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1 Introduction

Various firm characteristics seem to have predictive power for future stock returns.

Prominent candidate predictors are size, price ratios (book-to-market, price-earnings,

dividend yield), analyst earnings predictions and past returns.1 In addition returns

are related to industries and countries.2 Many of these effects are correlated and

sometimes interact.

The typical statistical procedure for documenting return predictability starts with

the construction of portfolios. Stocks are sorted according to a particular characteris-

tic and allocated to a small number of portfolios. If the average returns of the portfo-

lios are significantly different, the characteristic has predictive power. With multiple

characteristics the stocks are sorted along different dimensions. Well known two-

dimensional sorts are the 25 Fama-French portfolios, sorted with respect to five size

and five book-to-market categories3. Another example are country-industry portfo-

lios, see for example Cavaglia and Moroz (2002). With only one or two characteristics

this methodology is simple and has proven to be very powerful.

The number of portfolios grows, however, exponentially with the number of char-

acteristics. With ten different characteristics, and just two categories per charac-

teristic, we would already need at least 210 different portfolios. Adding a possible

industry effect multiplies the number of portfolios with another factor of about 20,

depending on the number of industries. When the number of explanatory variables

grows, the portfolio formation methodology is bound to become problematic, since

many portfolios will contain none or few stocks.

With multiple explanatory variables it becomes fruitful to look at data for indi-

vidual stocks. In this paper we construct a prediction model for stock returns. We

apply panel data analysis and use a sample of 1216 US stocks over a period of 17

years. Using the panel we aim at answering questions that can not be addressed with

the portfolio method.

1 The literature is so huge that it will be impossible to cite more than a few empirical studies.
Some book references are Bodie, Kane and Marcus (2002, ch 12, 13), Cochrane (2001, ch 20),
Haugen (1999, 2001, 2002), Campbell et al (1997). Empirical studies include Fama and French
(1992, 1996), Davis et al (2000), Jegadeesh and Titman (1993, 2001), DeBondt and Thaler (1985),
Lewellen (2002).

2 See Heston and Rouwenhorst (1994), Rouwenhorst and Heston (1995), Haugen and Baker
(1996), Moskowitz and Grinblatt (1999), Fama and French (1997), Cavaglia, Brightman and Aked
(2000), Lewellen (1999), Cohen and Polk (1998).

3 The returns of these portfolios are used in many empirical studies. A subsample of this literature
is Fama and French (1996), Hodrick and Zhang (2001), Campbell and Vuolteenaho (2002).
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We focus on model selection in a panel data framework that involves a number of

issues.

The first issue that we are interested in is the amount of cross sectional hetero-

geneity in average stock returns. How much of the cross sectional variation in returns

is explained by the characteristics and industry effects and how much cross sectional

variation remains? This requires testing for individual effects. Important hetero-

geneity on the level of individual firms could be interpreted as missing predictive

variables.

The second issue is the effect of industries. Practitioners often consider indus-

tries to be the first level of diversification. We investigate the alleged importance of

industries by testing for industry specific effects. More important, we test whether

the parameters of the characteristics are identical in all industries. Can industries be

pooled or do we need a separate model for each industry?

A third issue concerns the most effective way to construct portfolios with a large

dispersion in average returns. From the panel study we obtain expected returns for

each stock in every time period. Sorting directly on expected returns we can compare

the typical characteristics of portfolios with high and low average returns.

Panel data models for individual stock returns are scarce. Cavaglia and Moroz

(2002) apply a panel to study the stock allocation across countries and industries.

They use panel data at the industry level and do not include individual company

effects in their model specifications. Other examples are discussed in Haugen and

Baker (1996), Grinold and Kahn (1999) and Brennan et al (1998). All empirical

studies with individual firms rely on the estimator of Fama and MacBeth (1973),

which estimates the structural parameters cross sectionally for every time period.

Such methods have difficulty with typical panel features like individual effects that

are firm specific rather than time specific.

There are good reasons why the analysis of portfolio returns has been much more

popular than working with panels of individual stock returns. First of all, panels

of individual data are inherently unbalanced, since companies come, merge and go.

In addition, well diversified portfolios are less noisy than individual firm data. The

explanatory variables for individual firms are sometimes even more noisy than the

returns. Especially financial ratios like earnings-to-price contain huge (negative) out-

liers that can be influential. Portfolio formation strategies are usually robust against

outliers in the explanatory variables. For example, all firms with negative earnings

will end up in the same portfolio, and the exact value of the price-earnings ratio will
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not matter. In a regression analysis all outliers in the explanatory variables must be

closely inspected prior to running any regressions.

Most challenging for statistical testing in panels of individual stocks are the con-

temporaneous covariances among the errors. Even after including time effects much

cross correlation remains. Estimating a full cross sectional covariance matrix will be

infeasible given the large number of individual stocks. To get around this problem

many studies have used the Fama and MacBeth (1973) estimator. This estimator

will not be feasible, however, when firm specific individual effects are introduced. On

the other hand, pooled OLS with individual effects and time effects will be consistent

in most cases. For the standard errors we rely on the spatially consistent estimator

of the standard errors proposed by Driscoll and Kraay (1998). A limitation of our

study is an assumption on the linearity of the interaction between expected return

and characteristics.

An econometric problem that arises in model selection tests is that with individual

fixed effects the number of parameters increases with the number of firms N , while

with fixed time effects the number of parameters is of order T . When both N and T

are large, as in a panel of stocks returns, standard asymptotic tests for inclusion of

either individual or time effects become unreliable. We decide on inclusion of these

effects using the Schwartz information criterion. As shown by Bai and Ng (2002)

model selection criteria are consistent with the appropriate choice of the penalty

function provided that the cross sectional correlations are not too strong. To evaluate

the robustness of the explanatory variables we compare parameter estimates of the

characteristics under various assumptions about the panel structure of the errors.

In the empirical analysis we consider a set of predictive variables that have been

widely used in previous studies. The predictive variables are size, various valuation

ratios and alternative momentum indicators. We find that in a pooled panel model

only few variables have any predictive power. But when firm characteristics and

industry dummies are allowed to interact results improve considerably. When we

construct portfolios based on expected returns, we find that good and bad portfolios

have very distinctive characteristics. Optimal portfolios are not in the extremes on

one particular predictive variable, but score well on many attributes. Increasing the

forecasting horizon sharply decreases the portfolio turnover and does not deteriorate

returns. After correcting for the standard four risk factors (market, size, value, mo-

mentum), significant outperformance remains. Moreover, optimal portfolios are very

stable over time. Only about five percent of the top 30% highest expected return
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stocks differ from month to month. Finally, the results appear robust to alternative

estimation procedures.

The remainder of the paper is organized as follows. Section 2 discusses the spec-

ification of the panel model, the model selection criterion and hypothesis testing.

Section 3 describes the data and how the raw data are transformed to regressors in

the panel model. Section 4 presents the empirical results. Section 5 considers the

implications for portfolios that are constructed by sorting stocks on expected returns.

Section 6 concludes.

2 Methods

2.1 Specification

Our interest is in predicting returns yit of individual stocks using a K-vector of firm

characteristics xit, known at the beginning of period t, and L industry dummies Di�

that indicate in which industry firm i is active. Return data are observed for T

months. The most general model we consider is a two-way error component model

with industry specific parameters,

yit = µi +
L∑

�=1

Di� (x′
itβ� + λ�t) + eit, (1)

where µi is a stock specific effect, β� is a K-vector of coefficients for industry �, λ�t is

a time effect for industry � in period t, and eit is an error term. The errors have mean

zero and are assumed to be uncorrelated with the regressors, i.e. E[xjteit] = 0. In

each period complete data for returns and characteristics are observed for Nt firms.

The total number of data points is n =
∑

Nt. Not all parameters in the general

model are identified. For example, with individual effects µi included, the industry

specific time effects λ�t must be normalized in some way. In the general model we

have a panel model for each industry. Pooling restrictions on either λ�t or β� lead to

predictability across industries.

The purpose of the model is to forecast stock returns based on their characteristics.

The time effects λ�t will be fully unrestricted fixed effects. Since at the beginning of

period t we can not predict λ�t, absolute forecasts can not be made with this model.

Instead, the model is designed for making relative forecasts. With industry specific

time effects λ�t it can predict which firm in a particular industry will have the higher
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return in the next month compared to all other firms in that industry. When the time

effect is common to all firms (λ�t = λt), the model will predict the relative returns of

all stocks.

It is important to understand the differences between the panel specification and

the portfolio formation strategies. Much of the empirical literature follows a non-

parametric approach by sorting stocks in different portfolios. Each of the K charac-

teristics would be classified in N categories. Adding the L different Industries would

lead to LNK portfolios and as many parameters. Clearly, this full generality is infea-

sible if the potential number of characteristics K is more than 2 or 3, since we would

quickly exhaust all degrees of freedom. In this paper we will include K = 9 charac-

teristics and L = 22 industries. With the typical choice of N = 5 different classes per

characteristic we would need more than 40 million parameters, many more than we

have observations.

The following example with a double sort on size and value illustrates the relation

between the panel (1) and the portfolio construction method. Size is measured as

the market capitalization of a firm and value as some accounting ratio like earnings-

to-price. Suppose there are N classes for size and value. Define the dummy variables

Dijkt =

1 if firm i belongs to portfolio (j, k) in period t,

0 otherwise,
(2)

where portfolio (j, k) includes all stocks that belong to the jth size class and to the

kth value class. Classes are defined by breakpoints S̃1t < . . . < S̃N−1,t for size and an

analogous set of breakpoints Ṽkt for value. A typical choice for the breakpoints are

the 1/N th quantiles of the cross sectional distribution of each characteristic. Average

returns are estimated in the ”panel”

yit =
N∑

j=1

N∑
k=1

βjkDijkt + εit, (3)

which has N2 parameters. The panel model (1) imposes two restrictions on (3). The

first is the separability restriction βjk = βSj + βV k. This reduces the number of

parameters to 2N − 1 and leads to the model4

yit =
N∑

j=1

βSjD
S
ijt +

N∑
k=1

βV kD
V
ikt + εit, (4)

4 The number of parameters is 2N − 1, since both sets of dummies add to one, thus creating a
singularity in the set of explanatory variables.
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where DS
ijt =

∑
k Dijkt and DV

ikt =
∑

j Dijkt.

Second, the step functions in (4) are replaced by a monotone linear approximation.

For size the approximation is∑
j

βSjD
S
ijt ≈ β0S + βS

(
Sit/S̄t

)
, (5)

with Sit the market capitalization of firm i at the beginning of period t and S̄t the

cross sectional average. The effect is defined in terms of the scaled variable Sit/S̄t to

be consistent with the quantile breakpoints S̃jt that are typically used in the portfolio

construction methods. The analogous approximation for the value characteristic is∑
k

βV jD
S
ikt ≈ β0V + βV

(
Vit − V̄t

)
. (6)

The value ratio Vit is expressed in deviation of the cross sectional average.5 In line

with the cross sectional nature of the model we subtracted the cross sectional average.

With the approximation the number of parameters is reduced to three: βS, βV and

the intercept β0S + β0V .

The assumptions for separability and linearity enable the introduction of a larger

number of explanatory variables. Most of the characteristics in xit are valuation ratios

that are the result of the transformation (6). Apart from size and value the third

type of characteristic is momentum. Momentum variables are functions of lagged

returns yit. Portfolio sorting procedures often use a formation period of three to six

months. In the panel this corresponds to explanatory variables that are defined as

the cumulative returns over three or six months in deviation of the cross sectional

average.

Instead of a fixed intercept the actual panel model (1) includes time effects λ�t,

which can possibly be pooled across industries (λ�t = λt).
6 Estimating the panel

with time effects implies that all variables are automatically taken in deviation of

their cross sectional mean. With a variable like earnings-to-price this implies that

we only consider the cross sectional effect whether firms with higher earnings tend to

generate higher returns compared to other firms. A possible effect of a historically

5 Other transformations are of course possible. For example, a closely related alternative for size
is the transformation lnSit − ln S̄t. For value we could also further normalise by the cross sectional
standard deviation of Vit. This would lead to different results when the cross sectional distribution
of a ratio like earnings-to-price fluctuates a lot over time.

6 Still an intercept may be estimated by imposing the identification condition that the average
time effect is zero.
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low earnings-to-price ratio on the market (industry) wide level of stocks returns is

captured by the time effect λt (λ�t), but is not taken into account for predicting.

Time effects also take out a large common noise component from the returns, and

thus reduce the cross-sectional correlation of the errors, which in turn will enhance

estimation efficiency.

The only interaction effects that we examine are between the industries and the

characteristics. For this reason the slope parameters β� in (1) depend on the industry.

This enables tests of hypotheses on the interaction between industries and firm char-

acteristics. For example, Moskowitz and Grinblatt (1999) find that the momentum

effect is in essence an industry effect. Their empirical results imply that momentum

does not help predict the relative returns of individual firms, but rather the relative

performance of an entire industry. Momentum should disappear once we correct for

industry wide effects. If their hypothesis is correct, and we estimate the panel with

industry specific time effects, we should expect that momentum variables are not

significant. For if they are, we would be able to predict the relative returns within

the same industry and thus have individual momentum.

The final element in the specification of (1) are the individual effects µi. These are

only introduced as a diagnostic, as one would hope that they can be omitted. With

individual effects in the model the relative return of stocks i and j depends on the

difference µi − µj. In searching for stocks with high expected returns, we would then

need to take into account the estimates of µi. These are likely to be poorly estimated,

as information on them can only come from the time series dimension of the data.

Firms without a long history will have especially poorly determined individual effects.

Furthermore, individual firm returns are very noisy — that is exactly what motivates

portfolio formation — and the forecasting performance of the model will be negatively

affected by the noisy estimates of µi. On the other hand, the cross sectional variation

in µi does tell us a lot about the unmodelled systematic cross-sectional variation in

the data, and thus about the goodness of fit. When the individual effects µi turn out

to be significant, much of the cross sectional variation in expected returns remains

unexplained.

The effect of some explanatory variables is related to the individual effects. Taking

again the example of momentum, a function of the lagged dependent variable, it is

easy to mistakenly conclude that momentum is significant when instead an individual

effect should have been included. As a diagnostic of omitted individual effects we

therefore compare the estimates of β� in models with and without individual effects.
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The importance of the individual effects depends on the cross sectional variation of

average returns. Jegadeesh and Titman (2002) argue that this cross sectional variation

is small and negligible relative to the potential gains of a momentum trading strategy.

Because of the possible interaction between the individual effects and the explanatory

variables, we will treat the µi as fixed effects and not as random effects. From the

panel data literature it is known that random effects estimation is inconsistent if µi

and xit are correlated.

So far we have not been explicit about the horizon of the returns yit. The empirical

literature on predicting stock returns usually considers holding periods of varying

lengths. For example, in testing momentum strategies, the usual holding period

ranges from one to six months. Sorting on Book-to-Market often takes place once a

year, and the resulting portfolios are held for one year. In the panel regressions the

holding period will therefore be an important choice. If we wish to test prediction over

a horizon of M months, we construct yit as the cumulative return over M months.

Though the explanatory variables xit remain the same, different values of M give rise

to different dependent variables. Obviously, parameter estimates, model selection,

and predictive power will depend on M . For example, Book-to-Market may be an

important predictive variable for medium length periods like six months, but have no

explanatory power for one-month returns. When returns are measured over a horizon

longer than the sampling interval, e.g. three-months returns with monthly data, the

panel regression uses overlapping data and we must take the resulting autocorrelation

in account. Details about estimation and inference are discussed in the following

subsection.

2.2 Estimation and Testing

Estimation and testing are affected by a number of issues that are typical for panels

with stocks returns. First, the panel is inherently unbalanced since stocks come,

merge and go. Second, both N and T are large. In our application the cross sectional

dimension Nt ranges between 600 and 1100 companies, whereas T = 200 months.

Third, the errors eit are likely to be strongly cross sectionally correlated even after

including the time effects λ�t. Because of the large cross sectional dimension, it will

be infeasible, however, to estimate the cross sectional error covariance matrix. As a

consequence we can not derive an optimal efficient estimator and we must be careful

in estimating the parameter standard errors.
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Instead of the infeasible optimal GMM estimator we estimate the parameters by

OLS. The time effects cause the characteristics to be in deviation of the cross sectional

average, either the full cross section of all Nt stocks, or an industry specific average

when λ�t = λt. In addition, when individual effects are also included, the estimator

for β corrects for both the cross sectional as well as the time series average of yit and

xit. The computational details of the data transformations in an unbalanced panel

with two-way effects can be found in Baltagi (2001, ch 9) and Wansbeek and Kapteyn

(1989). Estimators of fixed effects in unbalanced panels are derived in the Appendix.

Other panel studies, for example Haugen and Baker (1996) and Brennan, Chor-

dia and Subrahmanyam (1998), estimate the parameters by the Fama and MacBeth

(1973) procedure. The estimator is defined as the time series average of a series of T

cross sectional regressions, ignoring the individual effects,

b̂FM =
1

T

∑
t

b̂t (7)

b̂t = (X ′
tQtXt)

−1
X ′

tQtyt, (8)

where yt is the Nt-vector containing the returns in period t, Xt is an (Nt×KL) matrix

containing the explanatory variables, b the KL-dimensional vector of parameters

containing β�, (� = 1, . . . , L) and

Qt = I − Jt(J
′
tJt)

−1Jt (9)

is an (Nt × Nt) matrix that eliminates the time effects in which Jt is the (Nt × L)

matrix of industry dummies Di� for the stocks that are in the panel at time t. For

comparison, the standard OLS estimator for b in a model without individual effects

is a matrix weighted average of the Fama-MacBeth cross-sectional b̂t,

b̂OLS =

(∑
t

X ′
tQtXt

)−1 ∑
t

X ′
tQtXtb̂t, (10)

The OLS estimator gives equal weight to each data point instead of equal weight to

each time period. This means that periods with much cross sectional dispersion in

characteristics will be more influential. Likewise, months with larger cross sections

will be more influential for estimating b. Since the number of stocks in the panel

has grown over time, the more recent periods have a relatively large weight in the

estimator compared to the Fama-MacBeth estimator. Without individual effects

both estimators are consistent, but not necessarily efficient. In a two-way panel with
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individual effects the Fama-MacBeth estimator suffers from omitted variables bias if

individual effects are correlated with the explanatory variables.

Another variation of the least squares estimator is weighted least squares in which

time periods are weighted by their residual variance. If σ̂2
t is the residual variance,

σ̂2
t =

1

Nt

ê′têt, (11)

with êt the residuals from the OLS estimator, then the WLS estimator is defined as

b̂WLS =

(∑
t

1

σ̂2
t

X ′
tQtXt

)−1 (∑
t

1

σ̂2
t

X ′
tQtyt

)
, (12)

We check the robustness of our estimation results by applying WLS and Fama-

Macbeth methods to estimate the panel models, and comparing these results with

the OLS results.

A further complication are the lagged returns among the predictive variables. It

is well-known that lagged dependent variables cause biases in a dynamic panel data

model. The bias arises from the elimination of the individual effects by subtracting

the time series average of each stock. The bias disappears when T is large, as we

assume, or if the individual effects µi are absent.

Prior to inference on the predictive characteristics xit we must decide on the inclu-

sion of individual effects and (industry specific) time effects. The number of individual

and time effects grows as N or T becomes large. This implies that restrictions im-

posed on the individual or time effects cannot be tested reliably with standard test

statistics. For model selection we therefore use the Schwartz information criterion

(SC ), defined as

SC = ln s2 +
k

n
ln n, (13)

where s2 is the residual sum of squares of the estimated model, n is the total number

of observations in the panel and k is the total number of parameters including all

individual and time effects.7 In the application we have more than 1100 firms and 200

7 It is unknown however whether SC is a consistent model selection criterion in this panel. Bai
and Ng (2002) provide some theoretical guidance on this question. Like us they consider a panel
with large N and T . Their assumptions on the error terms are also appropriate for our panel. Most
critical is the bound on the cross sectional covariance stating that the sum over all E[eitejt] is at
most of order N . They consider a factor model for which the number of parameters is of order
M(T + N) with M denoting the number of unobserved factors. Their interest is in estimating M .
In our model the number of parameters is of order N + LT and our interest is in whether we can
exclude N of them that represent individual firm effects. A further interest is in whether we can
exclude (L − 1)T parameters that represent industry specific time effects.
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months of data. Allowing for missing values about 90,000 data points are available.

With these values of N , T and n, and K fixed and small, the SC criterion will select

a model with individual effects if the residual sum of squares is reduced by 14%. For

comparison, the classical F-test will already be significant at the 1% level if the sum of

squared residuals falls by less than 1%. The critical value of the F-test is misleading

though, since the errors in (1) are very likely cross sectionally correlated, even after

allowing for time effects λ�t. The Schwartz criterion will be more conservative than

the F-test.

The main interest is in the parameters β�, which determine the predictability of

returns. The number of elements in β� does not change if N or T grows. Hypotheses

on these slope parameters are tested using a Wald test. Since the errors exhibit

cross sectional correlation, we use a robust estimator of the covariance matrix of β̂�

proposed by Driscoll and Kraay (1998) that only relies on large T . For the asymptotic

variance we can not estimate the cross sectional error covariance matrix and must

therefore rely on a time series estimator. As in Driscoll and Kraaij (1998) we use that

Var(
√

T (b̂ − b0)) = B−1SB−1, (14)

where B = plim 1
T

∑
t X

′
tQtXt,

S = NE

[
M∑

s=−M

ht−sh
′
t

]
, (15)

in which the time series of KL-vectors ht are defined as

ht =
1√
Nt

Z ′
tQtet, (16)

and N is the average cross sectional sample size. We estimate S using the Newey-West

weights on the autocorrelations,

Ŝ =
N

T

M∑
s=−M

(
1 − |s|

M + 1

) ∑
t

ĥt−sĥ
′
t, (17)

where ĥt uses the estimated residuals êt. Both the estimator b̂ and the covariance ma-

trix estimator is straightforwardly modified for when some elements in b are pooled,

or when individual effects are included. For the WLS estimator we divide yt and

Xt everywhere by σ̂t. In the absence of autocorrelation in the errors the estimator

reduces to just the term with s = 0 in (17).
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As additional evidence on the importance of individual effects we consider their

cross sectional distribution and the cross sectional distribution of the t-statistics for

each effect µi. Although we can estimate the individual t-statistics for µ̂i , we can

not estimate the N ×N covariance matrix of all individual effects to perform a Wald

test.

3 Data

The data set that we use is the US MSCI data universe. It covers the investable

universe for most institutional investors since it contains relatively few small stocks.

Because of this the size effect might not appear in the data. MSCI data are widely

used in both academics (see for example Rouwenhorst (1998)) and in the investment

profession. For firms followed by MSCI we also observe most characteristics, which

implies that there are only few missing data. To be included in the MSCI data

universe, firms must either be part of the MSCI index or must be actively followed by

MSCI. The MSCI index covers about 70% of the stock market capitalization. With

the additional followed firms we have a fairly complete picture of the US market

capitalization. The sample period ranges from November 1984 until June 2002. The

raw data set covers 1216 large companies. Each of the companies belongs to a specific

industry. The total number of industries is 22.

Figure 1 shows the return from equally weighted and value weighted portfolios

including all stocks from the data set. For comparison we plot the Fama-French value

weighted index. The two series differ at only a few data points. Thus the MSCI data

universe seems to be representative for the US market.

The number of company characteristics (regressors) used to predict stock returns

varies a lot in different empirical studies. We have chosen nine regressors that have

been common in the literature for ten years or more, have proved to contribute to

the prediction of stock returns and capture different characteristics of the company.

The nine explanatory variables fall into three groups:

Size: Size (MV ) is measured as the relative market value of firm i as a percentage

of all companies in the panel at time t.

Valuation ratios: We include the ratios book-to-price (BP), earnings-to-price (EP),

dividends-to-price (DP), cash flow-to-price (CP) and sales-to-price (SP). These

ratios capture the well known value effect.
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Momentum: We introduce two groups of momentum variables. Price momentum

includes the cumulative returns of the last 12 months (RET12 ) and over the

last six months (RET6 ). Earnings momentum (analysts earnings revisions) is

denoted as CFY1 and captures the expectation revisions of financial analysts

about next year’s earnings of the stock. It is computed as the number of positive

revisions minus the number of negative revisions, divided by the total number

of revisions. The original source of the data is I/B/E/S.

Examples of each of the variables in the empirical literature are Fama and French

(1992), Rosenberg, Reid and Lanstein (1985), Lakonishok, Shleifer and Vishny (1994),

and Daniel and Titman (1997) for MV, BP, EP and CP, while momentum variables

are used in Rouwenhorst (1998), and Jegadeesh and Titman (1993). Frankel and Lee

(1998) focus on earnings momentum using I/B/E/S data. Chan et al (1996) discuss

earnings momentum and price momentum using I/B/E/S data as well. Cochrane

(2001) discusses the use of price ratios like SP and DP for prediction of stock returns.

Chang et al (2002) find that an investment strategy based on CFY1 yields positive

abnormal returns in emerging markets, and negative abnormal returns in developed

markets. Peterson and Peterson (1995) claim that near-term forecast revisions are

significantly related to stock returns at the time of recommendation.

Fama and French (1997) focus on the industry costs of equity. A number of studies

focus on the interaction between firm characteristics and industries and on the impact

of this relation on cross-sectional stock return volatility. Dempsey et al (1993) find a

significant relation between industry and dividend payout and thus between industry

and DP. Moskowitz and Grinblatt (1999) claim that industry momentum strategies

outperform momentum investment strategies after controlling for firm characteris-

tics. Nijman et al (2002) discuss whether industries drive the momentum in Europe.

Finally, Fama and French (1992) study the interaction between firm characteristics.

The number of companies per industry in the data set are reported in table 1.

Some industries8 only contain a few firms, indicating that we should be careful in

defining industry specific parameters for these industries. Panel A of table 2 reports

descriptive statistics of the data set. For the econometric analysis we delete all data

points that contain either incomplete or missing data. This leads to a data set that

contains 1165 companies and 95,136 data points which amounts to 36.3% of the

8 These industries are Power Producers, Data Processing and Computer Service. The low number
of firms in the last two industries can be explained with the high number of firms in the industry
Technology Hardware.
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number of data points for a complete panel, and to 90.2% of the number of data

points for which the monthly return (RET ) is observed.9

Descriptive statistics of the complete data are reported in panel B of table 2.

Some characteristics like the valuation ratios have outliers. The outliers are milder

compared to the ones in Panel A due to the deletion of incomplete data points. After

inspection of the worst outliers we concluded that the outliers are real and not due to

systematic deficiencies of the data or the companies. Since outliers in the valuation

ratios have a strong influence on the regression results, we trimmed all outliers to the

lower and upper 1% tail of the distribution.

As a preliminary test for predictability of the individual characteristics we form

portfolios that are sorted on a single characteristic. Table 3 reports summary statistics

for portfolios formed on each of the characteristics separately. At the beginning of

each period we form a long and a short portfolio. For the characteristic xit the

long portfolio includes stocks for which xit is above the cross sectional average x̄t, or

above the cross sectional median value of xt. The portfolio is either equally weighted

or weighted by the characteristic x. Table 3 shows a statistically insignificant size

effect. Price momentum is significant at the 10% level. The strongest predictive

variable is CFY1 capturing the analyst earnings revisions. Surprising is the very low

predictability of all valuation ratios. In general, the signs of the t-statistics are as

expected, but the only significant variable is CFY1.

We inspect whether the low predicting power of the valuation ratios and the price

momentum is possibly due to industry effects. It is possible that the t-statistics in

table 3 are insignificant because of the industry heterogeneity. Within each industry

we construct equally weighted and characteristic weighted portfolios based on devi-

ation from the average value, as described in the previous paragraph. Then each

month we calculate the return from an equally weighted composite portfolio that

includes returns from all equally weighted industry portfolios. Further, we calculate

the monthly returns from a value weighted composite portfolio that includes returns

from all value weighted industry portfolios. The industry portfolios are weighted

according to the total market value of the respective industry. Panel C of table 3

reports the results from this industry neutral portfolio construction. Valuation ratios

have higher t-statistics than the ones in panel A. In contrast to the strategy that

9 Deletion of incomplete data points leads to a loss of information. Imputation methods, reviewed
in Kofman and Sharpe (2003), could increase the efficiency of the estimator. Since only 9.8% of the
data is incomplete we have not pursued the imputation estimator.
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does not correct for industry effects (panel A of table 3) the characteristics CP and

RET12 are significant at the 5% level. This simple analysis shows the importance

of the industry effects and motivates us to focus on the possibility of capturing these

effects in a panel data model.10

4 Results

We have estimated the general specification (1) and several restricted versions. The

models have been estimated both with the full panel and a number of smaller panels

that excludes all firms with less than 60 observations. An overview of the results is

presented in table 4. Parameter estimates for models with pooled β’s are reported in

table 5. Other results are presented in a series of graphs and additional tables.

4.1 Individual Effects

We compare the Schwartz criterion (SC ) for a group of models that are similar except

for the intercept. The first model in each group contains individual effects, the second

model only has industry specific intercepts, the third only has a pooled time effect.

The model specifications to be compared are different with respect to whether the

time effects λ�t are pooled over industries. Further, some model specifications do not

include any time effects. The coefficients β� are not pooled over industries.

The left panel of table 4 reports values of the SC for all models that predict

monthly returns. In all cases the Schwartz criterion prefers the model without in-

dividual effects to the same model with individual effects µi.
11 Figure 2 shows his-

tograms of the estimated individual effects of firms belonging to twelve sectors. The

histograms of the rest eight sectors are not much more different and are available

upon request.

For the 5% largest estimates (in absolute value) we checked on how many obser-

vations the estimate of the individual effect was based. Figure 3 shows the histogram

10 We checked the possibility of monthly firm characteristics to forecast cumulative returns over
three and six months. Using three and six month returns instead of monthly returns we repeated
the analysis that is shown in table 3. In general the t-statistics are similar. The earnings momentum
CFY1 is insignificant in portfolios that are not industry neutral. The price momentum RET6 is
significant in industry neutral portfolios. Details on all results with longer forecasting horizon are
available upon request.

11 Alternatively we estimated all models using data for all companies that were included in the
US S&P index from January 1990 until January 2002. The ranking of the models is identical to the
one shown in table 4. Detailed results are available upon request.
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of the number of observations per outlier, and compares it with the histogram of the

number of observations per company for the entire data set. It appears that most

of the large individual effects correspond to companies for which we have only few

observations. We therefore redid the model selection after deleting all firms with less

than 60 observations (5 years). The estimation results are reported in panel B of

table 4. Although the number of firms is reduced by about 400, none of the results

changes. The Schwartz criterion still prefers the models without individual effects.

We conclude that individual effects are not important, consistent with the findings of

Jegadeesh and Titman (2002).

The middle and right panels of table 4 report values of the SC for all models

that predict three month returns and six month returns, respectively. The panels

show that the SC -ranking and our finding that individual effects are not important

are robust to the forecasting horizon. This is also confirmed by the SC -ranking of

models with pooled coefficients (not reported here).

4.2 Industry Effects

Table 4 shows that the Schwartz criterion always prefers the model with pooled time

effects λt compared to the same model with industry specific time effects λ�t. Further,

since the Schwartz criterion always prefers the model with industry effects compared

to the same model with individual effects, we focus on models without individual

effects.

We test whether the coefficients and the intercepts are industry specific or can

be pooled. The overall null hypothesis is that β� = β for all industries and all

characteristics. The test is based on the general model:

yit =
L∑

�=1

Di� (xitβ� + λ�t) + eit. (18)

The robust Wald statistic for the 176 restrictions in this hypothesis is 973.6, rejecting

the null hypothesis at any reasonable significance level.

For a more detailed analysis of the cause for the rejection we inspect each industry

and each characteristic separately. Firstly, we test whether each characteristic has

the same coefficients across industries. Tables 5, 6 and 7 report the pooled estimates

of β for different models that predict one, three and six month returns, respectively.

Table 8 reports the test statistics of the null hypothesis βj� = βj for each charac-

teristic separately. For monthly returns the null hypotheses are rejected at the 95%
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confidence level in all model specifications for the price ratios BP, CP, EP and SP.

Rejections of the null hypothesis for other characteristics are not robust across alter-

native specifications for the time effects. In the case of industry specific time effects,

the null hypotheses are rejected also for DP and the momentum variables RET6 and

RET12. In the first three model specifications the null is never rejected for MV and

CFY1.

For three and six month returns the null hypothesis βj� = βj is rejected for

almost all characteristics. The null hypothesis is not rejected for MV in the models

without industry specific time effects and for CFY1 in all models that predict three

month returns. We conclude that the characteristic coefficients vary across industries.

The differences across industries cannot be captured in characteristics over a very

short horizon. If the horizon increases, these differences are better captured by the

characteristics and thus the model coefficients vary more across industries. Since

industries are related to the business cycle, the differences among them become visible

over a longer period that captures (a part of) the business cycle.

Further we test the null hypothesis that all coefficients in the respective pooled

model specifications are equal to zero. The alternative is that at least one coefficient

is different from zero. The heteroskedasticity robust Wald-statistics for all forecast

horizons are reported in the last line of table 8. They all exceed the 99% critical

value of 21.67. Thus although the coefficients are not significant in the pooled model

specification, the characteristics have predictive power in the industry specific model.

In general when the forecast horizon grows, the respective χ2-statistic increases.

It is remarkable that only a few characteristics seem to have significant predictive

power in the models without individual effects that predict monthly returns (the first

three specifications in table 5). The size effect (MV ) is never significant. The CP

ratio (CP), the twelve months momentum (RET12 ) and the analyst earnings revi-

sions (CFY1 ) are significant and have the same sign as in the portfolio strategies

reported in table 3. Even the standard errors of the effects are very similar.12 The

momentum variable RET6 is never significant. This could be related to the corre-

lation between momentum and earnings revisions. Mixon (2001) observes a similar

phenomenon when sorting stocks both on momentum and earnings revisions. The

two characteristics combined do not outperform a single sort on earnings revisions.

Tables 6 and 7 report the estimates of β for the three and six month returns,

12 The coefficients of RET12 have low absolute values because RET12 is defined as cumulative
returns for twelve months, while the dependent variable is monthly returns.
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respectively. The valuation ratios are more important than for monthly returns. For

example CP is always significant and BP is significant in six out of ten cases. The

economic intuition can be that valuation ratios vary more over periods of three and

six months because firm financial indicators (the nominators of the valuation ratios)

are announced quarterly. The twelve month price momentum RET12 is insignificant

in models with longer forecast horizon. On the other hand the six month price

momentum RET6 is significant in all models that forecast six month returns. This

result is consistent with Rouwenhorst (1998) who finds that holding stocks for six

months yields the highest returns if the stocks are sorted on the RET6.

As a robustness check the last two columns of table 5 report results for models

constructed by adding individual effects µi to the models from the first two columns.

A comparison between the first and the fourth column and between the second and

the fifth column reveals that the coefficients and the standard errors of the price

momentum and the earnings momentum do not depend on the inclusion of individual

effects µi. This finding is consistent with the results of Jegadeesh and Titman (2002)

who claim that cross sectional differences in expected return do not explain profits

from momentum strategies. Further, if individual effects are included, MV, BP and

SP are always significant. Tables 6 and 7 report the same results for three and six

month returns.

The industry specific coefficients and the t-statistics for the first three models in

table 5 are shown in figures 4 and 5.13 The figures show results for the industry inter-

cept and five characteristics.14 The first thing we observe is that coefficient estimates

do not depend much on the specification of the time effects. Only industry specific

time effects sometimes lead to higher t-statistics for some of the characteristics. Both

the coefficients and the t-statistics are very different across industries. The biggest

outlier is the 18th industry (Data Processing), but this might be due to the low num-

ber of firms belonging to that industry. Still the coefficients and the t-statistics vary

a lot across industries with high number of companies. It is interesting that the coef-

ficients and the t-statistics of the two financial industries are not much different from

those of the other industries. This is interesting provided that most finance studies

exclude the financial industries from the empirical analysis.

13 In the graphs industry 21 (Power Producers) is omitted. This industry contains only four firms
and has extreme outliers for most of the parameter estimates that would greatly distort the scale of
the graphs.

14 The results for the other four characteristics are not much more different and are available upon
request.
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We conclude that industries matter. Using the industry specific intercepts and

coefficients we can correct for industry heterogeneity and make within and between

industry predictions.

4.3 Robustness to the Estimation Method

4.3.1 WLS Estimation

Panel C of table 4 reports the results from WLS estimation based on equation (12).

The model ranking in terms of the SC is identical to the OLS results for all forecasting

horizons. Our findings on individual, industry and time effects are robust to the choice

of the estimation method.

In the first three columns of table 9 we report WLS estimation results of three

models with pooled coefficients. For each characteristic we report the estimated

coefficient, its standard error and the respective t-statistic. The OLS estimation

results for the same model specifications are reported in table 5. A comparison

between the two tables shows that the coefficients and their significance are similar,

with exception of MV. Another difference is that the WLS coefficients of CFY1 and

RET12 are significant at the 5% level in the fully pooled model. Without pooling

WLS does not perform better than OLS, as shown by comparison of columns 2 and

3 of table 5 with columns 2 and 3 of table 9.

We estimated with WLS the same pooled coefficient models for longer forecast

horizons. The results show that our findings are robust to the choice of estimation

method.

Finally, we estimated residual variances specific for each month and industry.

WLS estimations based on this assumption rank the models in the same way.

4.3.2 Fama-MacBeth Estimation

In this section we report results from the Fama-MacBeth estimation technique that

as discussed in section 2. The last two columns of table 9 report Fama-MacBeth

estimators for a fully pooled model and a model with pooled time effects. A com-

parison between the first two and the last two columns of table 9 reveals that the

Fama-MacBeth standard errors are always lower than the Driscoll-Kraay standard

errors.15 The six month momentum RET6 becomes significant and the other results

15 On the other hand Jagannathan and Wang (1998) warn that the Fama-MacBeth procedure
often underestimates the standard errors.
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are very similar.

We performed the same analysis for models that predict three and six month

returns. The resulting coefficients and statistics show that our conclusions are robust

to the choice of estimation method.

In conclusion, we find that some firm characteristics have predicting ability. In-

dustry effects are important. These findings are robust to the estimation method.

5 Portfolio Management Implications

The panel models are meant to explain the cross sectional variation in returns. To

investigate the implications of the model we consider the time series returns for a

number of long-short portfolios. For all models we construct the fitted values,

ŷit =
L∑

�=1

(
Di�x

′
itβ̂�

)
, (19)

and restricted versions with β� equal across industries. Individual effects and (indus-

try specific) time effects are not part of the predictions. We do not make absolute

forecasts, but only relative predictions. A pooled time effect λt drops out in compar-

ing ŷit and ŷjt. We consider both models with a pooled time effect λt and models with

industry specific time effects λ�t. Portfolio construction differs for both specifications.

With a pooled time effect we sort all stocks, while with industry specific time effects

we sort stocks separately within each industry.

Each period the fitted ŷit are sorted in decreasing order. We construct both

equally weighted and value weighted portfolios. For the equally weighted portfolios

we allocate the top (bottom) 30% of the sorted stocks to a long (short) portfolio with

equal weights. For the value weighted portfolios, the long (short) portfolio contains

the best (worst) stocks in proportion to their market weight with the total weight

adding up to 30%. The number of stocks in the value weighted portfolios can therefore

differ from the number of stocks in the equally weighted portfolio. Long and short

portfolios are constructed each month.

Portfolios based on models that predict cumulative returns for c months are con-

structed as follows. Each month we predict the returns for the following c months,

sort the stocks on the predicted returns and assign them to long and short portfo-

lios using the procedure described in the previous paragraph. The stocks remain in
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the respective portfolio for the following c months. The next month we repeat this

procedure and assign new stocks to the existing long and short portfolios.

Since λt is the same for all stocks, the difference between the returns from the long

and short portfolios does not depend on the time effect. Any pattern in the long-short

portfolio is therefore solely due to the characteristics and the industry effects. For

models with an industry specific time effect λ�t we compare firms within the same

industry. We do not attempt to predict the difference λ�t − λkt for firms belonging

to industries � and k, respectively. An overall portfolio is constructed by adding

all the industry specific long-short portfolios. For an equally weighted portfolio the

industry returns are aggregated weighted by the number of stocks in the industry;

for the value weighted portfolio the industry returns are weighted proportionally to

the market weight for each industry. For the model with the industry specific time

effects the aggregate portfolio is industry neutral. Stock picking is active only within

industries.

Table 10 reports descriptive statistics of the long-short portfolio returns for var-

ious model specifications and forecasting horizons. The average returns of the long

and short portfolios are significantly different for all model specifications. All long

and short portfolios, for all forecasting horizons, generate average returns that are

significant at the 1% significance level. For all forecasting horizons the differences are

larger than those for the portfolios in table 3 that are sorted on a single characteris-

tic. Combining different characteristics enhances the cross sectional differences. For

the value weighted portfolio the average for the long-short portfolio is more than one

percent per month, which is the same order of magnitude as the average excess return

from the market portfolio. The return differences for the equally weighted portfolios

are much bigger in all cases.

Table 10 shows a clear pattern across the specifications of the panel model that

is valid for all forecasting horizons. For the fully pooled model with a single β for all

industries, the average return from the long-short portfolio is less than the average

return for the models with industry specific slopes β�. Also the ratio of average return

to the standard deviation is lowest for the portfolios with a pooled β.

Comparing the second and the third lines of each panel of table 10 reveals that

the industry neutral portfolio has a lower average for the long portfolio and a higher

average for the short portfolio. The spread between the long and short portfolio

is reduced by the restriction of industry neutrality. At the same time the industry

neutral portfolios also have a much lower variance. Again this is a result of the forced

21



industry neutrality in panels with industry specific time effects λ�t. The unrestricted

portfolios involve considerable industry bets. In some periods the highest (lowest)

expected returns are concentrated in specific industries. This confirms the results

of Moskowitz and Grinblatt (1999), who showed that momentum effects were often

caused by industry momentum.

For a closer look at these returns we consider the profiles of the portfolios. Ta-

ble 11 reports the average characteristics of the long and short portfolios. Consistent

with the parameter estimation results in table 5 the most distinctive characteristic

is the annual analyst earnings revision. Other characteristics associated with returns

differences are the momentum variables RET6 and RET12. Furthermore there is a

small size effect. The price ratios have discriminatory power which is higher than the

one implied by table 5.

We considered profiles of portfolios based on three and six month forecasting. In

general the profiles are similar to the profiles of monthly based portfolios but there

are some systematic differences. In contrast to monthly portfolios the fundamental

characteristic MV is always associated with return differences for all three and six

month portfolios and the respective t-statistics are significant at the 1% significance

level. The earnings momentum CFY1 is significant but the respective t-statistics

are two times lower than the ones for the respective monthly portfolios. This shows

that analyst forecasts influence strongly short run stock returns, but this influence

is smaller for middle run stock returns. The economic intuition can be that in the

short run investors (and stock prices) are influenced by the analyst forecast. On the

other hand, analyst forecasts are often erratic, they randomly push the stock price up

and down, and these fluctuations mutually compensate in the middle run. The six

month momentum RET6 is always associated with return differences for all six month

portfolios and the respective t-statistics are significant at the 1% significance level.

This evidence is consistent with the findings of Rouwenhorst (1998). Our findings

for the three momentum characteristics are consistent with the results of Chan et al

(1996) who document that earnings momentum influences stock returns mostly in the

short run, while price momentum influences stock returns mostly in the middle run.

Expected returns are persistent. Many of the explanatory variables move only

slowly over time or are constant (industry dummies). As a result the portfolio com-

position remains fairly stable from month to month. The upper left panel of table 12

reports the transition frequencies of stocks going from one portfolio to the other for

portfolios based on monthly forecasting. For the strategies that can select stocks from
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the complete universe, about 80% of the stocks that are in the long portfolio at time

t remain in the long portfolio at time t + 1. Persistence for the stocks in the short

portfolio is slightly lower - about 75% of the stocks that are in the long portfolio at

time t remain in the long portfolio at time t + 1. The stocks from the neutral port-

folio are equally re-distributed to the long and short portfolios - about 15% of the

stocks that are in the neutral portfolio at time t move to the long portfolio at time

t + 1, and the same percentage moves to the short portfolio. New stocks are equally

distributed among the long, the neutral and the short portfolio.16 In the other hand

the industry neutral portfolios are less stable. The best stocks within an industry

change more rapidly than the overall best stocks. Part of the explanation for this

effect are the constant industry intercepts which give some industries a permanent

expected advantage over other industries.

The lower panels of table 12 report the transition frequencies of stocks going from

one portfolio to the other for portfolios based on three and six month forecasting.

All qualitative findings on turnover that are reported in the previous paragraph (one

month forecasting) apply also for turnover of portfolios based on two, three and six

month forecasting. On the other hand the persistence of such portfolios is drastically

increased - for example the persistence of the long (short) portfolio increased from

78% (77%) to 95% (94%) when the forecasting horizon grows from one month to

three months. It is interesting that the turnover abruptly falls as soon as the forecast

horizon increases from one month to two months.

The results reported by tables 10 and 12 show that when we increase the fore-

casting horizon we do not lose returns and simultaneously drastically decrease the

portfolio turnover.

For our final results we run performance attribution regressions of the long-short

portfolio returns on the value weighted market portfolio, the Fama-French factors

SMB and HML and the momentum factor UMD.17 The upper panel of table 13

reports results for portfolios based on models that predict monthly returns. The

coefficients and their significance are similar across specifications. The portfolios

do not have a significant exposure to the market index with a beta around 0.10.

The exposure to SMB is low, consistent with the small explanatory power of size

16 Stocks are only included in the regressions if they are in the data set for at least a year. This
is the first time that the momentum variable RET12 can be computed.

17 Data for these factors are all obtained from the Fama-French database maintained by Professor
Kenneth French at the Tuck School of Business at Dartmouth:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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in the panel regressions and with the low size effect documented in table 3. Only

portfolios based on a pooled model with industry specific intercepts have substantial

positive exposure to UMD. Surprisingly, given the panel regression results and the

portfolio profiles, there is an exposure to HML, which is lower for the value weighted

portfolios. The performance regressions have a significant alpha intercept in all cases

and regardless of the included risk factors. This result shows that the portfolios have

inherent positive return that is not based on factor bets. Abnormal returns for the

value weighted portfolios are much lower than for the equally weighted portfolios.18

On the other hand value weighted portfolios have less factor exposures than their

equally weighted counterparts.

The middle and the lower panels of table 13 report results for portfolios based on

models that predict tree month and six month returns, respectively. The intercepts

are positive and significant at the 1% significance level. In contrast to portfolios

based on monthly forecast horizon, all portfolios based on longer forecast horizon

are significantly exposed to value and momentum and not to the market index. All

equally weighted portfolios are exposed to the value factor, in contrast to most value

weighted portfolios.

6 Conclusion

We perform specification tests in unbalanced panel data models for forecasting of stock

returns. We find that the industry effects in the panel are significant and interact with

firm characteristics. The industry specific intercepts and coefficients correct for the

industry heterogeneity and enable within and between industry predictions. These

findings are robust to the estimation method and the data set.

In-sample simulations of portfolio construction strategies based on models that

predict monthly returns imply that the resulting long-short portfolios earn substan-

tial abnormal returns with a limited exposure to market risk and size, but moderate

exposure to value and momentum factors. Increasing the forecasting horizon drasti-

cally reduces the portfolio turnover without deteriorating performance. The resulting

long-short portfolios earn significant abnormal returns and have significant exposure

to size, value and momentum. How well the strategy works in an out-of-sample

18 This could be related to the estimation of the model. All panels have been estimated with
equal weights for all stocks in the sample. Weighted least squares could produce different results.
We have not yet checked this.
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environment and with transaction costs is an open question.

Appendix A Fixed Effects in an Unbalanced Panel

In this appendix we derive estimators of individual and time effects in unbalanced

two-way error component models. Consider an unbalanced panel data specification

with individual effects and pooled coefficients and time effects,

yit = µi + x′
itβ + λt + eit. (A1)

The coefficient vector β is estimated following the methodology proposed by Wans-

beek and Kapteyn (1989). Define uit = yit − xitb̂. To obtain λt and µi we compute

the cross sectional and time series averages of uit over all available observations:

ūi. =
1

Ti

∑
t∈Pi

uit = µi +
1

Ti

∑
t∈Pi

λt, (A2)

ū.t =
1

Nt

∑
i∈Ct

uit = λt +
1

Nt

∑
i∈Ct

µi. (A3)

where Ti is the number of months company i is observed, Nt is the number of compa-

nies observed in month t, and Pi is the set that contains the numbers of all months

when company i is observed and Ct is the set that contains the numbers of all firms

observed in month t. Equations A2 and A3 result in a linear system of N + T equa-

tions and N + T unknowns. Due to the underidentification of µi and λt we need to

impose one restriction and delete one of the equations.
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Table 1: Summary Statistics by Industry

The first column reports the MSCI industry classification. The second column describes the
industry. The column ”All firms” refers to the number of companies available per industry. The
column ”Included firms” reports the number of companies remaining after deletion of missing or
incomplete data points. The fifth column reports the number of data points per industry. The last
four columns report the average returns (R̄) and the standard deviations (σ(R)) of equally weighted
(EW) and value weighted (VW) industry portfolios. Average returns and standard deviations are
measured in percents per month.

All Included Data EW port. VW port.
Code Industry description firms firms points R̄ σ(R) R̄ σ(R)

1 Basic Materials 73 71 7798 1.27 5.76 1.57 6.13
2 Automobiles 26 26 2651 1.39 6.92 1.59 7.12
3 Consumer 59 59 5609 1.30 5.72 1.73 5.83
4 Retail 96 91 7317 1.57 7.05 2.09 6.74
5 Commercial 35 34 1614 1.31 7.47 1.68 7.90
6 Food and Consumer 72 69 7445 1.79 4.83 1.97 5.08
7 Specialty 10 9 1347 1.26 5.89 1.66 6.12
8 Services 33 32 2449 1.59 5.90 1.82 5.51
9 Health Care 113 108 7795 1.76 6.20 1.98 5.27
10 Oil and Gas 56 55 4939 1.30 7.35 1.44 4.89
11 Banking and Insurance 111 104 6800 1.80 5.71 1.91 6.03
12 Diversified Financials 75 68 3833 1.53 5.71 2.06 6.41
13 Capital Goods 37 35 3768 1.33 5.87 1.71 5.80
14 Machinery-Diversified 55 51 5056 1.49 6.10 1.73 5.84
15 Technology Hardware 218 214 12859 1.50 9.54 2.06 8.03
16 Semiconductors 15 15 910 2.62 17.00 3.20 16.90
17 Computer Services 10 10 776 1.46 8.72 1.79 8.21
18 Data Processing 9 9 605 2.11 6.91 2.00 6.30
19 Telecom 26 22 1566 0.78 7.44 1.38 5.68
20 Utilities 58 52 6496 1.12 4.29 1.28 4.58
21 Power Producers 4 4 275 0.45 11.48 0.66 11.34
22 Transport 27 27 3228 1.35 6.46 1.53 6.01
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Table 2: Summary Statistics of All Characteristics

Panel A reports descriptive statistics of the raw data set. Panel B reports descriptive statistics for
the subset of complete data points. An observation is complete if all variables are available for that
observation.
The first column reports the names of the variables and namely return (RET ), size (MV ), book-to-
price (BP), cash flow-to-price (CP), dividend-to-price (DP), earnings-to-price (EP), sales-to-price
(SP), analyst earnings revisions (CFY1 ), 6-month momentum (RET6 ) and 12-month momentum
(RET12 ).

Variable Average Standard Minimum 1st Median 99th Maximum
value deviation value quantile value quantile value

A – All 1216 companies
RET 1.28 14.38 -96.55 -37.04 1.08 43.02 640.74
MV 0.0020 0.0040 2.1 ×10−7 8.93 ×10−6 0.0008 0.0220 0.1000
BP 0.52 0.96 -46.39 -0.22 0.43 2.30 112.08
CP 0.34 42.9 -31.10 -0.35 0.09 0.67 8337
DP 0.02 0.06 0 0 0.01 0.10 4.30
EP -0.004 0.830 -120 -0.900 0.050 0.200 2.880
SP 1.56 4.47 0 0.03 0.88 10.95 918.30
CFY1 -0.08 0.75 -1 -1 0 1 1
RET6 7.51 35.85 -99.04 -67.33 5.79 118.80 1813.70
RET12 16.36 60.26 -99.65 -80.21 10.86 222.43 2619.40

B – 1165 companies with complete data
RET 1.29 14.39 -96.55 -36.81 1.09 43.05 640.74
MV 0.002 0.004 3.45 ×10−7 9.9×10−6 0.001 0.022 0.100
BP 0.50 0.72 -21.58 -0.19 0.42 2.17 88.21
CP 0.11 0.25 -7.07 -0.33 0.10 0.65 23.20
DP 0.02 0.06 0 0 0.01 0.09 4.3
EP 0.01 0.46 -44 -0.79 0.05 0.20 2.88
SP 1.49 2.97 0 0.03 0.88 10.20 226.97
CFY1 -0.07 0.75 -1 -1 0 1 1
RET6 7.73 35.30 -96.83 -65.97 5.85 119.40 1463.10
RET12 17.05 60.74 -99.15 -78.87 13.04 225 2619.40
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Table 3: Average Returns on Characteristic Sorted Portfolios

The table reports the average return of long and short portfolios based on sorting by
deviation from a specific threshold x̄t for each characteristic x. The long portfolio
includes all stocks for which xit − x̄t ≥ 0. The short portfolio includes stocks
for which xit − x̄t < 0. The first four columns report average returns for equally
weighted portfolios of the stocks in the short and long portfolio formed on xit, the
standard deviation (σ(L − S)) of the respective long minus short portfolio, and the
t-statistic for testing the equality of the mean returns of the long and short portfolios.
The characteristic weighted portfolio averages are computed by weighting stocks
proportionally to xit − x̄t, so that the weights for each pair of long and short portfolio
sum up to one. The results for characteristic weighted portfolios are reported in the
last four columns. The t-statistics are adjusted for autocorrelation. In panel A and
C the threshold x̄t is equal to the cross-sectional average at time t for the respective
characteristic, while in panel B it is equal to the cross-sectional median value. Panel
C reports results for industry neutral portfolios. Portfolios are first constructed within
each industry as described above and then aggregated with weights proportional either
to the number of firms in the industry or to the market weight of the industry.

Equally weighted Characteristic weighted

Variable Short Long s(L−S) t-stat Short Long s(L−S) t-stat

A – Breakpoints from average
MV 1.47 1.30 2.55 -0.76 1.51 1.26 3.48 -0.82
BP 1.36 1.56 2.69 0.83 1.40 1.70 4.04 0.85
CP 1.30 1.64 3.07 1.29 1.24 1.81 4.56 1.76
DP 1.39 1.53 3.97 0.51 1.44 1.50 4.90 0.18
EP 1.42 1.47 4.53 0.14 1.54 1.57 7.68 0.06
SP 1.35 1.64 2.98 1.03 1.35 1.80 4.88 1.07
CFY1 1.24 1.67 1.82 3.33 1.19 1.72 2.33 3.22
RET6 1.41 1.49 4.56 0.24 1.30 1.65 7.26 0.69
RET12 1.25 1.70 4.40 1.43 1.15 2.13 7.47 1.85

B – Median breakpoints
MV 1.53 1.35 2.86 -0.86 1.59 1.27 4.01 -1.10
BP 1.37 1.51 2.71 0.61 1.41 1.67 3.90 0.76
CP 1.26 1.62 3.34 1.53 1.26 1.78 4.87 1.51
DP 1.38 1.49 4.34 0.35 1.44 1.49 5.13 0.12
EP 1.33 1.55 3.29 0.97 1.50 1.68 6.69 0.39
SP 1.34 1.53 3.23 0.65 1.30 1.74 4.99 0.95
CFY1 1.27 1.58 1.97 2.16 1.18 1.67 2.45 2.80
RET6 1.41 1.47 4.01 0.20 1.28 1.64 6.91 0.73
RET12 1.22 1.66 3.99 1.57 1.12 2.07 7.14 1.89

C – Breakpoints from average, industry neutral
MV 1.41 1.32 2.11 -0.58 1.48 1.33 3.18 -0.66
BP 1.34 1.49 1.95 1.06 1.42 1.53 3.27 0.48
CP 1.21 1.61 1.74 3.25 1.30 1.79 3.44 2.01
DP 1.29 1.50 2.22 1.37 1.40 1.59 3.31 0.81
EP 1.20 1.51 2.45 1.78 1.49 1.61 4.81 0.44
SP 1.34 1.48 2.38 0.82 1.38 1.66 3.99 0.86
CFY1 1.22 1.58 1.20 4.24 1.20 1.74 1.78 4.24
RET6 1.38 1.40 2.67 -0.12 1.45 1.72 4.79 0.81
RET12 1.30 1.51 2.59 1.15 1.23 2.02 4.80 2.31



Table 4: Model Selection

The table reports OLS estimation results for the panel data model

yit = µi +
L∑

�=1

Di� (x′
itβ� + λ�t) + eit,

and various restricted versions for different forecasting horizons. The first two columns indicate
the restrictions on µi (CONST) and λ�t (TIME). The intercepts (CONST) are either pooled
(µi = µ), industry specific (µi =

∑L
�=1 Di�τ�), where τ� is the effect of industry �, or firm specific

(µi). The time effects are either pooled (λ�t = λt), industry specific (λ�t) or not included (none).
The total number of parameters is given as k; RSS denotes the Residual Sum of Squares; the R2

is computed as one minus the ratio of RSS to the total sum of squares of returns in deviation of
the average return; SC denotes the Schwartz information criterion. The numbers in the column
”RRS” are factors of 107. Explanatory variables in xit are MV, BP, CP, DP, EP, SP, CFY1,
RET6 and RET12. Panels A are based on all complete data points. In panels B all firms with
less than 60 observations have been omitted. Panels C report WLS estimates based on the entire
data set. The first lines of each subpanel show the respective numbers of firms and data points.

One Month Three Month Six Month
CONST TIME k RSS R2 SC R2 SC R2 SC

A-1165, 95136 A-1160, 93299 A-1157, 90511
individual industry 5544 1.356 0.311 5.652 0.354 6.786 0.382 7.464
pooled industry 4380 1.400 0.289 5.522 0.296 6.709 0.275 7.456
individual none 1363 1.897 0.037 5.460 0.096 6.591 0.174 7.217
industry pooled 418 1.675 0.149 5.222 0.150 6.414 0.132 7.148
pooled pooled 397 1.677 0.149 5.220 0.148 6.373 0.129 7.148
industry none 220 1.950 0.010 5.350 0.024 6.528 0.044 7.220

B-674, 81504 B-662, 79536 B-379, 60696
individual industry 4864 0.815 0336 5.309 0.370 6.440 0.378 6.971
pooled industry 4402 0.829 0.327 5.232 0.339 6.396 0.346 6.924
individual none 872 1.199 0.026 5.112 0.078 6.234 0.113 6.588
industry pooled 418 1.019 0.172 4.887 0.184 6.009 0.188 6.470
pooled pooled 397 1.020 0.172 4.885 0.182 6.009 0.181 6.475
industry none 220 1.218 0.011 5.037 0.034 6.189 0.051 6.591

C-WLS-1165, 95136 C-1160, 93299 C-1157, 90511
individual industry 5544 1.360 0.309 5.655 0.350 6.794 0.375 7.477
pooled industry 4380 1.403 0.288 5.524 0.293 6.714 0.270 7.463
individual none 1363 1.903 0.034 5.463 0.090 6.598 0.166 7.223
industry pooled 418 1.680 0.147 5.224 0.144 6.421 0.122 7.159
pooled pooled 397 1.681 0.147 5.222 0.143 6.420 0.121 7.158
industry none 220 1.956 0.007 5.352 0.016 6.536 0.032 7.232
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Table 5: Pooled Parameter Estimates - One Month Forecasting

The table reports estimation results for the model

yit = µi + xitβ +
L∑

�=1

Di�λ�t + eit

under different assumptions about the intercepts and time effects. Each column
contains model coefficients and the respective standard errors in parentheses. The
symbol ** means that the respective coefficient is significant at the 99% level. The
first column refers to the fully pooled model (µi = µ, τ�, λ�t = 0). The second column
contains pooled time effects and industry effects τ� (µi = 0, τ�, λ�t = λt) and the
third column shows industry specific time effects (µi = 0, τ� = 0, λ�t). The column
”individual pooled” refers to a fully pooled model with individual intercepts (µi,
λ�t = 0). The column ”individual pooled time” refers to a model with individual
intercepts and pooled time effects (µi, λ�t = λt). The standard errors have been
computed using a robust estimator for the covariance matrices of β̂ and β̂�.

fully pooled industry individual individual
variable pooled time effect specific pooled pooled time

MV 1.88 -13.78 -14.48 -114.12** -140.07**
(28.09) (15.93) (14.83) (56.40) (34.83)

BP 0.50 0.44 0.20 2.91** 2.66**
(0.32) (0.27) (0.24) (0.69) (0.53)

CP 1.74 1.93** 1.80** 2.47** 2.23**
(0.98) (0.77) (0.68) (1.04) (0.80)

DP 3.61 8.35 4.73 10.58 -2.37
(9.80) (5.58) (5.05) (15.67) (9.30)

EP 2.45 1.48 1.21 -1.08 -2.75**
(1.77) (1.35) (1.22) (1.75) (1.19)

SP 0.18 0.15 0.14 0.66** 0.65**
(0.10) (0.08) (0.08) (0.22) (0.17)

CFY1 0.23 0.24 0.29** 0.27 0.24
(0.16) (0.13) (0.09) (0.16) (0.12)

RET6 -0.0120 -0.0022 -0.0050 -0.0168 -0.0085
(0.009) (0.008) (0.006) (0.009) (0.008)

RET12 0.0078 0.0070** 0.0060** 0.0081 0.0067**
(0.004) (0.003) (0.002) (0.005) (0.003)
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Table 6: Pooled Parameter Estimates - Three Month Forecasting

The table reports estimation results for the model

yit = µi + xitβ +
L∑

�=1

Di�λ�t + eit

under different assumptions about the intercepts and time effects. The
forecasting horizon is three months. Each column contains model coefficients
and the respective standard errors in parentheses. The symbol ** means that
the respective coefficient is significant at the 99% level. The table contains two
panels that report results for three month and six month forecasting. The first
column of each panel refers to the fully pooled model (µi = µ, λ�t = 0). The
second column contains pooled time effects and industry effects τ� (µi = 0, τ�,
λ�t = λt) and the third column shows industry specific time effects (µi = 0,
τ� = 0, λ�t). The column ”µi pooled” refers to a fully pooled model with
individual intercepts (µi, λ�t = 0). The column ”individual pooled time” refers
to a model with individual intercepts and pooled time effects (µi, λ�t = λt).
The standard errors have been computed using a robust estimator for the
covariance matrices of β̂ and β̂�.

fully pooled industry individual individual
variable pooled time effect specific pooled pooled time

MV -5.68 -46.85 -46.54 -395.90** -457.53**
(66.01) (42.56) (38.88) (131.42) (70.06)

BP 1.88 1.71** 0.99 9.65** 8.77**
(0.85) (0.79) (0.70) (1.85) (1.17)

CP 6.84** 7.29** 6.50** 9.32** 7.97**
(2.35) (2.07) (1.83) (2.44) (1.52)

DP 1.32 21.15 8.52 26.70 -7.13
(22.48) (12.63) (11.65) (38.31) (16.67)

EP 4.10 1.96 1.42 -7.60 -11.34**
(4.24) (3.42) (2.91) (4.23) (2.54)

SP 0.31 0.31 0.26 1.51** 1.64
(0.27) (0.21) (0.19) (0.46) (6.27)

CFY1 0.23** 0.06 0.29 0.35 0.05
(0.34) (0.30) (0.20) (0.31) (0.21)

RET6 -0.02 0.014 0.008 -0.032 -0.005
(0.02) (0.020) (0.011) (0.019) (0.014)

RET12 0.02 0.013 0.012** 0.014 0.012
(0.01) (0.010) (0.006) (0.012) (0.007)
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Table 7: Pooled Parameter Estimates - Six Month Forecasting

The table reports estimation results for the model

yit = µi + xitβ +
L∑

�=1

Di�λ�t + eit

under different assumptions about the intercepts and time effects. The
forecasting horizon is six months. Each column contains model coefficients and
the respective standard errors in parentheses. The symbol ** means that the
respective coefficient is significant at the 99% level. The table contains two
panels that report results for three month and six month forecasting. The first
column of each panel refers to the fully pooled model (µi = µ, λ�t = 0). The
second column contains pooled time effects and industry effects τ� (µi = 0, τ�,
λ�t = λt) and the third column shows industry specific time effects (µi = 0,
τ� = 0, λ�t). The column ”µi pooled” refers to a fully pooled model with
individual intercepts (µi, λ�t = 0). The column ”individual pooled time” refers
to a model with individual intercepts and pooled time effects (µi, λ�t = λt).
The standard errors have been computed using a robust estimator for the
covariance matrices of β̂ and β̂�.

fully pooled industry individual individual
variable pooled time effect specific pooled pooled time

MV 3.53 -60.26 -62.70 -862.21** -904.14**
(127.65) (87.03) (80.64) (278.31) (115.02)

BP 3.15 3.03** 1.78 17.05** 16.11**
(1.28) (1.29) (1.18) (3.33) (1.42)

CP 14.75** 12.53** 17.10** 15.19** 15.19**
(4.24) (4.00) (3.45) (4.67) (2.25)

DP 4.46 40.44 12.31 54.50 1.03
(37.16) (21.76) (19.84) (60.65) (18.67)

EP 7.61 4.67 3.73 -15.74** -24.41**
(7.03) (5.4) (4.67) (6.89) (3.18)

SP 0.58 0.70 0.58 3.31** 3.72**
(0.51) (0.37) (0.37) (0.92) (0.47)

CFY1 0.66** 0.23 0.72** 0.85 0.21
(0.59) (0.41) (0.31) (0.49) (0.22)

RET6 0.06 0.08** 0.07** 0.03 0.047**
(0.03) (0.03) (0.02) (0.03) (0.014)

RET12 -0.01 -0.01 -0.01 -0.02 -0.016
(0.02) (0.02) (0.01) (0.02) (-0.010)
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Table 8: Tests for Industry Specific Parameters

The table shows Wald-statistics for the null hypothesis β� = β (� = 1...L) in the model

yit = µi +
L∑

�=1

xitβ� +
L∑

�=1

Di�λ�t + eit

under different assumptions about the intercepts and time effects. The forecasting horizon is one, three and six
months. The alternative is that β is different in all industries. The columns ”fully pooled” refer to the fully
pooled model (µi = µ, λ�t = 0). The columns ”pooled time” contain pooled time effects and industry effects τ�

(µi = 0, τ�, λ�t = λt), and the columns ”industry specific” show industry specific time effects (µi = 0, τ� = 0,
λ�t). The Wald-statistics have been computed using a robust estimator for the covariance matrices of β̂ and
β̂�. The last line reports Wald-statistics for the null hypothesis that all coefficients in the corresponding models
with pooled coefficients are zeros.

One Month Three Month Six Month

fully pooled industry fully pooled industry fully pooled industry
variable pooled time specific pooled time specific pooled time specific

MV 14.3 13.9 18.6 21.1 20.0 29.8 33.2 31.5 54.1

BP 34.0 34.6 41.8 57.5 58.6 77.1 60.7 60.8 145.7

CP 40.4 39.2 30.1 96.9 95.5 60.4 107.6 97.2 59.9

DP 27.0 27.9 32.4 43.2 42.7 35.1 58.6 54.7 53.2

EP 44.2 44.6 45.8 105.3 99.1 64.4 185.9 179.4 141.8

SP 44.3 43.3 34.0 100.2 98.4 88.1 166.2 174.7 185.5

CFY1 17.3 17.5 24.3 25.2 22.7 30.0 36.4 35.5 48.4

RET6 16.7 17.9 32.4 70.8 75.6 33.7 168.9 171.4 87.4

RET12 20.2 21.3 38.6 73.6 76.9 82.5 129.9 133.2 91.7

χ2-stat 28.1 42.6 55.4 36.3 40.7 48.9 48.3 75.3 92.7
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Table 9: Pooled Parameter Estimates - WLS and Fama-MacBeth Estimators

The table reports estimation results for the model

yit = xitβ +
L∑

�=1

Di�λ�t + eit

under different assumptions about the intercepts and the time effects. The first
three columns report results from WLS estimation, and the last two columns -
from Fama-MacBeth estimation. The first column refers to the fully pooled model
(µi = µ, λ�t = 0). The second column contains pooled time effects and industry
effects τ� (µi = 0, τ�, λ�t = λt), and the third column shows individual effects
and industry specific time effects (µi, λ�t). The first row for each variable reports
parameter estimates of β. The second row has standard error in parenthesis.
The third row contains the t-values. The standard errors and the t-statistics
have been computed using a robust estimator of the covariance matrices of β̂ and β̂�.

WLS Fama-MacBeth

fully pooled industry fully pooled
variable pooled time effect specific pooled time effect

MV coefficient 13.00 -3.45 -1.46 -11.45 -11.61
St. Error (28.08) (15.10) (14.82) (13.70) (25.27)
t-stat [0.46] [-0.22] [-0.10] [-0.84] [-0.46]

BP coefficient 0.28 0.43 0.27 0.38 0.15
St. Error (0.32) (0.27) (0.24) (0.19) (0.27)
t-stat [0.86] [1.59] [1.15] [1.94] [0.57]

CP coefficient 1.52 1.46 1.46 0.87 2.02
St. Error (0.98) (0.77) (0.68) (0.55) (0.72)
t-stat [1.56] [1.90] [2.15] [1.58] [2.80]

DP coefficient 7.23 8.56 5.09 -0.68 4.94
St. Error (9.82) (5.60) (5.07) (5.84) (6.57)
t-stat [0.74] [1.53] [1.01] [-0.12] [0.75]

EP coefficient 3.25 1.82 1.52 -0.42 -0.66
St. Error (1.76) (1.35) (1.22) (1.03) (1.30)
t-stat [1.85] [ 1.35] [1.24] [-0.41] [-0.51]

SP coefficient 0.16 0.09 0.06 0.05 0.11
St. Error (0.10) (0.08) (0.08) (0.06) (0.07)
t-stat [1.62] [1.11] [0.81] [0.86] [1.48]

CFY1 coefficient 0.31 0.27 0.29 0.24 0.05
St. Error (0.16) (0.13) (0.09) (0.07) (0.09)
t-stat [1.94] [ 2.04] [3.17] [3.32] [0.57]

RET6 coefficient -0.013 -0.006 -0.005 -0.016 -0.005
St. Error (0.010) (0.008) (0.006) (0.005) (0.006)
t-stat [-1.45] [-0.68] [-0.94] [-2.97] [-0.95]

RET12 coefficient 0.010 0.011 0.008 0.014 0.010
St. Error (0.005) (0.003) (0.002) (0.003) (0.003)
t-stat [2.28] [3.38] [3.96] [4.36] [2.94]
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Table 10: Returns from Expected Return Portfolio Strategies

The table contains four panels that show portfolio returns based on one, two, three and six month
forecasting.
For three different specifications of the panel model, each month stocks are sorted with respect to the
fitted values. The 30% stocks with the highest expected return are allocated to the long portfolio, the
30% stocks with the lowest expected returns to the short portfolio. For the equally weighted portfolio
long and short portfolios contain the same number of stocks. For the value weighted portfolios the
long portfolio contains the stocks highest expected returns making up 30% of the total market value,
and the short portfolio includes 30% market value with the lowest expected returns. For the model
with industry specific time effects portfolios are first constructed industry by industry and aggregated
with weights proportional either to the number of firms in the industry or to the market weight of the
industry.
Entries in the columns Long and Short contain the average returns of the portfolios over the entire
sample period. The standard deviation of the long-short portfolio is denoted sL−S . The t-statistic tests
the null hypothesis that the long and short portfolios have equal mean returns.
The first line of each panel refers to a pooled model with a pooled time effect and pooled β, the second
line shows a model with pooled time effects and industry specific intercepts and coefficients, and the
last line contains results for a model with industry specific time effects and coefficients.

One Month Forecast

Equally Weighted Value Weighted

Model Short Long sL−S t-stat Short Long sL−S t-stat

pooled 0.83 2.10 3.30 5.39 0.80 1.76 3.09 4.37
industry specific β� 0.62 2.22 2.95 7.64 0.49 1.85 2.96 6.49
industry specific β� and λ�t 0.87 2.19 2.28 8.15 0.85 1.66 1.86 6.13

Two Month Forecast

Equally Weighted Value Weighted

Model Short Long sL−S t-stat Short Long sL−S t-stat

pooled 0.96 2.07 3.15 4.96 0.75 1.78 3.25 4.46
industry specific β� 0.70 2.19 2.59 8.12 0.65 1.77 2.76 5.71
industry specific β� and λ�t 0.77 1.97 1.87 8.98 0.87 1.62 2.05 5.16

Three Month Forecast

Equally Weighted Value Weighted

Model Short Long sL−S t-stat Short Long sL−S t-stat

pooled 1.02 2.09 3.27 4.56 0.73 1.82 3.40 4.50
industry specific β� 0.76 2.20 2.46 8.24 0.72 1.87 3.01 5.34
industry specific β� and λ�t 0.89 1.98 1.99 7.68 0.96 1.72 2.41 4.44

Six Month Forecast

Equally Weighted Value Weighted

Model Short Long sL−S t-stat Short Long sL−S t-stat

pooled 1.10 1.95 3.08 3.85 0.99 1.79 3.41 3.27
industry specific β� 0.86 2.16 2.76 6.55 0.83 2.03 3.06 5.45
industry specific β� and λ�t 0.98 1.93 2.03 6.49 1.08 1.59 1.80 3.98
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Table 11: Profiles of Expected Return Long - Short Portfolios

For the six portfolio strategies considered in table 10 this table reports the time series averages
of the characteristics of these portfolios. The results are based on monthly return forecasting.
The columns ”sL−S” show the time series standard deviations of the differences in characteristics
between the long and the short portfolio. The t-statistics test the null hypothesis that the long
and short portfolios have equal mean characteristics and are adjusted for autocorrelation. The
first panel refers to a pooled model with a pooled time effect and pooled β, the second panel has
a model with industry specific coefficients and the last panel contains results for a model with
industry specific time effects and coefficients.

Equally weighted Value weighted

Model Variable Short Long s(L−S) t-stat Short Long s(L−S) t-stat

pooled MV 0.003 0.002 0.001 -9.35 0.020 0.007 0.006 -11.20
BP 0.42 0.60 0.11 11.10 0.34 0.41 0.07 7.43
CP 0.08 0.18 0.04 15.40 0.10 0.14 0.03 8.21
DP 0.020 0.023 0.004 4.99 0.023 0.024 0.004 0.87
EP 0.012 0.050 0.04 7.11 0.045 0.054 0.01 5.45
SP 0.98 2.15 0.52 15.10 0.76 1.29 0.31 11.60
CFY1 -0.43 0.17 0.15 31.00 -0.32 0.29 0.18 30.60
RET6 3.24 13.00 10.50 6.61 6.67 16.70 11.70 6.26
RET12 3.65 32.00 26.50 7.18 3.65 32.00 26.50 7.18

industry MV 0.003 0.002 0.001 -1.56 0.012 0.010 0.006 -2.32
specific BP 0.42 0.64 0.11 13.70 0.35 0.42 0.09 5.33
coefficients CP 0.08 0.17 0.03 17.60 0.10 0.14 0.04 8.18

DP 0.018 0.025 0.005 9.50 0.021 0.027 0.005 7.78
EP 0.02 0.05 0.03 7.44 0.04 0.06 0.01 9.54
SP 1.17 2.04 0.50 12.10 0.84 1.23 0.36 7.58
CFY1 -0.24 0.05 0.14 16.90 -0.25 0.24 0.21 20.30
RET6 11.50 5.25 9.55 -4.86 10.90 12.10 8.06 1.24
RET12 13.70 20.30 14.90 3.20 17.30 34.60 22.50 5.31

industry MV 0.003 0.002 0.001 -5.67 0.010 0.008 0.003 -1.21
specific BP 0.43 0.59 0.10 12.00 0.36 0.41 0.08 4.08
coefficients CP 0.03 0.05 0.02 6.01 0.09 0.13 0.02 13.10
and time DP 0.019 0.024 0.004 11.6 0.021 0.025 0.003 9.94
effects EP 0.010 0.020 0.02 2.82 0.038 0.053 0.01 9.26

SP 1.39 2.25 0.62 13.80 0.87 1.15 0.20 9.75
CFY1 -0.35 0.14 0.19 19.70 -0.36 0.26 0.18 27.90
RET6 9.46 7.15 6.60 -2.68 7.60 14.20 9.06 10.30
RET12 14.20 19.00 10.20 6.04 14.50 35.70 26.30 5.39
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Table 12: Persistence in Expected Returns

The table reports transition frequencies among the Long, Neutral and Short portfolios that are constructed
using the cross sectional expected returns. The Long portfolio holds the 30% stocks with the highest expected
returns, the Short portfolio the 30% with the lowest expected returns, and the Neutral portfolio the remaining
40%. All stocks are equally weighted. Expected returns are generated with three different specifications of the
panel. Transitions frequencies are the average fractions of stocks that are in portfolio P at time t and in portfo-
lio Q at time t+1. The additional categories New and Out refer to stocks that were not in the panel at time t,
and left the panel at time t+1, respectively. The table consists of four panels that show transition frequencies
for portfolios based on forecasting for one, two, three and six months. The first subpanel of each panel refers
to a pooled model with a pooled time effect and pooled β, the second subpanel has a model with industry
specific β� and the last subpanel contains results for a model with industry specific time effects and coefficients.

One Month Forecast Two Month Forecast

To To

Model From Long Neutral Short Out Long Neutral Short Out

pooled Long 0.785 0.184 0.024 0.002 0.930 0.062 0.002 0.002
Neutral 0.186 0.633 0.175 0.002 0.064 0.880 0.050 0.001
Short 0.026 0.200 0.765 0.003 0.003 0.088 0.901 0.003
New 0.335 0.300 0.357 – 0.413 0.352 0.229 –

industry Long 0.844 0.146 0.003 0.002 0.879 0.098 0.016 0.002
specific Neutral 0.207 0.660 0.127 0.002 0.102 0.799 0.092 0.001
coefficients Short 0.005 0.206 0.781 0.004 0.020 0.111 0.861 0.003

New 0.406 0.329 0.257 – 0.353 0.266 0.374 –

industry Long 0.712 0.251 0.029 0.003 0.854 0.125 0.013 0.003
specific Neutral 0.157 0.675 0.161 0.002 0.078 0.831 0.084 0.001
coefficients Short 0.026 0.263 0.703 0.003 0.013 0.135 0.844 0.002
and time New 0.302 0.352 0.338 – 0.327 0.315 0.351 –

Three Month Forecast Six Month Forecast

To To

Model From Long Neutral Short Out Long Neutral Short Out

pooled Long 0.954 0.038 0.002 0.002 0.955 0.033 0.005 0.001
Neutral 0.041 0.925 0.028 0.001 0.038 0.927 0.028 0.001
Short 0.003 0.053 0.935 0.003 0.009 0.042 0.941 0.003
New 0.403 0.353 0.238 – 0.397 0.293 0.304 –

industry Long 0.913 0.065 0.014 0.002 0.941 0.038 0.014 0.001
specific Neutral 0.072 0.861 0.061 0.001 0.038 0.918 0.038 0.001
coefficients Short 0.018 0.075 0.898 0.003 0.015 0.044 0.933 0.003

New 0.340 0.271 0.382 – 0.293 0.250 0.452 –

industry Long 0.902 0.081 0.010 0.002 0.935 0.047 0.012 0.002
specific Neutral 0.051 0.890 0.053 0.001 0.030 0.933 0.032 0.001
coefficients Short 0.009 0.086 0.900 0.002 0.011 0.052 0.930 0.002
and time New 0.320 0.287 0.386 – 0.278 0.305 0.412 –
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Table 13: Performance Evaluation

The table reports time series regression results of the model

RLS
t = a + b(RM

t − Rft) + sSMB t + hHMLt + uUMD t + εt,

where RLS
t is the monthly return of the expected return sorted long-short portfolio,

RM −Rf is the excess return on the value weighted market index, SMB is the Fama-French
”Small minus Big” size factor, HML is the Fama-French ”High minus Low” book-to-market
factor and UMD is the ”Up minus Down” momentum factor. The entries show parameter
estimates with autocorrelation robust t-statistics in parenthesis. The long-short portfolio
returns are constructed using the six strategies shown in table 10. Intercepts are in
percents per month. The first two columns refer to a pooled model with a pooled time
effect and pooled β, the second two columns have a model with industry specific β� and
the last two columns contain results for a model with industry specific time effects and
coefficients. The upper panel reports results for portfolios based on one-month forecasting,
the middle panel - on three-month forecasting and the lower panel - on six-month forecasting.

pooled industry specific β� β� and λ�t

Variable EW VW EW VW EW VW
One Month Forecast

R2 0.38 0.35 0.20 0.25 0.09 0.27
Intercept 0.70 0.42 1.40 0.97 1.20 0.56

(2.94) (2.21) (6.07) (4.94) (7.17) (4.64)
RM − Rf 0.03 0.09 0.06 0.08 0.08 0.03

(0.42) (1.86) (0.90) (1.59) (2.06) (1.09)
SMB 0.11 0.09 0.03 -0.16 0.16 0.01

(1.25) (1.54) (0.26) (-2.82) (3.31) (0.32)
HML 0.38 0.22 0.43 0.27 0.24 0.22

(-1.82) (3.15) (4.26) (3.80) (3.86) (0.42)
UMD 0.40 0.40 0.01 0.24 -0.05 0.22

(4.60) (9.84) (0.09) (5.76) (-0.14) (8.26)
Three Month Forecast

R2 0.46 0.38 0.22 0.25 0.298 0.394
Intercept 0.53 0.60 1.16 0.79 0.82 0.39

(2.87) (2.84) (6.99) (3.96) (6.38) (2.70)
RM − Rf 0.01 -0.02 0.01 0.02 0.05 0.03

(0.28) (-0.33) (1.93) (0.45) (1.63) (0.86)
SMB 0.25 0.20 0.17 0.04 0.21 0.20

(4.70) (2.58) (3.57) (0.62) (5.66) (4.80)
HML 0.29 0.27 0.42 0.42 0.39 0.22

(4.35) (2.04) (6.83) (5.70) (6.21) (4.14)
UMD 0.45 0.43 0.10 0.21 0.15 0.30

(11.45) (6.01) (2.86) (4.90) (5.63) (9.68)
Six Month Forecast

R2 0.24 0.19 0.20 0.23 0.20 0.14
Intercept 0.44 0.41 1.01 0.88 0.73 0.32

(2.04) (1.88) (5.19) (4.62) (4.28) (2.89)
RM − Rf 0.004 -0.026 0.009 0.002 -0.004 0.01

(0.01) (-0.46) (0.18) (0.04) (-0.09) (0.34)
SMB 0.21 0.15 0.18 0.09 0.24 0.08

(2.18) (1.40) (2.16) (1.10) (3.10) (1.27)
HML 0.34 0.37 0.39 0.46 0.29 0.19

(2.18) (2.14) (2.29) (2.19) (2.33) (3.72)
UMD 0.28 0.26 0.15 0.16 0.14 0.11

(2.53) (2.11) (2.15) (2.10) (1.57) (2.19)



Figure 1: Equally Weighted and Value Weighted Index

The upper panel shows the average monthly returns from equally weighted portfolios constructed
from all MSCI universe stocks. The returns have an average value of 1.44% per month and a standard
deviation of 5.12%. The lower panel shows two value weighted average monthly return series. The
series with the solid line is computed from our MSCI data set. The average return from this portfolio
is 1.28% per month and has a standard deviation of 4.63%. The other series with the dashed line is
the Fama and French value weighted benchmark return series. The average return of this series is
1.20% with a standard deviation of 4.50%.
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Figure 2: Individual Effects

The figure shows histograms of the estimated individual effects µi in the general model (1). Estimates
are ordered by industry according to the MSCI classification shown in table 1. The units on the
horizontal axes are percentage points, while the units on the vertical axes are percents.
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Figure 3: Histograms of the Data Set and the Outliers

The upper panel shows the histogram of the number of observations per industry outlier. The lower
panel shows the histogram of the number of observation per company from the whole data set.
The horizontal axes show the number of observations per firm. The vertical axes show absolute
frequencies, i.e. the number of firms within each observation group.
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Figure 4: Industry Specific Parameter Estimates

Each panel shows values of an element of β� for all industries. For each industry the figure shows
estimates of βj� for three different specifications of the panel. For each industry, the first bar refers
to a model specification with industry intercepts and no time effects (λ�t = 0). The second bar
stays for the specification with industry specific intercept and pooled time effects (λ�t = λt), and
the third bar stays for the model with industry specific time effects (µi = 0, λ�t). The numbers on
the horizontal axes denote industries according to the MSCI classification shown in table 1.
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Figure 5: Industry Specific t-statistics of Model Coefficients

Each panel shows values of the t-statistics of an element of β� for all industries. For each industry
the figure shows estimates of βj� for three different specifications of the panel. For each industry,
the first bar refers to a model specification with industry intercepts and no time effects (λ�t = 0).
The second bar stays for the specification with industry specific intercept and pooled time effects
(λ�t = λt), and the third bar stays for the model with industry specific time effects (µi = 0, λ�t).
The numbers on the horizontal axes denote industries according to the MSCI classification shown
in table 1.
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