .05442
17945 31556 .14331 16414 .14868 .28477 17918 16424

2.503 10.227 2.553
16.514 50.698 4,557 8.234 .855 49.762 8.457 4,134
1495 .8998 0257 .0948 .0380 .9950 1694 0805

.03333 .90058 .00368 02666 .00510 .89290 .02463 .02100
22740 .33580 17956 .18071 .14868 26117 28615 21287

6.774 16.869 13.600
37.826 49.700 4.021 10.877 692 50.053 .860 952
1124 9074 .0881 .0949 .0780 .9260 1018 .0878

04741 69718 03358 04168 .02886 .69342 .04259 03841
13250 .33536 11114 12760 12035 .31667 13155 12800

1.912 10.406 1.952
13.864 50.102 4132 7.220 .692 51.176 5.753 2.633
1216 .9027 .0233 .0868 .0308 .9828 1284 0604

03250 .89946 .00339 02176 .00413 .89626 01579 .01465
19758 .30886 15912 14004 .12035 .25708 28675 .22258

5776 18.755 13.751
22,327 51.193 62.127 15.443 2.565 50.345 5.761 3.508
1456 .9024 1051 1443 .1389 .9208 .1492 1447

.08171 10762 .05459 .07092 .06039 .69828 08049 07407
14474 74238 07238 13269 09733 .64013 15377 13409

2,349 10.244 2.466
28.179 57.492 64.131 18.306 2.565 51.634 1.675 7.415
1192 .9109 .0701 1126 .0850 .9685 1547 1055

03460 .89943 01304 03507 01251 .88649 03796 .03270
15256 75831 ,09891 12902 09733 .62370 23959 19342

2.714 12,339 9.040
2.858 45.468 53.718 2.091 2.076 49,965 2.979 2.145
1456 .8880 1263 1128 1124 .8936 .1419 JA115

08221 70351 05253 05156 .04888 .70504- 08634 05295
10691 15565 .05999 09779 .07878 70107 .10934 09797

1.574 '9.665 1.555
10,980 49.300  64.649 8.231 7.076 | 51.507 5.784 7174
1282 9061 .0720 0910 0688 9507 11201 0838

02417 .89979 .00948 02372 .01013 .89889  .02073 02177
15675 . .75140 .07681 10618 .07878 .65389 .20697 14982
2.641 12.434 5.835

used in the estimation, T-1 and T-2 resp., the ASE’s for the 2S-estimator for o are greater
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asymptotic standard errors in column 7 {13, 13]. Although a CV estimate of the
variance is sometimes greater than the simulation variance, it is expected to be a
more efficient estimate of the unknown variance.

Notice also that for most experiments, the simulation standard errors are closer
to the asymptotic standard errors than the estimated standard errors. The var-
iance of o4 is high and usually differs substantially from its asymptotic value,
In those cases, the results for o2 are not very satisfactory either. Whether this is
an indication of the non-existence of finite sample moments of the estimators
or of multicollinearity due to the autoregressive transformation has not been
investigated. The bias of the 2S estimator of «g, for p#0 and T=40, is much
greater than that of the IV or IGN estimator. Although we do not report
additional results for the parameter «,, we should mention that the bias and the
standard errors are sometimes large. In general, the results for the parameters
oy, 4 and p are satisfactory. The bias and the SE’s of the 2S and IGN estimators
for these parameters are very similar. The results in the table do not indicate a
dominance of IGN on the 2S estimator. For the 2S and IGN estimator in
model 1, the SSE’s are usually smaller than the ESE’s. For model 2, both are
fairly good (especially when T=60), except for the parameter A, for which the
SSE is closer to the ASE than the ESE. The results in table 1 give an overall
picture of the finite sample properties of the three estimators considered. Still,
the results should not be carried over straightforwardly to other experiments.

The efficiency gain for the bias when using CV estimates can be measured in
terms of the ratio of the simulation variance over the variance of the CV estimate,
A variance ratio of two indicates that the gain in efficiency from using CV'’s is
equal to that of doubling the number of runs. In general, the efficiency gain for
28 approximately equals that for IGN. For y=.95, ¢2=10, ps£.85 and A#.9,
the efficiency gain varies between 1.5 and 10 for all parameters and for all three
estimators. The variance reduction is sufficiently large to justify using CV’s
instead of generating additional runs. When p=.85 or A=.9, the efficiency gain
for 2S and IGN sometimes becomes smaller than 1.5.

4.3. Response Functions for Bias and Standard Errors. In table 2, we
report the estimated response functions (RF) for the bias and the standard errors
for «, estimated by means of the three estimation methods described in section 2.
The results for the parameters A, p and ¢ can be obtained on request from the
authors.

The response functions given in table 2 summarize the properties of the esti-
mators for the experiments described in section 3. The RF’s are estimated using
36 experiments for model 1 and 144 experiments for model 2. In each experi-
ment, the 60 independent samples for & and #, are reused, thereby limiting the
computational costs and reducing the inter-experiment variability, which is
especially useful for detecting invariances between experiments (see e.g. Ham-
mersley and Handscomb [1964] and Hendry [1980]). Under ergodicity, the
specification and the estimates for the RF’s should not be seriously affected by the
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dependence between experiments. To avoid misspecification, very flexible
forms were chosen for the RF’s. Contrary to the common use of analytical
RF’s in simulation analysis, we use dummy variables to model the effects on
the simulation results of varying parameter values and/or sample size across
experiments, A dummy variables specification has several advantages compared
with an analytical relationship. First, in addition to summarizing the main
results of the simulations in a convenient way it allows for a common but very
flexible specification for the finite sample moments of the different parameter
estimates, This makes comparisons across methods, parameters and models
quite easy. For instance, if the same matrix of explanatory variables is used in
two different regressions, the standard errors for the regression coeflicients will be
the same up to a factor of proportionality. Second, it is possible to specify an
analytical form for the RF by choosing a particular method to interpolate for the
parameter values and/or sample size not considered in the experiments. The
specifications are not restrictive in the sense that they do not imply assumptions
on those regions of the parameter space for which no experiment has been carried
out. Finally, a very flexible specification may be needed to characterize the
relationship between small sample moments and the parameters of the model that
can be very complex as has been shown in small sample theory.

When modeling the outcome of the experiments in a RF, we rely as much as
possible on asymptotic properties of the estimators. As a dependent variable
in the RF’s for the bias, we first use the standardized variable

(4.15) = ym G0 (" 91)
for the simulation bias, and

I (i)}
(4.16) BCV, =./m ~ASE,

for the CV bias, where m is equal to the number of runs for which the convergence
criteria given in section 2 have been satisfied.

Usually, m is close to 60, but for values of 4 close to one, m might be reduced
to 40. The lowest value for m is 19 and occurs when 1=.9, y=.95, p= —.85 and
T=30. Notice that the RF’s for the IV and 2S methods are estimated from the
results of the runs for which the IGN procedure has converged. In this way,
the precision of .the outcome of a given experiment is the same for the three
estimation methods. In most cases where the IGN estimate does not converge,
it exhibits a cyclical pattern, i.e. overestimation of a parameter alternates with
underestimation. Moreover, the IV estimate is fairly precise while the 2S pro-
cedure is rather inaccurate. Finally, we notice that the Hessian matrix very rarely
becomes singular. According to asymptotic distribution theory, the variable B;
in (4.15) is approximately N(0, 1). The following RF has been estimated

@4.17) \/mx/—-—D 5+ u,
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where the dependent variable y; is B; or BCV;, D; is a vector of dummy variables,
that characterize the experiment (the dummy variable takes the value one when
the parameters have the value indicated in the first row of the table 2, otherwise
the dummy variable equals zero) and ¢ is a vector of parameters. The dummy
variables included in the RF’s have been chosen after a detailed analysis of the
outcome of the experiments as a function of the parameters and the sample size,
Their choice has also been determined by the analytical RF specifications fitted to
the same data by Palm et al. [1980]. The variable \/m has been included to
account for possible heteroscedasticity due to a varying number of runs. The

presence of T"% assures that the bias is centered at zero in large samples. The
factor 30 rescales the dummy variables.

When analyzing response functions for B; and BCV, we came to the conclusion
that the transformation of the bias by the inverse of ASE; did not lead to homo-
scedasticity. The main reason why this transformation did not reduce the
heteroscedasticity lies in the fact that we analyze the finite sample bias of
restricted estimators. The restrictions reduce the variation of the results for the
experiments for which the parameters are close to the boundaries. Our empirica}
finding is a first indication that the asymptotic standard errors are usually larger
than the estimated finite sample standard errors of the restricted estimators,
Interestingly, part of the transformation motivated by large sample theory, ie,

1
the premultiplication by T2, appeared to be in accordance with the outcome of
the simulations. This led us to estimating RF’s of the form (4.17) for the variables

(4.18) b, = mJT(B,—6) and bev, = /m\/T(H;~09)
respectively.

The specification of these RF s is in accordance with the consistency and possibly
with the asymptotic normality of the restricted estimators. Not surprisingly,
it is not in agreement with the large sample variance for the unrestricted estimators,
Also, the control variate estimate of the bias is expected to have a large sample
variance that is smaller than the ASE,, so that the transformation by ASE;! is not
appropriate for this reason either. The point estimates for the parameters & in
(4.17) were similar for b; and bcv;, The control variate estimate of the bias,
bev;, however, had a substantially smaller standard error of regression, indicating
the gain of precision obtained by using control variates. To limit the amount of
information, we decided to report only the estimated RF’s for bcv; in table 2.

An aliernative procedure to increase the precision of the RF’s is to model the
bias for the instrumental variables and two-step estimators respectively in deviation

from the bias for the iterative Gauss-Newton estimator, e.g. /miy/T{(Byy~

O;16n).  As the three estimators are expected to be strongly positively correlated,
the difference between the bias of two estimators should have — besides a zero
asymptotic mean — a smaller variance than any of the estimators taken separately.
In addition, the RF’s directly show how the difference between the small sample
bias of two estimators varies across the experiments. Results for the differences
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are also reported in table 2. The gain of efficiency due to differencing is of the
same order of magnitude as that obtained by control variates. Notice that
because all three estimators for p have the same asymptotic variance 1-—p?,
this variable cancels from the RF when differencing.

To obtain the RF’s for the estimated standard errors (ESE) and the estimated
residual variance, a log-linear relationship has been estimated

(4.19) Jm=Ty, = Jm=1 [5oxi+ (%9-)1);5] +u,

where y; denotes In ESE; and In 67, and x; is the corresponding limiting value.
By using a log-linear relationship, we hope to achieve homoscedasticity (see
Rao [1952]). In addition, Campos [1981] establishes that for large m and T,
the simulation standard error (SSE) is related log-linearly to the ASE,, with §,=1,
and to an additional term of order 7! and a standardized normal disturbance
term u;. For the instrumental variables estimator we fitted the specification
(4.19) to the SSE (its ESE is almost never used in practice). For the 28 and the
IGN estimator, we report RF’s for the ESE’s that are relevant for empirical work.
The use of control variate estimates for the SE’s computed as SECV=[SSEZ~

1
SDCV2 4 ASE?2}2 for the IV estimator and as SECV =[ESE? —SDCV? +

ASEZ]_lz_ for the 2S and IGN estimator did not yield a substantial gain of precision.

The parameter d, in (4.19) is significantly different from (and smaller than) one
in many specifications. These findings which can be explained by the fact that the
ASE is not an appropriate yardstick in small samples for the precision of the
restricted estimators led to the following specification

420  Jm=In—x) = \/m[ao -3%)-)” i+ (—3,12) D;&] + g

in which the bias of the logarithm of the estimated second moments is explained

by the limiting value x; and a set of dummy variables D;, The factor (%9—)1/3

has been included to allow for a decreasing impact of x; on the bias as sample size
increases. The exponent of 1/3 has been chosen on a priori grounds to allow the
impact of x; on y;—x; to diminish slowly as sample size grows.

We like to emphasize that to analyze the path and the speed of convergence of
the estimation bias as T increases, experiments for many more (and larger) values
of Thave to be carried out. This would lead to natural extensions of our study.
The relationship (4.20) should be interpreted as a specification which is reasonably
in agreement with the results for T=30 and T=60 and which is in accordance with
consistency and asymptotic normality of the estimators. Estimates for the
parameters in (4.20) are reported in table 2.

Because values of A near the unit circle deserve special attention, we split the
experiments in two groups according to whether A=.9 or 1+.9, and we estimated
the RF’s for the two subsamples. The estimate of §, appeared to be sensitive to
this partition of the experiments; the estimates of the remaining coefficients are
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not very sensitive. Consequently, we also estimated a RF specification with two

1/3
explanatory variables for the ASE, one equal to <§JQ—> X; when1;13= .9 and zero
otherwise, the second equal to zero when A=.9 and equal to (%9—) x; otherwise,
Below the point estimates for the parameters of the RF’s in table 2 we report
(absolute) t-values.

Finally, the RF’s in table 2 have been used to predict the outcome of the
independent experiments given in table 1. We report the value of

> (Oij—Pij)2
(4.21) o) = e,

where 1 is the number of independent experiments to be predicted (I =4 for model 1,
=8 for model 2}; O;; is the standardized (premultiplied by \/7“_\/5 for the bias,
by /m—1 for the ESE) outcome of experiment j for parameter i; P;; is the
prediction from the response function, and S? is the residual variance of the RF.
Under the assumption that the RF is correctly specified and known, @)
is approximately y2-distributed with | degrees of freedom. As the RF’s are
approximations for the relationship between the outcome and characteristics of an
experiment, Q«(/) should be thought of as a measure of the prediction performance
of RF’s rather than be taken as a formal test of hypotheses.

4.4, Simulation evidence. We shall briefly draw some conclusions from the
results in table 2. This should not dispense the reader from having a close look
at the results. We also summarize the main findings for the parameters A, p
and o2. As a rule, we use the same specification for first and second moments
and for all four parameters. We could have deleted some explanatory variables
at the expense of introducing some specificity. For instance, for «,, the dummy
variables for y=.7, and for y=.7 and A=.6 are insignificantly different from zero
in all the specifications and could have been deleted. A similar remark can be
made for p and o2,

The results in table 2 can be used as follows. For instance, for a model with
true parameter values 1=.6, p =0, y=.7 and o2=35, the small sample bias of the
IV estimator for «, is approximately equal to 6;+85+385+8,0=.095 (see the
first row of table 2). The point estimates of the parameters in the RF’s are
usually small, except for oy, A and o2, where the coefficients for the dummy
variables for A=.9 and y=.95 and for A=.9 and p=.85 are often large. In addi
tion for 4 and p, the value 1=.9 taken separately sometimes has an important
impact on the standard errors. The coefficients 8,, 8,4, d,5 and 8,4 are signifi-
cantly different from zero in most RF’s for the four parameters o, A, p and ¢2,
Moreover, for p and o2, the coefficients §, and 8,5 are positive, whereas the
coefficients 4,4 and é,, are negative. For p, the coeflicients J5, 6, and 55 are
significantly negative.

From the empirical findings, it is obvious that for A and y close to the unit
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circle, or for p close to 1, the finite sample properties of the three estimators
considered here differ significantly from the large sample results for the corre-
sponding unrestricted estimators, although the specification of the RF’s implies
that the small sample bias vanishes asymptotically. Of course, we have to be
careful in drawing conclusions about the path of finite sample moments as a
function of T, as only two values for T have been considered in the experiments.
Similar results have been found by Morrison [1970] for the small sample pro-
perties of Liviatan’s IV estimator, a time domain version of Hannan’s [1965]
two-step estimator and for the iterative Steiglitz and McBride [1965] estimator
in a geometric distributed lag model with uncorrelated errors.

For the SE’s, the estimate of d, in (4.20) is usually small, but significantly dif-
ferent from zero. When we condition the specification on the value of A, the
estimate of 8, for A=.9 increases up to one half. This result is not predicted by
large sample theory for unrestricted estimators. In our opinion, it is partly due
to the restrictions imposed on the estimators. Similar problems with parameter
values close to the unit circle have been encountered for univariate ARIMA
models (see e.g. Ansley and Newbold [19807]). The question of whether asymp-
totic theory for models where the true parameter lies on the boundary of the
parameter space (see Gouri€roux et al. [1982] and references therein) offers any
guidance in small samples for the properties of restricted estimates deserves more
attention.

The predictive power of the RF’s for the bias is reasonable as is indicated by the
values of QI). To compute Q,I), we have used linear interpolation. For the
bias of a4, a few values are marginally significant at the 5 percent-level, whereas
for the bias of A and ¢2, no value is significant at the 5 percent-level. For the
bias of p, some values of Q are significant at the 1 percetnt-level. The largest
values of Q occur for the standard errors for the instrumental variables estimator
of o; and A.

A more detailed analysis of the prediction results shows that the experiments
with 1=.9 and T=40 usually have the largest prediction error and make the
01 significant. In this context, it is legitimate to ask whether a linear interpo-
lation procedure is entirely appropriate. The reader can of course use his own
interpolation scheme. In this respect, we also like to emphasize that the rela-
tionships between finite sample moments and the values for the parameters and
for T are usually complex, as has been illustrated in small sample theory. There-
fore, one should be very cautious when “‘extrapolating’’ the empirical findings to
situations that have not been analyzed (see Maasoumi and Phillips [1982]).
Finally, we should note that Q,())-values based on predictions of the stand-
ardized outcome of the experiments in (4.15) and (4.16) using the asymptotic
N(0, 1) model are usually significantly different from zero at the S percent-level.
This indicates again that part of the asymptotic theory for the unrestricted esti-
mators is of limited value when the estimates are restricted and sample size is small.

An important conclusion from the specifications for the differences between
estimates is that there are significant effects present for the differences between
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TABLE 2
RESPONSE FUNCTIONS

51 62 53 54 55 66 57 58 59 510 all

1=.6 |2=9 | P~ 5| p=.5|0=2385| r=T|r=.95|0*=5|0>=10| 1=.6 | 2=.6

estimator r=.7]r=.95

v |—-008[=.109 —035|—.066] .135| .108| .003| .026

283 | 3.566 1.232] 2.339| 6.398] 5.053| .066| .654

) 25 |—-187 |77 040| .061| .120| .128| .122| .381
bias: be, 2.099| 1.813 443| .683| 1.796 | 1.887| .969| 3.024
model 1 |7 7016[ 210 —021| .0i6[ .110[ .130{ .101| .330
equation 196 2.370 263| .191| 1.815| 2.101| .887| 2.883
@.17m IV— |=.006|—.260 —.054|—.152|—.065 | .170|—.093 |—.248
IGN | .055| 2.100 A475| 1.333| .762| 1.966| .581| 1.547

28~ |~.203|=.387 061 .046] .010|—.001| .02 .05l

IGN [ 2.606] 4.537 781 .583| .170] .023| .187| 465

v 022 018 .128| .223| .225|—.000|—.013|—.085|—.112| .022| .047

.524| 378|3.721| 6.500| 6.483| .008| .447| 2.738] 3.603| .532| 1.111

25 |—=338| 49| .31 .195[ .143[ .041| 0I8[—071|—.044| 095| .245

bias: bev, 5.246| 5.696| 2.510| 3.734| 2.7101 .890| .394| 1.505| .942| 1.477] 3.820
model 2 | oo .028( 257|012 .052| .034|—.026|—.027| 092 .131| .051| .13
equation 4981 4.033| .273| 1.148| .737| .649| .681| 2.249| 3.213| 919} 2.767
@.17) TV— | .184| .089|—.088|—.163|—.138| .040| .006| .007| .221|—.070|—.114
IGN | 2.243| 956 1.327] 2.443| 2.043| .686| .108| .119| 3.678| .862| 1.394

25~ |—.366| .162| .119| .143| .110| .066| .045|—.163|—.176| .044| .01

IGN | 6.449] 2.504| 2.583 | 3.113| 2.354| 1.649| 1.117] 3.922| 4.230| .774] 1.68!

v 052 |—.065 Z.019[—.037|—.035|—.103 [—.067 [—.050

1.037 1.153 373} .734| .593| 1.907) .940| .696

v 055|069 Z019|—.037 |=.074|—.142 |—.067 |—.050

standard 1.128( .708 380| .752| 1.200| 2.481| 976| 724
error s |-016[ 326 035 |—.037|—.437|—.396| 053 .125
In ESE, .090| 1.657 199 210| 2.472] 2.383| .215| .506
model 1 |7 (= 006765 ~016|—.003| .007| .018| .122| .240
equation .063] 4.526 170| .037| 063| .183] .949| 1.841
(4.20) IGN | 001 205 —.043[—.035|=.447|=.451 | .024] 129
.003| 909 2131 .177| 2.214f 2.373| .085| .457

GN | O11[=919 023|—.001| .010|—.024| .095| .247

085] 3852 176] .009| .063| .169] .524| 1.345

v |~074[=081[ 444[ 549[ 274 —053[—.003[—415[—.516] .047[ .032

1.148| 1.074| 8.285| 9.931| 5.071| 1.165| .069| 7.625|10.060| .731| .501

v |--068| 020 .428[ 525|" 259|—.053|—.003|—.447 |—.548| 047 .03

standard 1.077] .235| 8.085| 9.527| 4.863| 1.184| .062| 8.153[10.567| .749| .513
error 25 1296 | 1.495|—.032|—.063 |—.057 |—.000| .016|—.405|—.344| .040| .071
In ESE, 2.128( 9.078| .285| .557| .500| .004| .166| 3.122| 2.781| .287| .517
model 2 1, 348|—026|—.067 |—.154|—.142|" 021| .047| .043| .08I| .076| .I33
equation 3.453| .142| .826| 1.859| 1.695| .296| .663| .415| .830{ .760| 1.330
@20 o [ 076] .868| .008| 002|003 |=.019 [ .005|=.277|—.285| .016| .066
.677| 6.561| .085( .022| .028| .247| .064| 2.655| 2.873| .141| .600

1GN | -110[=145|—016|—.058 | =.053 |—.005 | .026| .021 [—.002| .040| .108

1.198| .854] 211] 771] .701| .080] .395| .226] .027| .437| 1.178

* For instance, 3, is the regression coefficient of a dummy variable which takes respectively
otherwise. Similarly, ASE; denotes a variable with value (m—1)*/2(30/T)!/? In ASE,
and zero otherwise, The ¢-values are given below the coefficient estimates.

*) The number of degrees of freedom / is 4 and 8 respectively for models 1 and 2,
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FOR ey

512 513 614 515 516 617 615 619 50 66 5’0 Siz Ql(l)**)
2=9|2=9|1=6|1=6| 2=6| 2=9| 21=9 | 1=.9 | ASE,| ASE,| ASE,
r=Tr=95/" 5l p=51p=85|PZ 5| p=5 | p=85 1=9| 2#9

183 232 260) 2.504
4.316| 5.346

.403| 1.201 827]9.754
2.987| 8.722

301 1.164 7511 3.987
3.187| 9.309
— 164 |—.656 1.051[11.783
.954| 3.746

013 037 22| 3.612
106] .309

262| 292|—.026|—.065|—.072(—.129[ —214| —.263 543 3.768
5.553| 5.910| .532| 1.336| 1.481| 2.290| 3.832]  4.655

262| .567| .107| .235| .245/—.380| —.475| —.585 8261 4.103
3.648| 7.545| 1.447] 3.184| 3.287| 4.423| 5.601| 6.804

280 .846| .003|=.069|—.107|—.088) —.210] —.436 7168744
4.501|13.013| .044| 1.083| 1.655| 1.185] 2.860| 5.855
—128|—.292 | =078 |—.178|—.166 |—.120| —.212| —.162 1.052{16.719
1.406| 3.053| .830] 1.898/ 1.752| 1.099| 1.966| 1.483
018 —.279| .104| .304| .351|=.292( —.265| —.149 728 1.5718
2831 4.228| 1.601] 4.682) 5.361] 3.859| 3.549| 1.970
—143[—.026 —.085 472 167.861
1.843| 332 4.439
—.146—.0%6 —.037|=.103| .40875.130
1.945| 344 1.067! 4.801

567 | 1.436 —.226 1.44811.329
2.100| 4.930 4.569

319|906 — 451 |- 034 761 B.099
2.198| 5.451 11.909| .953

443|1.588 =241 1.656| 8.288
1.436| 4.768 4.259

188 1.042 — 473 —.043| 1.874| 7.338
917| 4.441 8.839] .860
—053|—.031| .018| .144| .193|—.099] .096] .327| .010 74225811
724] 404 239 1.949) 2.578) 1.133] 1.106] 3.661| .504
—057|—.034| .017] .137| .180|—.030| .24 454 087 |—.016| 727[26.177
796| 457|236 1.903] 2.443| .336|  2.256| 4484 2,398| 755 -
520 | 1.123|—.100|—.346|—.379 |—.512 | —1.484| —2.038 |—.246 1.598(17.104
3.289| 6.574| .629| 2.183| 2.355] 2.728( 7.942| 10.560| 8.554

267| .590|—.105|—,408 (—.463 |—.399| —1.023| ~1.403 —.532|—.080| 1.156/19.064
2.286| 4.423| .911| 3.549| 3.971| 2.934| 7207} 9.242 15.676| 3.054

437| 1.240| 001 |—.122|—.149|—.198 | —.960| ~1.423 |—.178 1.283(16.339
3.439| 9.034| .005| .958| 1.156| 1.317| 6.396] 5.181| 7.693

269 | .885|—.003 |—.163 |—.206 | —.124| —.653] —1.001 — 368 |—.067[ 1.055(16.792
2.518( 7.272] .024] 1.555| 1932 .995{ 5.043| 7.22% 11.889| 2.847

the value (30 m/T)"* in (4.17) and (m—1)Y/3(30/T') in (4.20) when 1=.6, and which is zero
whereas ASE,, 1=.9, denotes a variable with value (m—1)1/*(30/T)!/® In ASE, when 2=9
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the biases. High values of A appear to be quite important in this respect. But
the applied econometrician should evaluate the expected gain in small sample
bias and the expected reduction of the small sample variance before deciding
whether to choose a consistent estimator or whether to iterate an asymptotically
efficient estimator. And he should not forget that the effects of specific parameter
values on the finite sample first and second moments become smaller as sample
size increases.

5. CONCLUSIONS

In this papet, we have investigated the finite sample behavior of three estimators
for the geometric distributed lag model using Monte Carlo experiments. We
have tried to increase the precision of the outcome of the experiments by using
control variates derived from the asymptotic distribution of the estimators.
While the CV’s yield a reduction of the variance of the results, the form and the
point estimates of the RF’s for the CV estimates of the bias are quite similar to
those for the direct simulation results. Approximately the same gain in precision
has been achieved by modeling the differences between the simulation outcome for
alternative estimators. Certainly, the gain in precision is lower than the increase
in precision obtained by Hendry and Srba [1977]. However, a major difference
between the two studies is the nonlinearity in the parameter A of our model.

The results obtained in this simulation study enable an investigator to determine
whether it is appropriate to use an efficient estimator instead of the consistent
intrumental variables estimator and whether it pays to iterate the efficient esti-
mator. However, as the effect of trended data on the properties of parameter
gstimates, which has recently received much attention in the literature, can be
important, the conclusions for the stationary models cannot be simply carried over
to nonstationary processes. The nonstationary model needs further investigation,
Nevertheless, our results should in particular be relevant for situations where the
series to be analyzed have been made stationary. This paper also provides an
illustration of a very convenient and flexible way to summarize and explain the
outcome of simulation experiments.

Qur results do not give much evidence about the possible non-existence of
finite sample moments of the three estimators that we have considered. Perhaps
the restrictions imposed on A and p assure the existence of moments in finite
samples. Possibly, we obtained good estimates of the Nagar approximations to
the moments (see Sargan [1978]). Finally, the response functions enable us to
answer questions such as “What is a large sample?”’, “How large is large?”
for a sample size close to the values for T considered in our study. That the
answer to these questions depends on the true parameter values (or what one might
think as being the true parameter values) should be obvious.

Vrije Universiteit, Amsterdam, and Katholieke Universiteit Nijmegen,
The Netherlands
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APPENDIX

We shall give the elements of the matrix E(P'P)=A as functions of the para-
meters of the model (3.1). Summation goes from =3 to T. Denoting the i, j th
element of the symmetric matrix 4 by a;;, we have

ag = (T-2)(1—pp?
a1, = E[Y (x¥—pxt ) (1—p)] = 0
a,3=0
a,4=0
8y, = E[3 (x¥ —pxi)?] = (T-2) [(A + p?)E(xF") — 2pE(xfxt. )]
a3 = E[ 2 a(x} — pxf 1) (x{% — px}%)]
= (T2, [(1+pM)E(x¥xi) — pE(xFxF*) — pE(xfxi)]
aze = E[Z (x¥ —pxi U111 =0
ay3 = Elo} T (x}% — pxf%)?)
= (T—2)03[(1 + pM)E(x}*") — 2pE(x¥*x14)]
ayq = Efoy 2 (X —pxiu, -1 =0

T—2)o?
aue = E[X ui]= g—l'_—)r
P
Next, we must express the second-order moment of x¥ and x** as functions
of the parameters 4, y and ¢2. Notice that x}* and x}** are generated by a second
and third order autoregressive process respectively with mean zero

- 1 = 1
X = = a—n e B = Ty =)
The variance of the AR(2) process x, is given by

- aa(1+94)
T+ (A —7A— P =R+ PAT IR — (A3

The first order autocovariance is

E(x¥)

o2(y+4) .
TF A —pA— 72~ 2+ PPA+ p A2 — (pA)3

The variance of x¥* is

E(x}xyy) =

o2

1
L—v1py~Yap2— 305
with y, =9+ 21

B(xt*) =
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Vs = — (A2 +291)
Y3 = 1%

W s AR Ya— V3
o = Tt (Y s s ]

= Vbt b= U3
S VR (RS

p3 = Y1pz + V2P + ¥
The first order autocovariance of x}¥* is
E(x*x¥%) = pE(x}*).

The cross-covariances are

E(x¥x¥*) = 1 12 + T4 M

whete By = 7 v e
Gt =2 + 720,
EGsrarn) = 2l + S

Finally notice that the matrix E(Z'X) for the control variates of the IV estimator
is obtained in a similar way.
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