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Abstract

In voting problems where agents have Lipschitntinuous tility functions on a multidimensional
space of alternatives, a voting rule is threshold strategy-proof if any agent can obtain only a limited
utility gain by not votirg for a most preferred alternative, if the number of agents is large enough. For
anonymous voting rules it is shown that this condition is not only implied by but is in fact equivalent
to the influence of any single agent decreasing to zero as the number of agents grows. If there are
at least five agents, the mean rule (taking the average vote) is shown to be the unique anonymous
and unanimous voting rule that meets a lower bound with respect to the number of agents needed to
obtain threshold strategy-proofness.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A voting mechanism for public goods is strategy-proof if no voter can gain by not
voting according to his true pference. There are good reasons to use strategy-proof voting
mechanisms: in particular, appealing properties satisfied by a mechanism (for instance
Pareto efficiency) may fail to hold for the truegberences if the agents report differently.
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Unfortunately, in general a high price has to be paid in order to attain strategy-proofness.
In the classical model of social choice studied by Gibbard (1973) and Satterthwaite
(1975) this price is that the mechanism istdtorial, and in the classical literature on
demand revealing public good provision (Clarke, 1971; Groves, 1973) the price is budget
imbalance. Better results are obtained hietdomains of preferences and alternatives
are restricted. Moulin (1980) considers single-peaked preferences on the real line and
characterizes a class of generalized median mechanisms. In a multi-dimensional Euclidean
space with single-peaked preferences, howevarechanism is dictatorial if it is strategy-
proof and the range of the mechanism is at least two-dimensional (Zhou, 1991). Even
in these cases, rather natural mechanisnes tiéling the average vote, are excluded by
strategy-proofness.

In the present paper we argue that the strategy-proofness condition may be less
compelling than it seems. First, if a mechanism is not strategy-proof, it may nevertheless be
difficult and risky for any single agent to try and manipulate the final outcome by insincere
voting if he does not know the exact prefeces of the other agents. Moreover, even if
he does know these preferences he would have to take into account potential manipulation
by the other agents. Second, even if some gain may be obtained by manipulation, this
will generally be rather small if there are many agents, and it will not outweigh the cost
of finding out the best way to manipulate. For these reasons it seems safe to assume that
especially in large voting problems agents will not be interested in manipulation, even if
there is a theoretical potential for gain.

The present paper is an attempt to formalizese considerations. In our framework,
voting mechanisms that are ‘competitive’ in the sense that any single voter has negligible
influence, are shown to be hardly manipulable. This is obvious and intuitive. More
interestingly, for anonymous mechanisms (which is the usual case) also the converse holds:
limited strategic manipulability must imply competitiveness of the voting mechanism.
Taking the average vote turns out to be the unique anonymous and unanimous mechanism
that satisfies limited strategic manipulability in a sharp sense, i.e., for the minimum number
of agents.

In somewhat more detail, we assume a framework where agents have continuous
preferences on some Euclidean space, which may represent different aspects of the political
spectrum. Limited strategic manipulabiliig modeled by the condition of threshold
strategy-proofness on a voting mechanism or rule. This condition means that, if there
are sufficiently many agents, no ageain gain more than a small amount in utility by
not reporting a best point. This unavoidably raises the question how to measure utility
gains. This is not possible in a purely ordinal framework, and in fact we will impose
a condition of Lipschitz continuity on the utility functions representing the preferences.
Clearly, Lipschitz continuity is not preserved under arbitrary monotonic transformations
of the utility functions It should be noted that no single-peakedness condition will be
imposed, which makes our model also in this respect different from Moulin (1980) and
Zhou (1991).

As mentioned above, the first main result of the paper is that for anonymous voting
rules threshold strategy-proofness is equivalent to a condition saying that, as the number of
agents becomes large, the influence of any single agent on the outcome of the voting rule
decreases to zero. Next, for a large class of voting rules a sharp lower bound on the number
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of agents is derived in order that the maximal utility gain by manipulation is limited. The
second main result is that, if there are at least five agents, then anonymity, unanimity, and
this sharp lower bound characterize the mean rule (taking the average of the votes). In other
words, the number of agents needed to make a voting rule ‘almost’ (threshold) strategy-
proof is minimal in case of the mean rule.

Both results confirm plausible intuitions. The first result not only establishes that
strategic manipulation issues vanish if eaghgle voter has negligible influence, as is
the case in large voting problems. More importantly, it says that this negligible influence
is a necessary condition in order to avoid strategic manipulation. Note that this result is
not obvious: for instance, generalized medians in the one-dimensional case with single-
peaked preferences are strategy-proof but do not entail negligible influence of individuals.
The second result says that a natural rule like the mean rule seems the best one to use if
manipulation biases should only be small.

As far as we are aware the literature on this particular theme is rather limited. An early
reference is Pazner and Wesley (1978), where voters report linear orderings on a finite
set of alternatives and it is shown that, when the number of voters increases, the plurality
rule has the property that the fraction of manipulable preference profiles converges to zero.
Gary-Bobo and Jaaidane (2000) show that in a growing consumer population it is possible
to have a revelation mechanism for the production of public goods that is strategy-proof,
budget balanced, and approximately efficient. The following references concern private
goods. Roberts and Postlewaite (1976) show that in an exchange economy the gain from not
announcing one’s competitive demand goes to zero as the number of consumers increases
through replication. Gul and Postlewaite (1992) derive that in an exchange economy
with asymmetric information the tension between incentive compatibility and efficiency
disappears as the agents are sufficiently replicated. Cérdoba and Hammond (1998) show
that in a class of smooth random exchange economies there are mechanisms that are
nonmanipulable in the limit with probdlly one. Though in a diffeent (private goods)
context, these results are similar in spid ours. Schummer (1999) considers a condition
of e-dominance of truth-telling in a two-person exchange economy without, however,
increasing the number of agents.

Section 2 gives the formal model and a lprénary result. Setion 3 characterizes
anonymous and threshold strategy-proof vptinles, and Section 4 characterizes the mean
rule in terms of sharp threshold strategy-proofness. The more technical proofs are collected
in Section 5.

2. Preliminaries

The set ofalternativesis the m-dimensional Euclidean spa@®". An element ofR"”
can be interpreted as the location of a public decision, or of a political party, in an election
with respect ton attributes, or political viewpoints.

Preferences are represented by utility functiondR”™ — R that are Lipschitz
continuous, that is, there is ah > 0 such that|u(a) — u(b)| < L|la — b| for all
a,b € R™, Here, without loss of generality we take || to be the Euclidean norm. The
numberL is called a Lipschitz constant arid, is the set of all utility functions with
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Lipschitz constantf.. Lipschitz continuity in this context can be interpreted, roughly, as
the requirement that utility functions do not exhibit fast changes.

For a compact sef C R™, an alternativer € C is abest alternativef a utility function
uin C if u(x) > u(y) forall y € C. Sinceu is Lipschitz continuous an@ compact, a best
alternative always exists.

The set of (potential) agents is identified with the set of natural numBetset P
denote the set of all non-empty and finite subset®NofFor N € P, |N| denotes the
cardinality of the setV. A voting problenis a pair(N, p), whereN € P andp € (R™)V
is a profile of votes. This implies that each agent N is allowed to report (vote for)
one alternativep(i) € R™. A voting rule F assigns to each voting proble(W, p) one
alternativeF (N, p) € R™. Instead ofF (N, p) we will often just write F(p), in particular
if it is obvious what the set of agenié is.

Allowing agents to report only one alternative corresponds to what is frequently
observed in existing voting procedures. lakes the mechanism spie and transparent.
Nevertheless, it would be interesting to cimes also mechanismf®r which agents can
report a set of points or even a complete preference. It is not obvious at all what the impact
of this on our results would be, however.

For a set of agent®y € P and an agente N, the profilesp, ¢ are called-deviations
if p(j)=q(j) forall j € N\ {i}. The central property under investigation in this paper is
the following.

Definition 1. A voting rule F is threshold strategy-proaf for every compact sef € R™,
everyL > 0, and every > 0, there is a real numbér> 0 such that for everyw € P with
IN| > k, everyi € N, all i-deviationsp, g € CV, and every utility functioru € ¢/, for
which p(i) is a best alternative i@, we have:

u(F(@)) —u(F(p) <e.

Threshold strategy-proofness says the following. Suppose that votes are restricted to a
compact subset and utilifynctions are Lipschitz continuous. Then, if there are sufficiently
many agents, an agent cannot gain more than a small amduntoting for a possibly
suboptimal alternative. In other words, undeg$e conditions it is hardly worthwhile to try
and manipulate by strategic voting. The usual strategy-proofness condition would require
the inequality in the definition to hold far= 0. Hence, threshold strategy-proofness is a
relaxation of strategy-proofness.

The following lemma shows an important consequence of threshold strategy-proofness:
by manipulation, either the resulting alternative remains approximately the same, or the
manipulating agent is almost a dictator with respect to the votes under comparison. This
result is used frequently in the sequel.

Lemma 1. Let F be a threshold strategy-proof voting rule and €t L, ¢, and k be
as in Definitionl. Let N € P be a set of agents withw| > k, let i € N, and let
p.q € CN bei-deviations. Thed F(p) — F(q)|| < €/L or [|p(i) — F(p)|| < ¢/L and
lg@) — F(g)ll <e€/L].
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Proof. Defineu’ e Uy by u'(x) = L||F(p) — x| for all x e R™. Defineu € Uy, by u(x) =
min{u’(x), u’(p(i))} for all x € R™. By threshold strategy-proofness and the definition
of u,

e>u(F(q)) —u(F(p))=Lmin{|p() - F(p)|.|F(p)— F@)|}.

This implies|| F(p) — F(g)|| <e¢/L or | p(i) — F(p)|l < ¢/L. The remaining statement in
the lemma follows by symmetry.O

)

3. Anonymity and threshold strategy-proofness

In this section we characterize all anonymous and threshold strategy-proof voting rules.
Let o denote composition of maps.

Definition 2. A voting rule F is anonymousf for all sets of agentsV, M € P with
IN| = |M|, all bijectionso : M — N, and all profilesp € (R™)V, we have

F(N,p)=F(M,poo).
In other words, a voting rule is anonymous if the identities of the agents do not matter.

Definition 3. A voting rule F isinsensitive at large populatiorifsfor everye > 0 and every
compact se€ C R™ there is a real numbérsuch that for everyw € P with |[N| > k, every
i € N, and alli-deviationsp, ¢ € C", we have

|F(p)— F(g)| <e.

Thus, if a voting rule is insensitive at large populations, the influence of a single agent
becomes small as the number of agents becomes large. Since by Lipschitz continuity small
changes in the alternatives can lead to omhall changes in utility, the condition implies
threshold strategy-proofness. Formally:

Proposition 1. Let F be a voting rule that is insensitive at large populations. Tlers
threshold strategy-proof.

Proof. Let C be a compact subset B" and lete > 0. Let L > 0 and choosé € R such
that for everyN € P with |[N| > k, everyi € N and alli-deviationsp, ¢ € CV, we have
|F(p) — F(gq)|l <¢/L. Consequently, for such profiles and foe U/, , it follows that

u(F(p)) —u(F(@) <L|F(p)— F(@) <e.
Hence,F is threshold strategy-proof.0

The converse of Propii®n 1 does not hold. For instance, a dictatorial rule, assigning
to any profile of votes the same agent’s reported point, is threshold strategy-proof but
not insensitive at large populations. Under anonymity, however, the two conditions are
equivalent.
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Theorem 1. An anonymous voting rule is threshold strategy-proof if and only if it is
insensitive at large populations.

The proof of Theorem 1 is given in Section 5. The if-part (in fact, Proposition 1)
states the intuitive and obvious fact that, if the influence of a single agent vanishes as the
population of voters becomes large, then so does his potential for strategic manipulation.
The only-if part is more interesting and more difficult to prove: if the voting rule is
anonymous and the pob#ity for strategic manipulation vanishes as the population grows,
then any single agent’s influence must vanish at &bserve thatmedian rulegMoulin,

1980) are anonymous but not insensitive at large populations: for those rules there always
exist situations where a single agent’'s vote may have a tremendous influence on the
public outcome. Consequently, these rules aistate threshold strategy-proofness (that

is, outside of the single-peaked domain).

4. Sharp boundsand the mean rule

In this section we first derive a lower bound for the number of agents in order that
for a given voting rule each agent can gain at mo$ty manipulation. In other words,
we establish a lower bound for the numlieas in the definition of threshold strategy-
proofness. This is done for voting rules that are anonymous and satisfy the following

property.
Definition 4. A voting rule F is translation invariantif for every set of agent&v e P,
everyc € R™, and every profilep € (R™)V, we have
F(N,p—i—(c,...,c)):F(N,p)—i—c.
Translation invariance makes the voting rule independent of the choice of the zero. The

next lemma provides the announced lower bound.
For a compact sef in R” we define diarcC) := max{|la — b||: a,b € C}.

Lemma 2. Let F be an anonymous, translation invariant and threshold strategy-proof
voting rule. LetC € R™ be convex and compact. Let> 0, L > 0, andk > 3 be as in
Definition1. Thenk > L diam(C) /.

A proof of this lemma is given in Section 5. Corollary 1 below shows that this result
still holds if we replace translation invariance by the following condition.

Definition 5. A voting rule F is unanimousf F(a,a,...,a) =a for everya € R™.

Unanimity means that if all agents vote for the same alternative, then that alternative
should result.

1 At first glance this almost seems to be a corollary to Lemma 1, namely if the almost-dictatorship part of the
conclusion of that lemma could be excluded. This, however, is still some work—basically, Lemma 3 in Section 5.
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The remainder of the section is devoted te #tudy of voting rules that meet the lower
bound derived in Lemma 2. This results in a characterization of the mean rule. First, we
formalize this condition.

Definition 6. A voting rule F is sharp threshold strategy-prodffor every compact subset
C C R™, everyL > 0, everye > 0, everyN € P with |[N| > L diam(C) /e, all i-deviations
p,q € CV, and all utility functionsu e I{;, for which p(i) is a best alternative 0@, we
have

u(F(q)) —u(F(p)) <e.

An example of a sharp threshold strategy-proof voting rule isntiean rule FM€an
defined by F™®¥\(p) = 3",y p(i)/IN| for every N € P and every profilep € (R™MN,
Sharp threshold strategy-proofness follows from the fact thap fgras in Definition 6,

u(F™g)) — u(F™*\p)) < L| F™*Yp) — F™*q)||

Y p() - Zq(j)”/uw

JjeN JeN

=L|p@)—q®]/IN|

< L diam(C)/|N]|

c. (1)

=L

/

N

Note that the mean rule is unanimous and translation invariant. It turns out that the mean
rule is the unique sharp threshold strategy-proof voting rule that is anonymous, unanimous,
and translation invariant. In fact, uniqueness still holds if we drop translation invariance.

Theorem 2. Let F be a unanimous, anonymous and sharp threshold strategy-proof voting
rule. ThenF is equal to the mean rule for all profiles with at least five agents.

A proof of this theorem can be found ire&ion 5. The theorem still holds if we add
translation invariance. If weeplaceunanimity by translation invariance, then there are
additional rules satisfying the conditions (e.g., take the rule that adds an arbitrary fixed
vectorx € R™ to the outcome assigned by the mean rule), but these cannot be unanimous.

Another observation is that in the derivation (1) of sharp threshold strategy-proofness
of the mean rule, it is easy to turn the first two inequalities into equalities by appropriate
choices oft, p, andg. As a consequence, faN| < L diam(C) /¢, we have:(F™¢3q)) —
u(F™a p)) > €. This shows that for the mean rule the lower boudirdlam(C) /¢ is sharp,

i.e., if the number of agents is smaller, then threshold strategy-proofness is violated. Now
suppose that in Lemma 2 we replace translation invariance by unanimity. If there were
an F with a lower bound below. diam(C) /¢, then F would be sharp threshold strategy-
proof and therefore, by Theorem 2, for more than five agénigould be the mean rule,

a contradiction. We have just proved the following corollary to Theorem 2.
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Corollary 1. Let F be an anonymous, unanimous and threshold strategy-proof voting rule.
Let C C R™ be convex and compact. Let- 0, L > 0, andk > 3 be as in DefinitionL.
Thenk > L diam(C) /e.

Theorem 2 does not hold for less than four agentsulet1 and letF be the mean rule
in case the number of agents is four or more. For three agen#s dssign to every profile
p the point

2 o 1 o
§m|n{p(z): zeN}+§max{p(z): ieN};

and for two agents lef assign the lower one of the reported votes. Altogether, this defines
a voting rule satisfying the properties in Theorem 2. It is an open problem whether the rule
can also be different for the border line case of four agents. An answer to this problem,
however, is of limited interest since we are concerned with large voting problems.

The following examples establish the logical independence of the properties in
Theorem 2. In these examples= 1.

Example 1. ForallN € P andp e RY, let
F(p) :=mediarimin{p(i): i € N},0,max{ p(i): i € N}).

This rule is unanimous and anonymous, but not threshold strategy-proof.

Example 2. ForallN € P andp € RV, let FO(p) := 0. This rule is anonymous and sharp
threshold strategy-proof, but not unanimous.

Example 3. For all N € P andp e R", let F/(p) := p(minN). This rule is unanimous
and sharp threshold strategy-proof, but not anonymous.

5. Proofs

We start with a technical, auxiliary lemma. koe R™ ande > 0 denote byB(a, €) :=
{x e R"™: |la — x| < €} the ball with centrez and radius. For a setC € R™, con C)
denotes the convex hull af, i.e., the smallest convex set containi@g The lemma is
illustrated in Fig. 1.

Fig. 1. Lemma 3. The profile is located in the dis®(c, 2/2). In r¢ andr? (not drawn), agenf deviates ta
andb, respectively. The lemma states that if (1) holds and if deviating @0 » makes the voting rule outcome
move close ta: or b, respectively, therF cannot be anonymous.
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Lemma 3. Leta, b, c € R” such thatc = 3(a + b). Leta > 0 such that|la — b|| > 5x.
Let C! = conu{a} U B(c, 31)), C2 = con{b} U B(c, 1)), and C = conC! U C?)
(=ctuc?.

Let F be a voting rule and lelV € P and assume that for alle N and alli-deviations
p.qgecCV,

|F(p) = F@|<x or [|F(p)-p®]<rand|F(g)—q@)|<i] 2

with all inequalities strict whenever, g € (CH)N or p, g € (CHV.

Letr € B(c, 1)V andj € N, and forx € R” denote by-* the j-deviation of- defined
by r(j) = x. Assume thaf F (r*) — a|| < » and || F(r®) — b|| < A.

ThenF is not anonymous.

Proof. Without loss of generality lev = {1,...,n} andj =n. Fort € {0,1,...,n — 1}
andx € R™ let w"* be the profile defined for alle N by

r* ifi>t,

1,X N
w (l)_{c if i <1.
Fort €{0,1,...,n — 1} we now prove that

[F(w) —a| <r and |F(w"?)—b] <. ©)

Caser = 0. Sincew®? = r® andw®? = b this is the assumption made in the statement
of the lemma.

Caser = 1. Sincew®*, w%¢ are 1-deviations, (2) implies
HF(wl’“) — F(wo’“)H <A or ||F(w0’“) —r* |, HF(wl’“) — c|| <A 4)

Since by case = 0 we have||F (w®?) — a| < A and, further;%(1) € B(c, 1y and|a —
cll > 3, we have| F(w®9) —r¢(1)[| > . So (4) implies| F (w%) — F(w®9)|| < 4. Since
| F(w%%) — al| < A, it follows that|| F (wl?) — a|| < 2x. Similarly, || F (wb?) — b < 2x.
Sincew®?, wl-? aren-deviations inC", (2) implies
|F(wh) = Fw™)| <i or [F(w™) —a.|F(w"’) —b] <A (5)

As |[F(wb?) —a| < 2x, |F(wb?) — b < 2, and|la — b| > 54, the first inequality in
(5) does not hold. Hence (5) impliglg” (w>) — a|| < A and | F(w'?) — b|| < A. This
concludes case=1.

Cases =2,...,n — 1 are analogous to case- 1. Hence, we have proved (3).
Forx, y € C consider the profile*> € CV defined for alli € N by

x ifi=1,
Y@ =1c¢ ifl<i<n,
y ifi=n.

Since v*¢ and w" ¢ are 1-deviations inCY we have by (2) that|F (%) —
F" )| < or [|[F@>4) — bl| < A and [|[F(w" 19) — ¢| < A]. Now the latter
cannot be the case singe — c|| > gk and, by (3) forr =n — 1, || f(w" 1% —a| < A.
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Hence the former must be the cage;(v>?) — F(w" 1%)| < A, and together with
| f (w"=14) — q| < A this implies| F (v*%) — a|| < 2x.

Similarly one proveg F (v*?) —b|| < 2. Sincella — b|| > 54, it follows that F (v*?) =
F(v>%). SoF is not anonymous. O

Proof of Theorem 1. In view of Proposition 1 it is sufficient to prove the only-if part.
Suppose thaF is threshold strategy-proof but not insensitive at large populations. Then it
is sufficient to prove thaf is not anonymous.

SinceF is notinsensitive at large populations there 20 and a compact subsét
of R™ such that for every’ > 0 there is a set of agend’ with |[N’'| >k’ and aj € N’ and
j-deviationsv, w € (C")N" with

|F@) - Fw) | >s. (6)
Take c € C', a,b € R™, and A > 0 such thatc = 3(a + b), C' € B(c, 3A), and
lla — b| = 5x. LetC, C1, €2 as in Lemma 3.
Take O< ¢ < min{A, %8}. By Lemma 1 there is & > 0 such that for allvV € P with
IN| >k, all i € N and alli-deviationsp, ¢ € CV, we have
|F(p) = p®].|F@)—q@®] <e<ir or [F(p)—F@|<e<n 7

Takek’ (as in the second paragraph of the proof) equdl tand letN’, j, v, andw as in
the second paragraph. Note that (2) in Lemma 3 is satisfied. So by this lemma, detting
play the role of, it is sufficient to prove that

[P ~al <3 and |F()-b] <.

where, analogously to* in Lemma 3,” is the j-deviation ofv with v(j) = x. By (7) we
have:

[F() - Fo]<e or |F()—a]<e
and
[F(w) = F@) <€ or [F)—a]<e

Suppose that F(v*) — a|| > . Then||F(v*) — a|| > € and sincev® = w*, we have
both || F(v%) — F(v)|| < € and |[F(w?) — F(w)|| = |[F (%) — F(w)| < e. This implies
| F(v) — F(w)| < 2¢ < 8, in contradiction with (6). Thus, we must hay€ (v?) —a| < A.
Similarly, one proveg F (v*) — b|| < A. This completes the proof of the theorent

We proceed with the proof of Lemma 2. For a compaciGet (R™)", pointsa andb
in C are calleddiametricalif diam(C) = |ja — b||.

Proof of Lemma 2. Let a andb be diametrical points ir€. Without loss of generality
suppose € N. Let N = {1, 2, ..., k} and let the profilep, ¢ € CV be defined by
pi)=a+G—-Db—-a)/k and q@i)=a+i(b—a)/k foreveryieN.

Since C is convex, for alli € N, p(i),q(i) € C. By translation invariancef(g) =
F(p) + (b —a)/k. Sincek > 3, we have|| F(p) —al > ||lb —al/k or |[F(q) — b| >
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b — a||/ k. Without loss of generality assuniié”(p) — al > ||b — al|/k. Letu’ € Uy be
defined byu’(x) = L||F(p) — x| for all x € R™, andu by u(x) = min{u’(x), u’(a)}. (This
construction is similar as in the proof of Lemma 1.) Note that, by anonymigndg can
be regarded as 1-deviations. We have

e>u(F(q) —u(F(p))
=u(F(p)+(b—a)/k)
=min{L|lb—al/k,L|F(p)—a|}
=L|b—all/k,
where the inequality follows from threshold strategy-proofness, the first equality from

F(p)=F(q)+ (b —a)/k andu(F(p)) =0, and the third equality fromF (p) — a| >
b —all/k. Hencek > L|b — a|| /¢, which was to be proved.O

The proof of Theorem 2 is based on the following auxiliary lemma.

Lemma 4. Let F be an anonymous and sharp threshold strategy-proof voting rule. Let
N € P withn =|N| > 5. Let C be a compact and convex subsef®8f with diametrical
pointsa and b. Let j € N and letp,q € CV be j-deviations such thap(j) = a and
q(j)=>b.Then|F(p) — F(p)I < b —al/n.

Proof. Suppose, to the contrary, that
|F(p) = F@| > 1b—al/n. (8)

TakeL > 0ande = L|la—b|/n.Letc = %(a +b) and forx € R™ let p* be thej-deviation
of p defined byp* (j) = x. Forx, y € R™ such that € conu{x, b}) andb € conu{y, a})
let C¥ =con{x}U C) andC” = conu{y} U C). (Cf. Fig. 2.) Then diartC*) = ||x — b||
and dianiC”) = ||y — a]|.

By applying sharp threshold strategy-proofness and Lemma 1 (takeifiocemma 1
the numbel ||b — x||/n) we have for ali-deviationsv, w € (C*)V:

|F) = F)| <lb—xl/n or
|F@) —v®|. [Fw) —w@ | < lIb—x]/n. 9

Similarly, for all i-deviationsy, w € (C¥)V:

’

|F()— Fw)|| <lla—yll/n or
[F) —v@|. |Fw) —w@| < lla—yl/n. (10)

)

T Y
C C C

T a c b Y

Fig. 2. Proof of Lemma 4.
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Forv = p andw = ¢ and noting thap(j) = a andq(j) = b, we have by (8), (9) applied
for x = a, and (10) applied fop = b:

|F(p) —al.|F@)—b| <lla—bl/n. (11)
Sincen > 5, (11) implies
|F(p) — F(q)| = 3lla —bll/n. (12)

We now first prove the following claim for andy as above.
Claim. [|F(p*) —x|| < Ib —x|l/nand||[F(p”) — yl < lla = yll/n.

Proof of Claim. Take a sequencey = a, z1,...,2+ = x in conV{x,a}) such that
lze —ze—1ll < 3llze—1—bll forall e =1,...,t. We prove thal| F (p**) — z¢|| < |b—z¢ |l /n
forall ¢ =1,...,¢, from which the first inequality in the Claim follows. The second
inequality can be proved analogously.

Casei = 1. First observe that by (12)

|£(p) = F(p™) | + | F (™) = F(r")]
= |F(p) = F(p™)| + [F(p™) = F@| = [F(p) = F(@)| = 3lla —bl/n
> 2|z — b (13)
Apply (9) on C% to the pairp® and p? = ¢. If ||[F(p?t) — F(g)|| > ||b — z1ll/n then
IF(p*) — zall < b — z1l/n and we are done. IfF (p*t) — F ()|l < Ib — z1ll/n then by
A3) |F(p) — F(p*Y)|| > |Ib — z1l|/n, hence (9) applied to the pagi, p*t on C*t implies
| F(p*t) — z1ll < |b — z1]l/n and we are again done.
Furthermore, by (11) we havyg(¢) — b|| < |la — b||/n < ||z1 — b||/n, SO sincer > 5
we have
|F(p™) = F@| =3Il —zall/n.
HenceCases! =2, ..., can be proved analogously to case 1.
Now takex > 0 anda, b, c € R™ such that = 3(a + b), la — b|| =54, C S B(c, 31),
C =conu{a} U B(c, 1)), C2 = conu{b} U B(c, 31)). (See Fig. 3.) Then, by the Claim,

IF(p®) — &) < diam(CY/n < A and |F(p?) — b|| < diam(C?)/n < A. Furthermore,
Lemma 1 and sharp threshold strategy-proofness imply that fardeliationsv, w in
(CHN  wherek € {1, 2,3} andC3 = c1 U C?, we have

|F () — F(w)| < diam(C*)/n <&

Cvl CQ

aWb

B(e, %)\)

Fig. 3. Proof of Lemma 4.



L. Ehlers et al. / Games and Economic Behavior 49 (2004) 103-116 115

or
|F@) = oD, | Fw) —w(i] < diam(C*)/n < 2.

Note that the inequalities dia@*)/n < A are strict fork = 1, 2. Hence, Lemma 3 applies
and yields a contradiction.

’

Proof of Theorem 2. Let N € P have at least five agents and Jet (R™)" be a profile.
We proceed by induction op(N)|, wherep(N) = {p(i): i € N}.

If |p(N)| =1, thenF(p) = F™41p) by unanimity.

For the induction step, lgp(N)| = k > 1. Let C be the convex hull op(N). Take
a andb in p(N) diametrical inC. Let S ={i € N : p(i) ¢ {a,b}}. Let |S| =s and
n=|N|=k+1+s such thatp = (a¥, ps, b'). Here,ak means thak agents vote for
a, andps = (p(i))ies. Letg = (@**, ps) andr = (ps, b**!). The induction hypothesis
entails

k+1 s
a+ —F™MNps) and
n n

k+1
F(r)=F™) = T+b + %Fmeartps).

F(q) = F™q) =

It follows that

[F@) ~ Fol=Lip—a.
By repeated application of Lemma 4,

|F(g)— F(p)| < éllb —a| and |F(r)—F(p)| < gllb—all-
It follows that these inequalities must be equalities, and in particular

k / k ) s
F =—F —F = — —b —Fmea :Fmea .
(p) ey (q)+k+l (N =~a+~b+— ps) p)

This completes the proof of the induction step and of the theorem.
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