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We introduce a new solution for Nash’s bargaining problem, called the lexicographic equal-loss solu- 

tion. This solution is a lexicographic extension of the equal-loss solution, which equalizes across agents 

the losses from the ideal point, to satisfy Pareto optimality. An axiomatic characterization is presented 

by using the following five axioms: Pareto optimality, anonymity, translation invariance, weak 

monotonicity, and independence of alternatives other than the ideal point. 
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1. Introduction 

Suppose a bundle of goods is to be divided or redivided between a number of 

agents. Among the many criteria according to which such a division might be 

chosen, consider the following pair of more or less complementary criteria: either 

the utility gains of agents relative to their utility levels of initial holdings are impor- 

tant, or their utility losses with respect to their maximally attainable utilities. 

One appropriate framework for studying problems like the division problem 

above, is axiomatic bargaining theory, which started with the seminal paper by Nash 

(1950).’ Solutions can be judged according to the gains or losses criteria. Typical 

examples of solutions for which the gains criterion is central, are the egalitarian and 

lexicographic egalitarian solutions (for formal definitions of these solutions, see the 

next section); for which either the gains or the losses criterion can be relevant-the 
Kalai-Smorodinsky (1975) solution. 

In this paper we propose and axiomatically characterize a solution for which the 

losses criterion is taken as a lead: the so-called lexicographic equal-loss solution. Ac- 

’ See Thomson (forthcoming) for an extensive review of the literature on axiomatic bargaining 

theory. 

0165-4896/91/$03,50 0 1991-Elsevier Science Publishers B.V. All rights reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6787154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


152 Y. Chun, H. Peters / Lexicographic equal-loss solution 

cording to this solution, an outcome in a bargaining problem is determined as 

follows. First, one takes the maximal feasible outcome in which the players suffer 

equal losses from their utility levels at the ideal point (each coordinate of which is 

the maximally attainable utility level of an agent guaranteeing to the others their in- 

itial utility levels). If this outcome is not (strongly) Pareto optimal, then a lex- 

icographic procedure is used to arrive at a Pareto optimal outcome. So the ideal 

point plays a central role; the disagreement point (e.g. the point representing the 

utility levels of initial holdings in a division problem) only matters insofar as it deter- 

mines the ideal point. The same idea is embodied in two of the axioms used to 

characterize the lexicographic equal-loss solution, namely weak monotonicity and 

independence of alternatives other than the idealpoint. The remaining three axioms 

in our characterization are Pareto optimality, anonymity, and translation in- 
variance. 

The axioms also show that the lexicographic equal-loss solution offers a com- 

promise between monotonicity and Pareto optimality. Recall that Lute and Raiffa 

(1957) have already shown that (strong) monotonicity is inconsistent with Pareto op- 

timality. 

The next section discusses definitions and axioms, and Section 3 contains the 

characterization result and its proof. Section 4 concludes. 

2. Preliminaries 

An n-person bargaining problem, or simply a problem, is a pair (S, d), where S 

is a subset of R” and d is a point in S, such that 

(1) S is convex and closed, 

(2) ai(S,d)~max{x;I~~(xl,...,x,)ES,x~d}~ exists for all i, 
(3) S is comprehensive, i.e. for all x E S and for all y E R”, if y 5 x, then y E S, 

(4) there exists XES with x>d. 
We denote by Z the class of all n-person problems. We interpret a problem 

(S, d) E Z as follows: the n agents can achieve any point of the feasible set S if they 

unanimously agree on it; otherwise, they end up at the disagreement point d. Points 

of S are called feasible outcomes. The coordinates of an XES may be the utility 

levels attained by the n agents through the choice of some joint action. Closedness 

of S is required for mathematical convenience; convexity stems from allowing lot- 

teries in an underlying bargaining situation. Property (2) is a boundedness condi- 

tion, and comprehensiveness may be justified by the assumption of free disposability 

of utility. Condition (4) is a nondegenerateness requirement, and may be interpreted 

as providing the agents .with an incentive to reach some agreement. 

A solution is a function F: .L+ R” such that for all (S, d) E Z, F(S, d) ES. 
F(S,d), the value taken by the solution F when applied to the problem (S,d), is 

’ Vector inequalities: given x,y~R”, xzy, x>y, x>y. 
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called the solution outcome of (S, d). Nash (1950) proposed to handle bargaining 

problems by looking for solutions satisfying appealing axioms, and we will adopt 

his approach here. 

In what follows, we will be interested in the following axioms. First, we introduce 

some notation. For (S,d)eZ’, let PO(S)= {xES~ for all X’E R”, x’>x implies 

x’$ S) be the set of Pareto optimal points of S. Similarly, let WPO(S) = {x E Sl for 

all X’E R”, x’>x implies x’$S} be the set of weakly Pareto optimal points of S. 

Pareto optimality (PO). For all (S, d) E Z, F(S, d) E PO(S). 

LetN={l,..., n> denote the set of agents, and let TC : N+ N be a permutation of N. 

For x=(x ,,..., x,)ER”, let r=(Q), . . ..X.(,,,), and for ScR”, let 

7&{rcXIXES~. 

Anonymity (AN). For all (S,d) EZ and all permutations rz of N,F(rtS, red) = 

TtF(S, d). 

Given SCR” and tER”, let S+t={x+tlxeS}. 

Translation invariance (TINV). For all (S, d) E 2 and for all t E R”, F(S + t, d + t) = 
F(S, d) + t. 

PO requires that the solution outcome should exhaust all gains from cooperation. 

AN requires that the names of the agents do not affect the solution outcome. TINV 

requires that the choice of zeros for utility functions does not matter in the deter- 

mination of the solution outcome. 

The following two axioms are less well known, but have been discussed before 

in the literature. For XE R” and i E N, let x-, be the (n - I)-dimensional vector ob- 

tained after deleting the ith component of x. Also, for (S,d) EZ, let Sd,-;= the 

closure of {xpi 1 x~S,xsa(S,d)}. 

Weak monotonicity (WMON). For all (S, d), (S’, d’) EZ, if S c S’, d= d’ and 

S&j’s;,,_; for all i, then F(S’, d’) zF(S, d). 

Independence of alternatives other than the ideal point (IAIP). For all (S,d), 

(S’, d’) ~2, if S 1 S’, a(S, d) = a(S’, d’) and F(S, d) E S’, then F(S’, d’) =F(S, d). 

WMON, introduced for two-person problems by Kalai and Smorodinsky (1975), re- 

quires that an expansion of the feasible set which does not affect the ideal point 

should not hurt any agent. However, a straightforward extension of this axiom may 

be incompatible with Pareto optimality for more than two-person bargaining pro- 

blems, as shown by Roth (1979). Our version of the axiom, introduced by Imai 

(1983), is a modification of the original axiom to be compatible with Pareto op- 
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timality. IAIP introduced by Roth (1977), requires that if the feasible set contracts 

and the disagreement point changes without affecting the ideal point, and the solu- 

tion outcome for the original problem is still feasible for the smaller problem, then 

the solution outcome for the smaller problem should be the same as that for the 

original problem. This requirement could be regarded as ‘dual’ to Nash’s (1950) in- 
dependence of irrelevant alternatives, which requires that if the feasible set contracts 

without affecting the disagreement point, and the solution outcome for the original 

problem is still feasible for the smaller problem, then the solution outcome for the 

smaller problem should be the same as that for the original problem. 

Now we introduce the lexicographic equal-loss solution. For this definition, and 

in what follows, we need an additional notation. For 0fMc N, we denote by eM 

the n-dimensional vector with ith coordinate 1 if ieA4 and 0 otherwise. 

Definition. Let >’ denote the lexicographic ordering on R”, i.e. x >‘y (x, y E R”) if 

there is an ie N with Xi>Y; and Xj=uj for all j< i. Let (Y: R” + R” be such that for 

each x E R” there is a permutation n of N with a(x) = X(X) and at(x) 5 CQ(X) 5 ...s 

a,,(x). Then the lexicographic maximin ordering >Im on R” is defined by x>lm 

y(x, y E R”) if a(x) >‘a( y). The lexicographic equal-loss solution L * : C+ R” assigns 

to each problem (S, d) E .Z the unique point of S in the following way: 

(1) let t=a(S,d) and S*=S-t, 
(2) find a maximal element x* of S* with respect to >Im, 

(3) L*(S,d)=x*+ t. 
(The equal-loss solution E * : .Z + R” assigns to each problem (S, d) E Z the maximal 

point x of S such that a;(& d) -x; = aj (S, d) - Xj for all i,j E N.) 

It can be shown that L * is well defined, in much the same way as this is done for 

the so-called lexicographic egalitarian solution.3 L* can be regarded as ‘dual’ to 

this solution, just as E* corresponds to the well-known egalitarian solution. The 

egalitarian solution and its lexicographic version have been studied extensively, 

whereas the equal-loss solution has been characterized very recently by Chun 

(1988).4 For two-person bargaining problems, E* satisfies Pareto optimality and 

consequently coincides with its lexicographic version. However, for more than two- 

person bargaining problems, E* suffers the following two limitations: it satisfies only 

weak Pareto optimality and, as pointed out by Thomson (forthcoming), it does not 
satisfy individual rationality.5 Here we propose its lexicographic version, which satis- 

fies Pareto optimality for all bargaining problems. Also we will discuss, in the con- 

3 If we set t =d in the above definition, then the resulting solution is the lexicographic egalitarian solu- 

tion. The egalitarian solution E : Z + R” assigns to each problem (S, d) E Z the maximal point x of S such 

that x,-d, =x, - dJ for all i, j E N. The egalitarian solution has been characterized by Kalai (1977). and 

its lexicographic version by Lensberg (1982), Chun (1989), and Chun and Peters (1988, 1989). 

4 E* is a variant of the family of solutions proposed by Yu (1973). Actually, Yu’s ‘solution’ is not a 

solution in our sense since it may result in multiple solution outcomes. 

5 Individual rationality: for all (S, d) E Z, F(S, d) 2 d. 
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eluding section, how the lexicographic equal-loss solution can be modified to satisfy 

both Pareto optimality and individual rationality. 

There is an interesting procedure to find L*(S,d) ((S,d) ~25). First, decrease the 

utilities of the n agents in N’=N equally from a(S,d), along a(S, d)- <ie,,,i 

(C’zO), until a boundary point is reached, say z’. If z’ EPO(S), then set z=z’. 

Otherwise, let N2 C N be the largest possible subset of agents whose utilities can be 

equally increased in a non-negative direction starting from z’, i.e. go along the 

direction z’ + c2eN* (c2>O). Let z2 be the maximal point in this direction and still 

in S; if z2ePO(S), then z=z2, otherwise we continue along the direction zz+ 

[‘eNi (c3 >O), where N3cN2 is the largest possible subset of agents for which an 

increase along z2 + c3e,,,x is still possible, etc. In this way we end up, after a finite 

number of steps, at a point z E PO(S). It is not hard to show that z = L *(S, d); one 

may adapt Lemma 3 in Imai (1983) to our context. This procedure to find L*(S, d) 
illustrates our expression lexicographic equal-loss solution. The equal-loss solution 
assigns to each problem (S, d) EC the point z’ above. 

3. Main result 

In this section we show that the lexicographic equal-loss solution, L*, is the uni- 

que solution satisfying the five axioms introduced above.6 

Theorem. The lexicographic equal-loss solution L * is the unique solution satisfying 
Pareto optirnality, anonymity, translation invariance, weak monotonicity, and in- 
dependence of alternatives other than the ideal point. 

It is straightforward to verify that L * satisfies PO, AN, and TINV. The fact that 

it satisfies IAIP and WMON is proved in the following lemmas. 

Lemma 1. The lexicographic equal-loss solution satisfies independence of alter- 
natives other than the ideal point. 

Proof. Let (S,d), (S’,d’)~z be two problems satisfying the hypotheses of IAIP. 

Also, let {z’] CS be the sequence as defined in the process of finding L*(S, d)=zr. 
Since zr~ S’, z’ szr for all t, and S’ is comprehensive, we have z’ E S’ for all t. Now 
we construct the sequence {?)cS to find L*(S’,d’). Since S’CS, a(S’,d’)= 
a(S, d), and z’ E S’ for all t, Z’ =zt for all t. Therefore, we conclude that L *(S’, d’) = 
zT= L*(S,d). 0 

’ Although we characterize the lexicographic equal-loss solution, whereas Imai (1983) characterizes 

the lexicographic version of the Kalai-Smorodinsky (1975) solution, some parts of our proofs are similar 

to those of Imai. 
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Lemma 2. The lexicographic equal-loss solution satisfies weak monotonicity. 

_- 
Proof. Let (S, d), (S, d) EZ be such that S G s, d = a and S, _i = &, _i for all i. Note 

that S, _i = sd, _; for all i implies that a(S, d) = a($ d). Since L * satisfies TINV, we 

may assume that a(S,d) =eN. The proof is done by the help of two claims, which 

require the following additional notation. For y E S, let N(S, y) G N be defined by 

N(S, y) = {i EN 1 y + [ec il E S for some [ > 0} . N(S, y) denotes the largest subset of 

players of N, whose utilities could be increased equally from y in S. Let [* be the 

minimal number such that for all [>[*, y + ce N(s,y) $ S. Finally, let z(S, y) = 

y + 5 *eN(S, v). 

Claim 1. For all y E S, if N(S, y) #PI, then N(S, y) = N($ y). 

Proof. Since S c s, it is clear that N(S, y) c N(S, y). We will show that N($ y) c 

N(S, y). Suppose, by way of contradiction, that there exists j E N(S, y)\ N(S, y). Let 

z=z(S,y) and ~=z($y). Clearly, ~52. NOW pick kEN(S,y). Since Sd,+=&; for 

all i, there exists XE S such that xpk=zpk. By the convexity of S, for all 1 E [O, I], 

2x+(1-l)z=x’ES. Since x_k=zk~y_k, z-k,y_k and zk>yk, there exists 

2 E (0, l] such that xi 2~. Since ~j>y, = z,, x;“>yj. Altogether, we obtain X; >yj, 

x’zy and XE S, which implies that jeN(S,y), a contradiction. 

Claim 2. Let T> 1 be the final step in finding L*(S,d). Also, let {z’] and {Z’} be 

the two sequences as defined in the process of finding L *(S, d) and L *(S, d) respec- 

tively. Then, for all t = 1,. . . , T- 1, zf = z’. 

Proof. First, we will consider the case when t = 1. Since S c s and a(S, d) = a($ d), 
it is clear that z1 5~‘. We need to show that Z’ 5~‘. Suppose, by way of contradic- 

tion, that there exists j E N such that Zj >z,!. Since Z’ and z’ are points with equal 

coordinates, it follows that Z’ >z’. Since T is the final step, z’ E WPO(S)\PO(S). 

Therefore, there exists XES such that XLZ’. Let keN be such that xk>z:. On the 

other hand, since S, ~1 = s, _; for all i, there exists y E S such that y-k = z!k. By the 

convexity of S, for all Ae[O,l], Ax+(l-A)y=yy”~S. Since x22’, xk>zL and 

y-k = s!, > z!, , there exists A E (0,l) such that y” >zl. This is a contradiction to 

z’ E WPO(S). 

The proofs for t = 2, . . . , T- 1 are analogous, using Claim 1, and thus are omitted. 

Finally, by combining the results of Claims 1 and 2, it follows that zT= 

L *(S, d) ~$2 L*(s, d). Therefore, L * satisfies WMON. 0 

For the proof of the theorem, we need some additional notation. Given 

(S, d) ~2, Int(S) is the interior of S. And given PER” and ZE R”, H(p,pz)= 

{x E R” 1 pxspz}. Here, juxtaposition of vectors denotes inner product. 

We will try to sketch the main idea behind the proof before diving into its 
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mathematics. The proof uses the procedure for finding L *(S, d) ((S, d) E 2’) described 

at the end of Section 2. Note that we need to figure out z’, . . . ,zT to obtain 

L*(S,d) = zT. First, by translation invariance, we may assume that the ideal point 

has all coordinates equal. The main step of the proof lies in the construction of se- 

quences of problems, whose solution outcome is z’ (t = 1, . . . , T). The first problem 

of the sequence is symmetric, whence its solution outcome is determined to be z’ 

by Pareto optimality and anonymity. In the induction argument, using weak 

monotonicity and independence of alternatives other than the ideal point, we obtain 

that the solution outcome for step t (t = 2, . . . , T) should be greater than or equal to 

the solution outcome for step I - 1, z’-‘. By Pareto optimality, we can conclude 

that it is equal to z’. 

_- 
Proof of theorem. Let F be a solution satisfying the five axioms. Also, let (S, d) E _Z -- 
be given. By TINV, we may assume that a(S,d) =eN. Let S= {xe s 1 x~a(S,d)} 
and d’~Int(S) be such that d,‘=d,f=l-6 for all i,j~N and a(S,d’)=e,. 

Equivalently, we may take, by TINV, d = 0 and a(S, d) = 6e,. Note that 6 > 0. Now 

let {z’}p=, and {N’}T=, be the sequences as defined in the process of finding 

L *(S, d). We will show that F(S, d) = z7. Then, by IAIP we have F(S, d) = zT, and 
-- -- 

by WMON, we have F(S, d) =zT= L*(S, d), which then concludes the proof. 

Now we construct auxiliary problems. Let M’=N\N’ and p’=eeM, for 

f= I,..., T (where M’ = 0 and p’ = 0). Define 

S’,‘=H(e,, C zf) n h H(p”,pkzk) 
( k=l 1 

fl (de,-R,“), for t= 1, . . . . T, 

S2,r,S’,tr)H(p’+‘,p’+tzf+‘), for t=l,...,T-1, 

S3,‘=H(e,, C z;)ns, for t= 1, . . . . T, and 

S4”=Si3’nS > for t= 1 , ..., T. 

Claim 1. z’ E SC’ and dE Int(S’.‘) for all r and t. 

Proof. By definition of p’, p’~‘=p’z”~ for all t = 1, . . . , T and for all s = 1, . . . , T- t. 

Also, note that by definition of the sequence {z’}, $5 zr+’ for all t = 1, . . . , T- 1. 

Now it follows immediately that Z/ES”’ for all r and t. Since d<z’ and S is com- 

prehensive, dE Int(S’.‘) for all r and t. This proves the claim. 

Claim 2. a(,~~‘, d) = de, for all r and 1. 

Proof. For all i E N, let y’ be such that y: = 6 and J$ = 0 for all j# i. Since 

a(S, d) = de, and S is comprehensive, yie S for all i. It is enough to show that all 

y”s belong to the half-spaces defined above. For t = 1, ply’=0 and trivially y’~ 

H(p’,p’z’) for all i. 
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Before we consider the case when t > 1, we first need to establish the following 

fact. Let m be such that m=n if T= 1 and m= lM21 otherwise. We will show that 

z’z(l/m)6e,. Since z’ E WPO(S), there exists PERT such that for all ZES, 

PZ~PZ’. Since yip S, py’spz’ for all i. Furthermore, if ieN’, z,’ + (elf) ES for 

some [ > 0, and consequently pi = 0, hence py’= 0. Therefore, 

Since jM21 5 m, p C y’s mpz’. Equivalently, (l/m)p C y’jpz’. Since C y’=Je,,,, 

p((l/m)de,,,) spz’. Using the fact that both (l/m)6eN and z’ are points with equal 

coordinates, we obtain (l/m)ae,s z’. 

Now we go back to the case when t > 1. Note that if T> 1, then m 5 IM’I for all 

t=2,..., T. Since (l/m)6e,~z’~z’, 

for all t=2,..., T. Therefore, y’~H(p’,p’z’) for all i and for all t = 2, . . . , T. 
Also, e,y’=6=e,((l/n)z y’)se,z’. Therefore, yieH(eN, Czf) for all i and t. 

Altogether, we obtain the desired conclusion. 

Claim 3. SJ;!T’ = S$!, and Sj;!T’ = S,$Li for all i = 1, . . . , n and for all t = 1, . . . , T- 1. 

Proof. It is clear that Sd;!f ’ 2 Sj;li for all i = 1, . . . , n and for all t = 1, . . . , T- 1. For 

the other inclusion relation, let iEN and WE Sd,!f’ be given. Then there exists 

XES’,‘+’ such that x-;=w. If eNxseNz’, then we are done. Otherwise, let y be 

such that y=x-(CXj- CzJ)e{;). By the comprehensiveness of S”‘+‘, _Y~S’~‘+‘. 

Since eN y= C zj = eNz’ and ypj 1X-i = w, w E S2Ai. Similarly, we can show that 

Sj;!f’ = Sj,‘!, for all i= 1, . . . , n and for all t = 1, . . . , T- 1. 

Claim 4. F(SG ‘, d) = z’ for all r. 

Proof. Note that S ‘9’ = H(e,, C q’) fl (aeN- R,“). Therefore, by PO and AN, 

F(S ‘, ’ ,d)=z’. By IAIP and Claim 2, F(S2*‘,d)=F(S3”,d)=F(S4”,d)=z1, as 
desired. 

Claim 5. F(S r,f, d) = z’ for all r and t. 

Proof. We use induction on t, based on Claim 4. Suppose, as an induction 

hypothesis, that the conclusion of Claim 5 holds for all t = 1, . . . , h - 1. Now we con- 

sider the case when t = h. We will use Claims 2 and 3 several times, without explicit 

mentioning. By WMON applied between (S2’hp1, d) and (S’9h, d), F(Slxh, d)? 
F(S2~h-1,&=zh~1. Therefore, by PO and AN, F(Slsh, d) =zh. By IAIP applied 

between (S , ‘,h d) and (S4’h, d), F(S4sh, d) = F(S13h, d) =zh. By WMON applied be- 
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tween (S3,h-‘,d) and (S3,h,d), F(S3,h,d)~F(S3,h~‘,d)=zh-1. Note that zeS32h 

and zzz hm1 implies that z~=z,!-~ for all iEMh. Then ptz=ptzh=pfzf for all 

I=1 , . . . . h and, consequently, ZE S4sh. Since F(S3,h,d)zzh-‘, F(S33h,d) E S43h. 

Therefore, by IAIP applied between (S 3,h, d) and (S 4,h, d), F(S 3*h, d) = F(S 4vh, d) = 

zh. Finally, by IAIP applied between (S15h, d) and (S2Yh, d), F(S22h, d) =.zh (this 

final step is not applicable when h = T). This completes the proof for Claim 5. 

Claim 6. F(S, d) = L *(S, d) c zT. 

Proof. From a proof similar to that of Claim 3, we can show that Sj;Ti=S,_; for 

all i. Therefore, by applying WMON between (S3’ ‘, d) and (S, d), F(S, d)z 

F(S 3, ‘, d) = zT, where the equality follows from Claim 5. Since zr~ PO(S), 

F(S,d)=z’, as desired. Q.E.D. 

4. Concluding remarks 

We have introduced and characterized the lexicographic equal-loss solution for 

n-person bargaining problems, using five axioms. Unfortunately, L *(S, d) does not 

satisfy individual rationality for more than two-person problems. One possible 

modification L* of L*, which satisfies individual rationality, can be defined in the 

following way. Given (S, d) E 2, let S be the comprehensive hull of the individually 

rational points of (S,d), i.e. the smallest comprehensive set containing 

{xESlx&-d}.Th en, take L*(S, d) = L *(S, d). It is not hard to verify that L* satisfies 

both Pareto optimality and individual rationality for all bargaining problems.’ 

However, its axiomatic characterization remains an open question. 

Another drawback of the solution L * may be that it is not independent of the von 

Neumann-Morgenstern utility representations chosen (if any); in other words, the 

solution involves an implicit utility comparison between the agents.’ 

In this paper we mentioned three other solutions, which are also not independent 

of utility representations, namely the egalitarian, the lexicographic egalitarian, and 

the equal-loss solutions. Table 1 summarizes the axiomatic properties of these solu- 

tions together with the lexicographic equal-loss solution, and indicates where their 

characterization results can be found. 

In our axioms, as well as in the definition of the lexicographic equal-loss solution, 

the disagreement point plays only a modest role. Hence it is not difficult-as was 

pointed out to us by a referee-to adapt the model for n-person social choice prob- 

lems with cardinal utility, i.e. to the present model without a disagreement point. 

’ We are grateful to Walter Bossert for pointing out our earlier mistake and suggesting this solution, 

s In fact, Roth (1977, 1979, p. 108) showed that a solution satisfying PO, AN and IAIP should in- 

volve interpersonal utility comparisons. 
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Table 1 

Axiomatic properties of four bargaining solutions (which are not independent of utility representations). 

Weak Pareto opfimality requires that the solution outcome be in the set of weakly Pareto optimal points 

of a feasible set. Continuity requires that a small change in the feasible set results in a small change in 

the solution outcome. The other axioms are discussed in the paper 

Egalitarian Lexicographic 

egalitarian 

Equal-loss Lexicographic 

equal-loss 

Weak Pareto optimality 

Pareto optimality 

Continuity 

Anonymity 

Translation invariance 

Weak monotonicity 

Independence of alternatives 

other than the ideal point 

Independence of irrelevant 

alternatives 

Characterization results 

yes 
no 

yes 

yes 

yes 

yes 

no 

yes 
yes 
no 

yes 

yes 

yes 

no 

yes 
no 

yes 

yes 

yes 

yes 

yes 
yes 
no 

yes 

yes 

yes 

yes yes 

no no 

Kalai (1977) Chun and Peters 

(1988) (see also 

Imai, 1983) 

Chun (1988) Current paper 

Instead of the ideal point a(S,d) one could take the global ideal point defined by 

a,(S) = sup{x; 1 x E S}. (Of course, a;(S) is assumed to be finite.) Further details are 

omitted. 

Acknowledgements 

Thanks are due to William Thomson, Walter Bossert, and an anonymous referee 

for a number of useful comments. 

References 

Y. Chun, The equal-loss principle for bargaining problems, Econom. Lett. 26 (1988) 103-106. 

Y. Chun, Lexicographic egalitarian solution and uncertainty in the disagreement point, Z. Op. Res. 33 

(I 989) 259-266. 

Y. Chun and H. Peters, The lexicographic egalitarian solution, Cahiers du C.E.R.O. 30 (1988) 149-156. 

Y. Chun and H. Peters, Lexicographic monotone path solutions, OR Spektrum 11 (1989) 43-47. 

H. Imai, Individual monotonicity and lexicographic maxmin solution, Econometrica 51 (1983) 389-401. 

Erratum, 51 (1983) 1603. 

E. Kalai, Proportional solutions to bargaining situations: interpersonal utility comparisons, 

Econometrica 45 (1977) 1623-1630. 

E. Kalai and M. Smorodinsky, Other solutions to Nash’s bargaining problem, Econometrica 43 (1975) 

513-518. 



Y. Chun, H. Peters / Lexicographic equal-loss solution 161 

T. Lensberg, The lexicographic maximin solution, Discussion Paper, Norwegian School of Economics 

and Business Administration, Bergen, Norway, 1982. 

R.D. Lute and H. Raiffa, Games and Decisions: Introduction and Critical Survey (Wiley, New York, 

1957). 

J.F. Nash, The bargaining problem, Econometrica 18 (1950) 1555162. 

A.E. Roth, Independence of irrelevant alternatives and solutions to Nash’s bargaining problem, J. 

Econom. Theory 16 (1977) 247-251. 

A.E. Roth, Axiomatic Models of Bargaining, Lecture Notes in Economics and Mathematical Systems 

No. 170 (Springer Verlag, Berlin-Heidelberg-New York, 1979). 

W. Thomson, Bargaining Theory: The Axiomatic Approach (Cambridge University Press, New York, 

forthcoming). 

P.L. Yu, A class of solutions for group decision problems, Management Sci. 19 (1973) 936-946. 


