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Using Monte Carlo experiments, we show how information criteria determine, in the
presence of GARCH errors, an optimal lag length in univariate time series and causality
tests. We illustrate the simulations by testing the presence of serial correlation in exchange
rates as well as Granger-causality between interest rates.

I. INTRODUCTION AND MOTIVATIONS

In empirical studies, it is usual to determine a parsimonious
representation for the dynamics of economic time series by using
information criteria.1 We can use them to test for serial
correlation or in the identification phase of ARMA models.
Information criteria can also be used to specify a suitable number
of  lags in  the  augmented  Dickey–Fuller  unit  root tests and
Engle–Granger cointegration tests or in the first step of Johansen
maximum likelihood procedure. In Granger causality tests, they
can be recommended (Hsiao, 1979) for avoiding arbitary lags
and spurious causality (or spurious absence of causality).

However, financial and (some) macroeconomic data,
especially high frequency data often have properties which could
affect estimation, inference and forecasting: autocorrelation,
non-normality, non-stationarity, non-linearity, heteroscedasticity
and often an autoregressive form in the conditional variance
(ARCH).

ARCH models, introduced by Engle (1982), allow us to take
into account time series with varying volatility where both large
and low movements are clustered. Generalizing the ARCH
process, Bollerslev (1986) introduced a moving average part in
the conditional variance (GARCH). Engle and Bollerslev (1986)
studied persistence in volatility, i.e. situations in which the sum
of volatility and moving average parameters equals one
(IGARCH). This last case often occurs with high-frequency data.
In this paper we use the term GARCH generically for ARCH,
GARCH or IGARCH processes. Many extensions for those

models2 can be found in the literature (EGARCH, ARCH-M,
TARCH), but we focus particularly on GARCH (1,1) models as
in the following AR(1)-GARCH(1,1):

yt = m + r yt-1 + u t (1)

E(Ut|F t-1) =  0 (2)

V(u t|F t-1) = ht = a 0 + a 1u
2
t-1 + b 1ht-1, (3)

where F t-1 is the information set available at time t-1, we call a 1
the volatility parameter and b 1 the moving average parameter.

As the conditional mean of the error process u t equals zero (and
thusu t is a weak white noise), serial correlation should not remain
if we estimate an AR(1) model for yt in Equation 1. Indeed,
because F t-k Ì F t-1 for k>0, we know that:

E(ut|F t-k)] = 0

and E(utut-k) = E[E(utut-k|F t-1)]

= E[u t-kE (u t|F t-1)]
= 0

However, ARCH errors can induce a kind of spurious serial
correlation (Diebold 1986):3 Box–Pierce or Box–Ljung tests are
too liberal and reject too often, at the nominal level, the null of
no autocorrelation when they are computed in the usual way.
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1 See for example Judge et al. (1985) for a textbook survey.
2 See for instance Bollerslev et al. (1992), Bera and Higgins (1993) for recent survey.
3 See also Gourieroux (1992).
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Therefore we could be tempted to use information criteria as they
are not based on a specific significance level.

Using some small Monte Carlo experiments, we show how the
most commonly used information criteria behave when a
non-constant conditional variance is introduced. The term
behaviour should be understood (as in Lütkepohl, 1992) in the
sense of maximizing the frequency of finding the lag length of
the true model we chose as DGP. The criteria analysed are among
the most popular ones in empirical studies: the Schwartz Baysian
criterion (SBC), the Hannan Quinn criterion (HQC) and the final
prediciton error (FPE). Note that only the first two are strongly
consistent (they determine the true model asymptotically), while
the FPE (like the AIC) overestimates the true model. We extend
the analysis and we test the null hypothesis of non-causality
between two stationary and independent processes. We then
illustrate the simulation results by analysing the hypothesis of
market efficiency in exchange rates as well as asymmetry among
EMS-related countries using interest rate data.

II. THE DATA GENERATING PROCESSES (DGP)

In the univariate case, the DGP is a mean stationary
autoregressive process of order one with GARCH(1,1) errors,
generated using the following equations:

yt =  0.03 + 0.6yt-1 + u t (4)

u t = e t(ht)
1/2 (5)

ht = a 0 + a 1u2
t-1 + b 1ht-1 (6)

where a 0 depends on the measureunit of yt, and can be arbitrarily
chosen4 (0.01 for instance) because yt is generated recursively as
a function of the constant. The parameters a 1 (the volatility
parameter of the GARCH) and b 1 (the MA one) take the
following pairs, including absence of ARCH, a simple ARCH
and five IGARCH processes. [0.0], [0.5,0], [0.5,0.50,
[0.75,0.25], [0.9,0.1], [0.1,0.9], [0.25,0.75]. Note that the last
two pairs give the more realistic empirical models. We have
chosen two types of conditional distributions e t: a normal one
(e t~N (0,1) and a more leptokurtic one (e t~t(5) i.e. a standardized
Student’s t with five degrees of freedom). Indeed, an excess of

kurtosis is often observed in financial data, a phenomenon which
cannot be fully explained by the conditional normal behaviour.5

We also test for causality in a system of two stationary and
independent variables, yt and xt. yt is generated according to
equation 4, and xt = 0.5 + 0.3 xt-1 + vt. vt follows a GARCH
process. We test for GRANGER non-causality from xt to yt (with
cov(ut, vt) =  0) when both variables follow a GARCH process.6

We assume that the magnitude of the parameters of the GARCH
are the same for xt and yt and that there is no common persistence
in conditional variances.

III. SIMULATION RESULTS

All the simulations were carried out by using the routine RAND
in GAUSS 3.14 with 3000 replications. The first 50 observations
were dropped to avoid initial–value problems.

Univariate results
Tables  1 and  2 give  for sample  sizes of 100  and  500,  the
frequencies of determining the lag length7 from 0 to 10 with the
three  information  criteria and  the different specifications  of
GARCH errors.

We would stress the following points:
1. In all situations (GARCH or not), we obtain the
well-known finite sample inequality for the frequencies of
finding the true model: SBC> HQC> FPE. Even when T
increases to 500, the inequality remains.
2. GARCH errors affect the frequency of finding the true
model, as they tend to choose a less parsimonious model. The
power of the augmented Dickey–Fuller test (as well as
Johansen tests for cointegration)8 and the interpretation of
some economic univariate time series results9 will be strongly
affected by adding spurious significant lags. In the same way.
Cochrane–Orcutt procedures are not recommended either.
These results underline the asymmetric effects of a 1 and b 1:
distortions grow, especially with the volatility parameter a 1,
but less with the MA part10 Thus the effect is negligible if
empirical results finding a small value for the volatility
parameter and a large value for the MA part of the GARCH
are confirmed.
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4 Obviously, a 0 has to be strictly greater than zero.
5 Remember that, even with a normal conditional distribution, GARCH already produces a leptokurtic marginal one.
6 This case is the less favourable one. Non-causality tests with GARCH erros on one of the two variables only can be found in Hecq (1993).
7 We are working in terms of non-rejecting the true null hypothesis (1-type 1 error) instead of rejecting the null (type 1 error). Only frequencies

from 0 to 5 and more are listred to save place.
8 See also Boswijk and Franses (1992).
9 For instance, the hypothesis of market efficiency, which assumes unit root in the price of an asset and no serial correlation in the growth rate

(random walk hypothesis).
10However, b 1 amplifies a high volatility parameter as can be seen when comparing GARCH(0.5,0) with GARCH(0.5.0.5) results.



3. Distortions do not vanish when sample size increases.

With a value of a 1 greater than 0.5, we note a decrease of the

frequency of finding the true model when T is greater than

100. Thus a large volatility parameter looks to affect

information criteria, which are thus no longer consistent. This

is due to the fact that GARCH processes, particularly because

of the moving average parameter, need time to spread out

(Hecq and Urbain, 1995). This illustrates why some

asymptotic analytical results are difficult to obtain for that

type of process, so simulation studies are helpful tools.

Table 1. Frequencies of finding an AR(1) process: normal conditional distribution

T  =  100 T  = 500

[ a 1,b 1] Crit. 0 lag 1 lag 2 lags 3 lags 4 lags ³ 5 0 lag 1 lag 2 lags 3 lags 4 lags ³ 5

[0,0] SBC
HQC
FPE

0.03
0.03
0

95.87
86.97
69.43

3.3
8.1

12.6

0.6
2.76
6.16

0.2
0.76
3.33

0.03
1.38
8.48

0
0
0

98.83
92.76
70.36

1.06
5.23

11.7

0.1
1.43
6.56

0
0.4
3.06

0
0.18
8.32

[0.5,0] SBC
HQC
FPE

0.33
0.26
0.1

88.53
77.46
60.13

9.3
15.03
18.4

1.53
4.56
8.87

0.2
1.43
4.53

0.1
1.52
7.97

0
0
0

91.13
78.7
53.26

7.26
14.43
20.33

1.4
4.86

10.5

0.2
1.43
6.03

0
0.58
9.88

[0.5,0.5] SBC
HQC
FPE

0.96
0.46
0.13

75.26
58.8
39.67

13.03
16.56
15.20

5.06
8.06

10.40

3.06
6.43
9.13

2.63
9.69

25.47

0
0
0

58.2
35.23
14.16

13.53
13.86

9.2

7.83
9.5
7.93

5.86
8.93
8.4

14.58
32.48
60.31

[0.25,0.75] SBC
HQC
FPE

0.1
0
0

85.16
70.7
47.83

8.7
12.8
14.13

3.26
6.23
8.83

1.63
4.06
7.4

1.15
6.21

21.81

0
0
0

74.36
50.26
21.33

10.06
11.53
10.16

5.1
8.26
8.4

3.6
5.93
6.73

6.88
24.02
53.38

[0.75,0.25] SBC
HQC
FPE

1.56
0.83
0.23

71.14
56.66
38.63

15.93
19.03
18.26

5.83
9.36

12.17

3.3
6.4
9.63

2.24
7.72

21.08

0.03
0
0

53.33
34.26
15.46

17.63
16.33
11.16

10.06
12.5
10.96

7.16
10.06
11

11.79
26.85
51.42

[0.1,0.9] SBC
HQC
FPE

0.03
0
0

92.1
80.4
60.63

5.66
10.73
13.23

1.56
3.96
7.5

0.46
2.0
4.86

0.19
2.91

13.78

0
0
0

92.13
76.13
42.86

4.93
9.93

10.83

1.56
5.1
8.53

0.66
3.16
6.4

0.72
5.68

31.38

[0.9,0.1] SBC
HQC
FPE

1.86
0.93
0.46

70.86
57.93
40.46

17.3
20.8
20.43

5.76
9.43

12.76

2.56
5.43
9.0

1.66
6.50

16.89

0
0
0

53.43
35.36
17.23

19.9
19.83
14.66

11.46
15.13
13.7

6.26
10.13
12.43

8.95
19.55
41.98

Table 2. Frequencies of finding an AR(1) process: Student’s t conditional distribution

T  =  100 T  = 500

[ a 1,b 1] Crit. 0 lag 1 lag 2 lags 3 lags 4 lags ³ 5 0 lag 1 lag 2 lags 3 lags 4 lags ³ 5l

[0,0] SBC
HQC
FPE

0
0
0

95.86
88.86
71.36

3.4
7.23

11.03

0.63
1.96
5.63

0.03
0.8
4.23

0.06
1.15
7.75

0
0
0

98.56
92.96
72.03

1.2
4.93

10.43

0.23
1.66
6.16

0
0.33
3.43

0
0.12
7.95

[0.5,0] SBC
HQC
FPE

0.8
0.4
0.26

87.53
76.33
59.16

10.3
16.53
19.73

1.06
4.1
7.7

0.16
1.4
4.76

0.15
1.24
8.39

0.03
0.03
0.03

86.1
73.13
51.1

11.4
18.83
21.96

2.06
5.9

11.46

0.3
1.33
5.46

0.1
0.11
9.99

[0.5,0.5] SBC
HQC
FPE

1.23
0.53
0.2

74.73
58.43
39.73

12.96
16.33
16.3

5.13
8.56
9.96

3.13
6.7
8.8

2.79
9.45

25.01

0
0
0

58.2
37
16.47

14.86
14.93

9.83

8.3
8
9.16

5.46
7.06
8.4

13.18
33.01
56.14

[0.25,0.75] SBC
HQC
FPE

0.13
0.06
0

83.8
67.16
45.36

9.3
13.16
14.26

3.06
6.93
8.03

1.56
4.3
7.26

2.15
8.39

25.09

0
0
0

68.53
44.85
20.2

12.3
13.16

8.76

5.93
7.86
7.86

3.6
6.43
7.03

9.64
27.72
56.15

[0.75,0.25] SBC
HQC
FPE

2.16
1.16
0.63

73.4
58.2
39.76

14.56
18.96
19.46

5.3
9.36

12.2

2.8
6.13
9.53

1.78
6.19

18.42

0.06
0
0

56.76
38.26
18.8

18.73
17.83
13.1

10.1
13.46
13.46

5.63
8.6

10.36

8.78
21.85
44.28

[0.1,0.9] SBC
HQC
FPE

0.03
0
0

91.87
79.5
57.73

5.56
9.63

12.66

1.36
4.43
7.13

0.56
2.4
5.8

0.62
4.04

16.68

0
0
0

87.36
68.16
36.7

7.5
12.06
10.8

1.96
6.03
8.33

1.36
3.96
6.2

1.82
9.79

37.97

[0.9,0.1] SBC
HQC
FPE

2.7
1.43
0.83

73.46
59.5
42.56

15.73
21.06
22.2

5.03
9.2

12.3

1.9
4.3
8.7

1.18
4.51

13.41

0
0
0

57.36
40.3
21.73

21.83
21.43
16.5

10.03
15.26
16.3

5.23
8.43

11.36

5.55
14.58
34.11
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4. In the presence of ARCH effects, the leptokurtic
conditional distribution affects the probability of finding the
right lag. In this situation, even a small volatility parameter
induces spurious augmentation.
5. In relative terms, the deterioration is less important when
using SBC rather than HQC and FPE, as can be seen for
instance with a formula of relative loss for choosing the right
autoregressive   process:   (frequency without GARCH –
frequency with GARCH)/ (frequency without ARCH). With
a 1 = b 1 = 0.5 and T = 100, the reductions of right
occurrence frequencies are respectively 21.49%, 32.39% and
42.86% for the SBC, HQC and FPE criteria with the normal
conditional distribution, and 22.04%, 34.24% and 44.32%
with the Student’s t conditional distribution.

Causality tests
We now check whether and how causality tests based on
information criteria reject the null of non-causality when two
independent variables are affected by GARCH. Table 3 gives the
frequency of rejecting the null of non-causality for the SBC.
Other criteria reject less often the true null of non-causality in
finite sample.11 In Table 3, AR i means that the lag i minimizes
the SBC criterion when searching an optimal causal relationship
from X to Y. For instance AR0 means that X is not anterior to Y.

The simulation results do  not  show evidence of spurious
Granger-causality even under the worst circumstances, i.e. with
large volatility parameters and T = 500. The Student’s t

conditional distribution (instead of the normal distribution) does
not change the previous results.

We have also tested (results are not reported here) the impact
of ARCH under the alternative hypothesis of causality. Only
when ARCH residuals are on the regressand (and of course on
both variables)  can  a  longer  causality  relation  be  observed.
Indeed, we observe more causal significant lags from xt to yt
when at least yt follows a GARCH process. However, the power
against the alternative hypothesis never decreases. Even with
volatile data, interpretations of economic relations are never
affected, but only the length of links between variables.

IV. EMPIRICAL EVIDENCE

We illustrate the two preceding properties on high frequency data
for exchange rates and interest rates.

Are exchange rates ‘random walks’
First, note that the expression ‘random walk’ is not correct in this
case because we hypothesize that exchange rates follow GARCH
error process, so it would be better to use the term martingale.
Assuming a unit root in the log of nominal exchange rates,12 we
test the market efficiency hypothesis by testing for serial
correlation in the growth rate of nominal exchange which
therefore must follow a difference martingale. Indeed, the
efficiency market hypothesis suggests  that it should not be
possible to predict a change in a bilateral exchange rate on the

Table 3. Y ¬ X when both yt and xtt follow a GARCH process (SBC criterion)

T = 500

e t ~  N(0,1)
AR 0 AR 2 AR 2 AR >=3 T =  50d

e t ~ t(5)
AR 0 AR 1 AR 2 AR >=3

[0,0] 98.5 1.47 0.03 0 [0,0] 98.97 0.93 0.03 0.67

[0.5,0] 98.3 1.40 0.27 0.03 [0.5,0] 98.3 1.23 0.23 0.24

[0.5,0.5] 97.37 1.47 0.33 0.83 [0.5,0.5] 97.20 1.20 0.57 1.03

[0.25,0.5] 97.47 1.8 0.37 0.37 [0.25,0.5] 97.63 1.47 0.40 0.50

[0.75,0.25] 97.13 1.5 0.5 0.87 [0.75,0.25] 97.10 1.2 0.67 1.03

[0.1,0.9] 97.63 2.07 0.13 0.17 [0.1,0.9] 98.10 1.43 0.37 0.10

[0.9,0.1] 96.97 1.6 0.43 1.00 [0.9,0.1] 96.73 1.47 0.57 1.23

Note: We regress by OLS yt on a constant, yt-1 and xt-1, i =  1...10. The regressions based on more than one lag of yt, as might be expected to avoid
spurious augmentations, have given the same results. We are not considering instantaneous Granger causality. However, simulations not reported
here have not reported spurious instantaneous relationships.

Table 4. Optimal lag length in exchange rate differentials (SBC)

US$ DM VPY CHF BEF FRF GBP ITL NLG ESP DKK PTE IEP GRD

/USD – 0 0 0 0 0 0 0 0 0 0 0 0 0

/DM 0 – 0 0 2 2 2 1 0 0 3 0 0 0

320 A. Hecq

11For instance, with no-ARCH on both yt and xt, and for a sample size of 100 observations. SBC rejects the null with a frequency of 98.5%,
HQC with 92.63% and FPE with 69.83%.

12See Hecq and Urbain (1993, 1995) for unit root tests in the presence of GARCH.



basis of previous and current known data. This may be tested by
running Equation 7 and testing for g 1` = ...g p =  0 or by getting
an order of lag equal zero:

(7)

where st is the log of the spot nominal exchange rate, D is the first
difference operator and p is the number of lags we try to
determine using information criteria.

Table 4 gives optimal lag length in the growth rates of the
bilateral nominal exchange rates either per dollars and per
deutschmark of the following currencies: US dollar (US$),
deutschmark (DM), Japan yen (YPJ), Swiss franc (CHF),
Belgian franc (BEF), pound sterling (GBP), Italian lira (ITL),
French franc (FRF), Irish pound (IEP), Greek drachma (GRD),
Portugese escudo (ESP), Danish kroner (DKK), Dutch guilder
(NLG), Spanish peseta (PTE). We use daily data, which come
from the National Bank of Belgium, for the time span 2 January
1991 to 13 April 1994, i.e. 891 observations. We took this period
because we wanted to study the speculative pressures affecting
the EMS from mid-1992 to mid-1993, pressures which led to the
adoption of enlarged margins (15% instead of 2.25%) and the

exit of Italy and the United Kingdom from the exchange rate
mechanism.

We can reject an absence of serial dependence for all the

currencies against the dollar, but five currencies against the
deutsch mark present  signs  of  serial  correlation.13 It seems
however, surprising that we can reject the efficient market

hypothesis for only some EMS related countries. Indeed,
arbitrageurs could not leave the market one or two days in these

positions without trying to make profit.
We attribute these differences to the GARCH representation

of the data. Indeed, if we estimate the GARCH parameters with
a Student’s t conditional distribution14 for the growth rate of

exchange rates, we see in Table 5 that currencies against the
deutschmark present a more leptokurtik conditional distribution
and especially a higher parameter of volatility (a 1) and are

integrated in variance. The common t statistics are in brackets.
Of course, there are some currencies for which we cannot reject

the null hypothesis even if the volatility parameter is relatively
high (see NLG/DM, PTE/DM, IEP/DM variables). Notice,

however, that our simulations underline a decrease in finding the
right lag and not an inability to find it.

D D D DS s s st t t p t p t= + + + + +- - -g g g g e0 1 1 2 2 …

Table 5. Estimation of GARCH model under the random walk hypothesis

Dependent

variable D st

constant g 0 a 0 a 1 b 1 v

DM/US$
YPY/US$
CHF/US$
BEF/US$
FRF/US$
GBP/US$
ITL/US$

NLG/US$
ESP/US$
DKK/US$
PTE/US$
IEP/US$

GRD/US$

2.95e-5    (0.11)
–4.05e-4  (–2.17)

1.05e-4    (0.37)
–1.49e-5  (–0.05)

3.33e-4    (1.38)
2.10e-5 (–0.09)
1.59e-4    (0.64)
4.67e-5    (0.19)
1.40e-4    (0.57)

–5.79e-5  (–0.23)
1.44e-4    (0.58)

–2.39e-5  (–0.09)
4.30e-4    (1.87)

1.85e-6 (1.51)
8.09e-7 (1.14)
9.75e-5 (3.98)
1.92e-6 (1.47)
8.69e-7 (0.97)
2.51r-7  (0.81)
2.32e-6 (1.90)
1.14e-6 (0.95)
2.87e-6 (1.99)
1.47e-6 (1.23)
1.43e-6 (1.50)
3.45e-6 (2.06)
1.55e-6 (1.26)

0.052  (2.82)
0.055  (3.15)
0.074  (1.92)
0.053  (2.82)
0.055  (3.40)
0.046  (3.56)
0.069  (3.21)
0.055  (2.87)
0.073  (3.31)
0.062  (3.54)
0.051  (3.06)
0.082  (3.09)
0.060  (3.19)

0.919 (29.16)
0.927 (40.24)

–0.391  (–1.24)
0.917 (27.77)
0.931 (43.11)
0.951 (66.63)
0.897 (28.34)
0.934 (38.00)
0.886 (25.27)
0.915 (34.89)
0.928 (37.27)
0.870 (21.43)
0.911 (29.60)

7.04    (3.99)
4.73    (6.24)
7.20    (3.88)
6.90    (3.99)
6.88    (3.88)
5.83    (4.22)
5.98    (5.35)
4.82    (4.31)
5.11    (4.94)
6.95    (4.18)
5.48    (4.64)
4.83    (6.48)
7.11    (3.76)

YPY/DM
CHF/DM
BEF/DM
FRF/DM
GBP/DM
ITL/DM
NLG/DM
ESP/DM
DKK/DM
PTE/DM
IEP/DM

GRG/DM

–2.42e-4  (–1.04)
7.74e-6    (0.08)

–3.17e-5  (–3.15)
–3.31e-5  (–1.22)

6.79e-5    (0.75)
1.31e-5    (0.29)

–5.68e-6  (–1.11)
7.77e-7    (0.01)

–1.19e-5  (–0.44)
1.43e-5    (0.20)
1.72e-5    (1.00)
3.14e-4    (7.20)

2.68e-6 (1.71)
9.33e-8 (1.65)
8.00e-9 (0.20)
1.27e-8 (1.82)
1.84e-7 (2.03)
6.24e-8 (1.83)
7.00e-9 (0.22)
1.33e-6 (3.08)
4.50e-9 (0.60)
5.78e-7 (1.82)
2.49e-8 (0.35)
3.53e-7 (2.10)

0.097  (3.31)
0.082  (3.03)
0.353  (4.16)
0.13 (4.59)
0.126  (4.32)
0.249  (3.98)
0.498  (3.29)
0.052  (3.24)
0.237  (4.69)
0.280  (3.97)
0.623  (3.11)
0.078  (2.23)

0.853 (19.37)
0.821 (15.30)
0.763 (23.30)
0.879 (39.89)
0.877 (36.56)
0.836 (35.08)
0.746 (19.05)
0.610 (12.75)
0.799 (29.40)
0.764 (20.41)
0.745 (29.16)
0.783 (8.99)

11.31 (3.95)
5.82    (6.83)
2.95    (8.89)
4.50    (6.79)
4.49    (7.69)
3.05    (9.89)
2.42 (16.14)
2.72 (10.02)
3.39    (9.38)
2.98 (11.04)
2.44 (13.42)
3.77    (7.93)
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13Standard errors from OLS regressions also give significant (even using HCSE) lags.
14Estimation carried out with a procedure written in RATS 4.10.



The difference between the per dollar and per deutschemark
bilateral exchange rate can also be seen in Fig. 1 and 2 in which
we draw FRF/US$ and FRF/DM exchange rates. It seems that
the FRF/US$ can be considered as a strong white noise while
FRF/DM clusters at some period and probably follows a
GARCH process (weak white noise).

Asymmetry in the EMS
While information criteria are not influenced by GARCH errors
they are very useful in testing for Granger-causality. We
illustrate this and test for an asymmetric functioning of the EMS,
which postulates, following Henry and Weidmann (1994), that
the German interest rate influences the rates in the other EMS
countries, without there being any influence in the opposite
direction. Thus asymmetry uni-directional causality running
from the German rate to the other rates.

The data also comes from the National Bank of Belgium
database. They consist of daily observations from April 1983 to
13 April 1994 on one month German, Dutch, French, Belgian,
British, Italian and Danish Eurorates. The choice of beginning
date reflects the date when the exchange rate mechanism entered

a  phase  in which more  emphasis  was  to  be laid on  policy
coordination after the preceding successive realignments. As
none of the pairwise data is cointegrated we can proceed to an
analysis of causality in first   difference   without loss   of
information.

Using information criteria we can easily undertake this
analysis. To test for non-causality we begin by choosing an
optimal autoregressive process for one variable. We keep this lag
fixed and we successively add lags of the second variable and try
to  minimize the  SBC  criteria.  Then  we carry out the same
operations in the opposite direction. Table 6 gives the final
results.

It can be seen that in neither case is the asymmetry hypothesis
accepted. The German eurorate Granger-causes the Dutch
interest rate only, but in this case the bidirectional causality
exists. The interest rate of Italy and the UK also Granger-causes
the German Eurorate. So we conclude that there is
non-asymmetric functioning of the EMS over the period studied.
However, if we believe the results are not affected by GARCH
errors, they are  probably sensitive  to  the  usual criticism of
causality tests. Indeed, we might suspect that the period is not

Fig. 1. Growth rate of French franc per US dollar exchange rate

Fig. 2. Growth rate of French franc per German mark exchange rate
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coherent enough and consequently that coefficients change over
time (a recursive analysis confirms our doubts), that we are
omitting important variables (such as US Eurorates), that the
daily data are too aggregated to observe the causality link which
takes place during the day, that Granger-causality means
anteriority and not necessarily causation15 The point, however,
is that results are not affected by GARCH errors.

V. CONCLUSION

In order to characterize the dynamic structure of economic data,
we can advocate the use of information criteria if we believe that
most GARCH time series are better characterized by a small
volatility parameter and a large MA one. In all small-sample
situations that we considered, the SBC should be preferred to
other criteria.

With large volatility parameters, we should be cautious in the
use of ADF unit root tests as well as in the augmented
Engle–Granger cointegration test (and in the determination of
the VAR for the Johansen’s ML procedure) and should try to
avoid too hasty an interpretation of univariate time series results.

When faced with a large volatility parameter, it may be better,
when testing for autocorrelation, to implement the correction
factor of the Box–Pierce test, as Diebold does.

We have seen that Granger non-causality tests information
criteria are not affected in small samples by GARCH. Spurious
causality is not found, even when the two variables follow a
GARCH process with a large volatility parameter. Thus
information criteria, and especially SBC, are very helpful in
empirical studies when testing causality between GARCH time
series: money–income causality (with interest rates and prices),
consumer–wholesale prices causality, movements of prices in
stock exchanges on different markets, or causality between
interest rates based on various maturities or in different countries.
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Table 6. Optimal bivariate lags (SBC)

NLG ¬ DM
0  ,  1

BEF ¬ DM
7  ,  0

FRF ¬ DM
7  , 0

GBP ¬ DM
2  , 0

ITL ¬ DM
5  ,  0

DKK ¬ DM
4  ,  0

DM ¬ NLG
3  ,  1

DM ¬ BEF
3  ,  0

DM ¬ FRF
3  , 0

DM ¬ GBP
3  , 4

DM ¬ ITL
3  ,  3

DM ¬ DKK
3  ,  0
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15This point is illustrated by the detection of a causal link from the Italian and British to the German Eurorate.


