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Abstract

The paper considers n-dimensional VAR models for variables exhibiting cointegration

and common cyclical features. Two specific reduced rank vector error correction models

are discussed. In one, named the ”strong form”and denoted by SF, the collection of all

coefficient matrices of a VECM has rank less than n, in the other, named the ”weak

form”and denoted by WF, the collection of all coefficient matrices except the matrix

of coefficient of error correction terms has rank less than n. The paper explores the

theoretical connections between these two forms, suggests asymptotic tests for each form

and examines the small sample properties of these tests by Monte Carlo simulations.

The paper proposes a sequential test procedure that is aimed at uncovering strong

forms by examining weak forms. For GDP series for five Latin American countries, 1950-

1999, the WF appears to be supported by the data. Imposing the WF parameter restric-

tions leads to an improvement of forecast accuracy for these data series.
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1 Introduction and Motivation

The interest in comovements between economic variables leading to common cyclical fea-

tures has arisen for instance because economic theory predicts such comovements and many

economic variables exhibit strong correlation at various frequencies. The vast literature on

cointegration has focussed on long-run comovements. More recently, the existence of short-

run comovements between stationary time series, e.g. between first differenced cointegrated

I(1), series has been analyzed (see Engle and Kozicki 1993; Vahid and Engle, 1993; Gouriéroux

and Peaucelle, 1989; Tiao and Tsay, 1989). Among these approaches, the concept of serial

correlation common features (SCCF hereafter) introduced by Engle and Kozicki (1993) ap-

pears to be useful. It means that stationary time series move together in a way such that

there exist linear combinations of these variables which yield white noise processes and that

their impulse response functions are collinear. In general, imposing these common features

restrictions when they are appropriate will increase estimation efficiency (Lütkepohl, 1991)

and accuracy of forecasts (Vahid and Issler, 2002) as will be shown in the empirical analysis

of gross domestic product in five Latin American countries.

Parametric restrictions implied by economic theory can also lead to testable hypotheses

within a common feature context. This is for example the case for real business cycle models

(Engle and Issler, 1995; Issler and Vahid, 2001; Hecq, Palm and Urbain 2000a), models for

heterogeneous consumers who are either myopic and liquidity constrained or rational (Vahid

and Engle, 1993; Hecq, Palm and Urbain, 2000b; 2002), the efficient market hypothesis (Hecq,

2000) and more generally for rational expectation and present value models.

The aim of this paper is to analyze common cyclical features1 in relation with cointe-

gration. The strong assumption that some linear combination of the first differences of the

variables in the model is white noise will be called a strong form reduced rank structure

(SF). It corresponds to the case of serial correlation common features of the variables in

first differences and assumes that the left null spaces of the short-run dynamics matrices and

cointegrating matrix overlap. When SCCF appears to be too strong, one can test for the

existence of cofeatures in the form of linear combinations of the variables differenced once,

that are not white noise but have lower order dynamics than the individual variables. Tiao

and Tsay (1989) for example, study this type of structure in a multivariate ARMA model.

1To avoid confusion, it should be noticed from the outset that the term common cyclical features refers
to a particular type of commonality leading to specific reduced rank structures. This concept should not be
confused with the concept of cycle used in business cycle analyses (see the discussion in Cubadda, 1999). On
the other hand, the concept of common cycles (in contrast to common cyclical features) refers to the common
transitory component in particular permanent-transitory decompositions (see Vahid and Engle, 1993; Hecq,
Palm and Urbain, 2000a).
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They call it scalar component model (SCM) while Vahid and Engle (1997) study this concept

under the name of ”codependent cycles” in a VAR. Cubadda and Hecq (2001) analyze another

reduced rank concept named polynomial SCCF (PSCCF) which assumes the existence of a

polynomial matrix which when premultiplying a VECM, reduces it to a vector white noise

process.

We consider a natural weaker alternative assumption under which the common cyclical

part is reduced to a white noise by taking a linear combination of the variables in the first

differences adjusted for long-run effects. This case will be termed weak form reduced rank

structures (WF). In a Vector Error Correction model (VECM), the WF implies that the

collection of all coefficient matrices except the matrix coefficient of error correction terms has

reduced rank and intersecting null spaces. The WF is attractive as it allows for different

common factors generating respectively the long-run and short-run dynamics of economic

variables. It is a necessary condition for the existence of first order codependent cycles in a

VAR(2) as studied by Vahid and Engle (1997). As it is also a necessary condition for the

SCCF, it is a natural hypothesis to be tested in sequential model specification.

Our framework is an extension of that of Vahid and Engle (1993) as we explicitly consider

the WF and use it in reduced rank testing aimed at recovering the SF. In the presence of the

WF only, the lower bound to the number of common cycles is one whereas under SF, there

have to be at least r common cycles in the system, with r being equal to the cointegration

rank. We study both the WF and the SF, taking into account the implications of the WF

for the SF in modeling. Thereby, we do not impose a nesting structure on the null spaces of

the model dynamics. Notice that Reinsel and Ahn (1992) briefly discuss a form similar to the

WF. In general, they impose a nesting structure on the null spaces of the model dynamics.

They do not discuss all the implications for the admissible number of common features.

The paper is organized as follows. In Section 2 we present different forms of reduced

rank structures that arise in empirical work. We focus on the partially non-stationary vector

autoregression that will be reparametrized as a VECM. The relationships between the strong

and weak form reduced rank structures will be analyzed. The mixed form (MF) combining

SF and WF will also be considered. Section 3 presents simple statistical procedures based on

a two-step canonical correlation and maximum likelihood analysis that allow to test various

kinds of reduced rank structures, in particular to check whether short and long-run matrices

have a common left null space. In Section 4, we study the small sample behavior of common

feature tests using Monte Carlo simulations. We show why the number of common feature

vectors can be artificially bounded by a wrong assumption about the nature of the reduced

rank structure. We present a testing strategy that allows us to study cointegration and other

3



common features of unknown order in an integrated framework and we provide simulation

results for cases where the number and the parameters of cointegrating vectors are estimated.

Finally, Section 5 illustrates the relevance of different forms of reduced rank structures for the

analysis of the co-movements among the GDP of five Latin American countries for the period

1950-1999. It also shows the impact on forecast accuracy of imposing WF or SF restrictions

that were not rejected by the data. A final section concludes.

2 Reduced rank structures

Let us consider a Gaussian Vector Autoregression of finite order p (VAR(p)) model for an

n-vector time series {yt, t = 1, . . . , T}:

yt =
p∑

i=1

Φiyt−i + εt, t = 1, . . . , T, (1)

for fixed values of y−p+1, ..., y0 and where εt is a n-dimensional homoscedastic Gaussian mean

innovation process relative to =t = {yt−1, yt−2, . . . , y1} with nonsingular covariance matrix

Ω. Let L denote the lag operator and define Φ(L) = In −
∑p

i=1 ΦiL
i. We make the following

assumption

Assumption 1 (Cointegration): In the VAR model (1), we assume that

1. rank(Φ(1)) = r, 0 < r < n, so that Φ(1) can be expressed as Φ(1) = −αβ
′
, with α and

β both (n× r) matrices of full column rank r;

2. the characteristic equation |Φ(ξ)| = 0 has n − r roots equal to 1 and all other roots

outside the unit circle.

Assumption 1 implies (see Johansen, 1995) that the process yt is cointegrated of order

(1,1). The columns of β span the space of cointegrating vectors, and the elements of α are

the corresponding adjustment coefficients or factor loadings. Decomposing the matrix lag

polynomial Φ(L) = Φ(1)L + Φ∗(L)(1 − L), and defining ∆ = (1 − L), we obtain the vector

error correction model:

∆yt = αβ
′
yt−1 +

p−1∑

j=1

Φ∗j∆yt−j + εt, t = 1, . . . , T, (2)

where Φ∗0 = In, Φ∗j = −∑p
k=j+1 Φk (j = 1, . . . , p − 1). Note that for notational convenience,

deterministic terms (constants, trends, ...) are omitted at this level of presentation. With the
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exception of some simulation results in Section 4, throughout this paper we will also assume

that p is known. Serial correlation common feature (see Engle and Kozicki, 1993) holds for

the VECM (2), if there exists a (n × s) matrix β̃, whose columns span the cofeature space,

such that β̃′∆yt = β̃′εt is a s-dimensional vector mean innovation process with respect to the

information available at time t, =t.

Consequently, serial correlation common features arise if there exists a cofeature matrix

β̃
′
such that the following two conditions are satisfied:

Assumption 2: β̃
′
Φ∗j = 0(s×n), j = 1 . . . p− 1 (3)

Assumption 3: β̃
′
Φ(1) = −β̃

′
αβ

′
= 0(s×n) (4)

Assumption 2 implies that β̃′ must lie in the intersection of the left null spaces of the matrices

describing the short-run dynamics. Given that Φ∗j = −∑p
k=j+1 Φk , j = 1, . . . , p − 1 and

Φ∗p = −Φ(1) = −(In −
∑p

j=1 Φj), Assumption 3 implies that β̃′(In − Φ1) = 0(s×n), e.g. Φ1

must have eigenvalues equal to one with multiplicity s and the corresponding eigenvectors

must lie in the intersection of the left null spaces of the Φ∗j matrices. Note that if the ranges

of the Φ∗j ’s matrices are nested, i.e. if range(Φ∗j+1) ⊆ range(Φ∗j ), a nested reduced rank

structure arises (see e.g. Ahn and Reinsel, 1988). We consider the restrictions implied by (3)

or by (3) and (4) without imposing further nesting of the ranges of the Φ∗j ’s. This leads us

to distinguish the following two concepts:

Definition 1 (Strong Form Reduced Rank Structure): If in addition to Assumption

1 (cointegration) both Assumptions 2 and 3 hold, the implied reduced rank structure of the

VECM (2) will be labelled a strong form reduced rank structure (SF). Under SF, there exists

a (n × s) matrix β̃, whose columns span the cofeature space, such that β̃′∆yt = β̃′εt is a

s-dimensional vector mean innovation process with respect to =t.

Definition 2 (Weak Form Reduced Rank Structure): If in addition to Assumption

1 (cointegration) only Assumption 2 holds, the implied reduced rank structure of the VECM

(2) will be labelled a weak form reduced rank structure (WF). Under WF, there exists a (n×s)

matrix β̃, whose columns span the cofeature space, such that β̃′(∆yt − αβ
′
yt−1) = β̃′εt is a

s-dimensional vector mean innovation process with respect to =t.

Remark (a) The SF is usually considered in the literature (see Engle and Kozicki, 1993,

Vahid and Engle, 1993 among others). It leads to serial correlation common features (SCCF).

In this paper we prefer to use the concept of SF in order to enable a formal comparison with

the WF and to highlight the fact that the concept of SCCF generally applies to stationary
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vector processes irrespective of the presence or absence of cointegration. Under the SF, we

may define a (n(p−1)+r)×1 vector X∗
t−1 = [∆y′t−1, . . . , ∆y′t−p+1, y′t−1β]

′
and a n×(n(p−1)+r)

matrix Φ∗ = [Φ∗1, . . . ,Φ
∗
p−1, α], so that (2) is written as

∆yt = Φ∗X∗
t−1 + εt, t = 1, ..., T. (5)

Under the assumption of a SF, Φ∗ is of reduced rank n − s and can be written as Φ∗ =

A∗[C∗
1 , . . . , C∗

p−1, C
∗
p ] = A∗C∗, where A∗ is n × (n − s) full column rank matrix and C∗ is

(n − s) × (n(p − 1) + r) and β̃
′
A∗C∗X∗

t−1 = 0, e.g. β̃ ∈ sp(A∗⊥) where A∗⊥ is the orthog-

onal complement2 of A∗. Consequently, as pointed out by Vahid and Engle (1993), in a

n−dimensional I(1) vector process yt with r < n cointegrating vectors, if the elements of yt

have common cyclical features (given by ft = C∗X∗
t−1) there can be at most n − r linearly

independent cofeature vectors that eliminate the common cyclical features since the cofeature

matrix must lie in sp(α⊥). The SF implies that s ≤ n − r and that the common dynamic

factors ft consist of linear combinations of the elements of X∗
t−1. The implications of the SF

can be stated more formally as:

Lemma 1: For the SF, sp(α) ⊆ sp(β̃⊥).

The proof follows directly from the linear independence between the vectors β and β̃ (see

Vahid and Engle, 1993) so that rank [β : β̃] = r + s ≤ n. Hence we have that dim[sp(α)] ≤
dim[sp(β̃⊥)] or that rank (α) ≤ rank (β̃⊥) implying that r ≤ n− s.

Remark (b) In the case of WF, we analogously define a n(p − 1) × 1 vector Xt−1 =

[∆y′t−1, . . . ,∆y′t−p+1]
′
and the n× n(p− 1) matrix Φ = [Φ∗1, . . . , Φ

∗
p−1], so that (2) becomes

∆yt = αβ
′
yt−1 + ΦXt−1 + εt, t = 1, ..., T. (6)

Under the assumption of a WF, Φ is of reduced rank n − s and can be written as Φ =

A[C1, . . . , Cp−1] = AC, where A is n×(n−s) full column rank matrix and C is (n−s)×n(p−1)

such that β̃
′
ACXt−1 = 0. The cofeature matrix β̃ must lie in space(A⊥) but not necessarily

in space(α⊥).

It is important to stress the difference between SF and WF. Firstly, the assumption of a

SF reduced rank rules out predictability at any frequency and hence implies common cycles

2In the sequel, space will be denoted by sp. We shall always denote the orthogonal complement of any
n× s-dimensional matrix B, with n > s and rank(B) = s, by the n× (n− s) matrix B⊥ such that B

′
B⊥ = 0

with rank(B⊥)= n − s and rank(B : B⊥)= n. We then say that B⊥ spans the null space of B and B
′

spans
the left null space of B⊥.
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at all frequencies. On the contrary, by allowing for linear combinations that are predictable in

the long run, the WF reduced rank structure only restricts the short-run dynamics. Secondly,

in the WF case, both the possible number and the nature of the common cyclical features

change: s may be greater than n− r but has to remain ≤ n− 1 and the corresponding n− s

common dynamic factors consist of linear combinations of the elements of Xt−1, ft = CXt−1,

which only contain lagged first differences of the process. It is important to notice that the

existence of s weak form common feature vectors with s > r, implies the existence of s − r

strong form common features as is shown in Lemma 2.

Lemma 2: In the VAR model (1) under Assumption 1 with s > r, Assumption 2 implies

the existence of s− r SF common feature vectors.

Proof: Denote by β̃ the n×s matrix of linearly independent WF common feature vectors.

Any nonsingular transformation of β̃, β̃A, with A being an s × s nonsingular matrix, also

forms a basis of the space spanned by the columns of β̃ and therefore is also a basis of the

WF common feature space. The matrix β̃′Φ(1) = −β̃′αβ′ has rank min(r, s). Therefore, if

s > r, there are s − r linearly independent column vectors such that there is an n × (s − r)

matrix B with full column rank such that B′α = 0. B can be constructed as B = β̃A∗ by

choosing the s× (s− r) matrix A∗ with rank s− r such that B forms a basis for the left null

space of α. Note that we can always normalize B such that the upper part equals Is−r. ¤

Remark (c) The interpretation of the WF differs from that of the SF. The WF implies

that the serial correlation pattern in ∆yt and αβ′yt−1 are the same, their impulse response

functions are collinear, and their dynamics are similar. Interpreting αβ′yt−1 as deviations

from fundamentals, the WF implies that the dynamics of these deviations are similar to those

of the change in yt. Alternatively, under the WF, the short-run and long-run dynamics of yt

are unrelated. The absence of common determinants of both types of dynamics could be the

result of differences between short-run (cyclical) and long run (structural) adjustment costs,

etc.

Remark (d) As pointed out, the WF has an interest in its own as it is a necessary

condition for the existence of first order codependent cycles in a VAR(2) (see e.g. Vahid

and Engle, 1997; Hecq, 2000) and of the SF. The WF restrictions are generally not invariant

to alternative vector error correction representations such as that where yt−p appears in

levels instead of yt−1. The implications of the lack of invariance are that the results from a

reduced rank analysis of short-run dynamics are parametrization-specific. Invariance may be

obtained at the price of assuming a SCCF or that the ranges of Φ∗j ’s are nested (see e.g. Ahn

and Reinsel, 1988). The methods put forward in this paper can be applied to any of these
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alternative parametrizations. We present the analysis for the VECM (2) with yt−1 appearing

in levels, first, because this parametrization is frequently used in empirical work; second

because if a reduced rank structure is found it will imply a lower order SCM than for other

parametrizations; third, the WF is more likely to be appropriate as it applies to the coefficients

of the higher order lags of ∆yt in the VECM, which are usually less significant than those

of small order lags of ∆yt (for non-seasonal processes). Alternatively, when modeling series

for which there are no strong reasons to a priori prefer any of the VECM parametrizations,

one can test the WF restrictions for each parametrization. Note however that finding WF

common features for each parametrization (even if the number of common features is the same

for each parametrization) is a necessary but not sufficient condition for the existence of SF

cofeatures. To illustrate this consider the simple case of a VAR(2), yt = Φ1yt−1 + Φ2yt−2 + εt

that can be reparametrized as two observationally equivalent VECMs:

∆yt = (Φ1 + Φ2 − In)yt−1 − Φ2∆yt−1 + εt, (7)

∆yt = (Φ1 + Φ2 − In)yt−2 + (Φ1 − I)∆yt−1 + εt. (8)

If the WF holds for (7), then there exists some (n× s) matrix Λ1 such that Λ′1Φ2 = 0. If the

WF holds for (8), with the same value s, then there exists some (n× s) matrix Λ2 such that

Λ′2(Φ1− In) = 0. This does however not imply that there exists a (n× s) matrix Λ3 such that

Λ′3Φ2 +Λ′3(Φ1− In) = 0. For this to be the case, the null spaces of (Φ1− In) and of (Φ2) have

to have a non empty intersection which differs from the zero vector. However, if SF holds for

one parametrization of the WF, then the SF also holds for all parametrizations of the WF.

Next, one can test the SF restrictions for those parametrizations for which the WF restric-

tions are not rejected. This sequential testing is likely to lead to detecting useful structures in

the data. Rejecting SF common features for each parametrization should be taken as strong

evidence against the existence of SF cofeatures.

When n > 2, and s − r > 0, besides the s − r SF common features implied by s WF

common features, the mixed form (MF) reduced rank restrictions may arise. They combine

the SF and the WF in the following way.

Definition 3 (Mixed Form Reduced Rank Structure): If in addition to Assumption

1 (cointegration) Assumption 2 holds for s common feature vectors β̃ = (β̃1, β̃2), with β̃1

and β̃2 being n × s1 and n × s2 full rank matrices respectively, with s1 + s2 = s, and in

addition Assumption 3 holds for s1 common feature vectors β̃1 with s > s1 and n− r > s1 >

max(0, s−r), then the implied reduced rank structure of the VECM (2) will be labelled a mixed
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form reduced rank structure (MF). Under MF, the (n×s) matrix β̃ spans the co-feature space,

such that β̃′1∆yt = β̃′1εt is a s1-dimensional vector mean innovation process with respect to

=t and β̃′2(4yt − αβ′yt−1) = β̃′2εt is a s2-dimensional vector mean innovation process to =t.

Remark (e) Under the MF, there are s1−max(0, s− r) > 0 SF common feature vectors

which are not implied by the WF and yield testable restrictions on the parameters of the

VECM (2). The matrix β̃1 consists of s− r columns which are linear combinations of β̃ and

s1 −max(0, s− r) columns of β̃ which satisfy Assumption 3.

Remark (f) Note that in the mixed case s1 and s2 have to satisfy the inequalities

s1 + s2 ≤ n− 1 and s1 ≤ n− r. Also, along the lines of lemma 1, we get sp(α) ⊇ sp(β̃⊥).

Notice that we could easily extend these representations in order to analyze models in

which only a part of short-run components disappears. This type of reduced rank structures

has been studied by Ahn and Reinsel (1988) for stationary processes, Tiao and Tsay (1989)

for VARMA models and by Reinsel and Ahn (1992) and Ahn (1997) and Cubadda and Hecq

(2001) for partially non-stationary processes.

3 Testing Different Forms of Reduced Rank Structures

3.1 Reduced rank hypotheses

The difference between the SF and the WF can be illustrated in terms of two competing

models where we assume both cointegration and the existence of a (n × s) common feature

matrix β̃. Under the assumption of SF the following model holds

β̃
′
∆yt = β̃

′
εt, t = 1, ..., T, (9)

while under WF we have

β̃
′
(∆yt − αβ

′
yt−1) = β̃

′
εt, t = 1, ..., T. (10)

Let us first assume that the cointegrating rank r is known and fixed. For a given maintained

reduced rank structure (WF or SF), we may consider the sequence of hypotheses (or models)

separately in order to test H0 : rank(β̃) ≥ s against Ha : rank(β̃) < s for the different values

of s starting with s = 1 (against the model without common features s = 0). In the SF case,

the maximum number of common feature vectors is n−r. For the WF s has an upper bound3

3s = n implies that ∆yt − αβ′yt−1 is already a n-dimensional vector white noise process.
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of n− 1. Denote the largest values for which the null hypothesis is not rejected by s∗WF and

s∗SF respectively (s∗WF ≥ s∗SF ).

For each value of s (≤ n− r) we can also compare the SF against the nesting alternative

of a WF. But as the WF implies the strong form for values of s > r, it is sensible to

compare the two for values of s, starting with s = max[1, s∗WF − r + 1] up to and including

s = min[s∗WF , n− r]. If r is unknown, it has to be determined first or the analysis has to be

carried out for values of r taken as given.

3.2 Testing

Given that the hypotheses to be tested are nested, we rely on ML estimation of the underlying

models following the approaches by Reinsel and Ahn (1992), Ahn (1997), Ahn and Reinsel

(1988), Reinsel (1993) among others. Usually, when r and s are unknown, it appears impos-

sible to find an explicit solution for the likelihood equations (see Johansen, 1995; Ahn, 1997).

There are essentially two approaches to the determination of r, s and to the estimation of the

parameters of interest. The first approach proposed and investigated by Ahn (1997), Ahn and

Reinsel (1988) is to exploit the nested reduced rank structures and to compute numerically a

Gaussian reduced-rank estimator based on iterative solution of approximate Newton-Raphson

equations. Alternatively, one may follow a two-step approach in which r is first determined,

while ignoring restrictions on the short-run dynamics of the model. Once r is determined and

the cointegrating matrix β is estimated, s can be determined using the approach proposed by

Vahid and Engle (1993) for example. The rationale behind this simple two-step analysis is

that the determination of r and the efficiency of estimation of β are not affected asymptoti-

cally by the presence of the reduced rank structure on the short-run dynamics (see also Ahn,

1997; Phillips, 1991).

We use the two-step approach, although one may reasonably suspect small sample effi-

ciency losses compared to using a one-step full information estimation method. As pointed

out by various authors, a convenient way to test for reduced rank structures within the VECM

is based on canonical correlation analysis. Let us first assume that r and β are known or that

superconsistent estimates are available so that we may essentially consider them to be fixed

and given.

Define the T ×n matrices W1 = ∆Y = (∆y1, . . . , ∆yT )′, Y−1 = (y0, . . . , yT−1)′, Z1 = ∆Y ∗

with ∆Y ∗ being the LS residuals from the multivariate regression of ∆Y on Y−1β and

the T × (n(p − 1) + r) matrix W2 = [Z2, Y−1β] with Z2 being the T × n(p − 1) matrix

(∆Y ∗
−1, . . .∆Y ∗

−p+1). Under the maintained hypothesis of a SF reduced rank structure, the
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sequence of common feature Gaussian likelihood ratio test statistics for H0 : rank(Φ∗) ≤ n−s

against Ha : rank(Φ∗) > n−s, where Φ∗ is defined in (5), or equivalently for H0 : rank(β̃) ≥ s

against Ha : rank(β̃) < s can be shown (see Lütkepohl, 1991; Velu et al, 1986)) to be

ξS = −T
s∑

i=1

log(1− λi), s = 1, ..., n− r, (11)

where 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn−r < 1 are the ordered eigenvalues of the symmetric matrix

(W ′
1W1)−1/2W ′

1W2(W ′
2W2)−1W ′

2W1(W ′
1W1)−1/2. The test statistic (11) can also be interpreted

as the minimum of the objective function of the GMM estimator of β̃ subject to the normal-

ization (1/T ) β̃′W ′
1W1β̃ = Is (see Anderson and Vahid, 1998). For known r and β, under

the null the test statistic ξS is asymptotically χ2-distributed with s(n(p− 1) + r)− s(n− s)

degrees of freedom (Vahid and Engle, 1993).

In the case of WF reduced rank structure, this likelihood ratio test for H0 : rank(β̃) ≥ s

against Ha : rank(β̃) < s reads as

ξW = −T
s∑

i=1

log(1− λ̃i), s = 1, ..., n− 1, (12)

where 0 ≤ λ̃1 ≤ λ̃2 ≤ ... ≤ λ̃n−1 < 1 are the ordered eigenvalues of the symmetric matrix

(Z ′1Z1)−1/2Z ′1Z2(Z ′2Z2)−1Z ′2Z1(Z ′1Z1)−1/2. This statistic has an asymptotic χ2-distribution

with s(n(p − 1)) − s(n − s) degrees of freedom under the null. If β and r are unknown and

have to be estimated, concentrating out the cointegrating vectors has no effect on the asymp-

totic distribution provided r is not underestimated (see Paruolo, 2002 for a formal proof).

Intuitively, the T−consistency of the cointegrating vectors allows to consider them fixed be-

fore performing the common feature analysis in a second step. Similarly, overestimating the

cointegrating rank leads to the presence of additional I(1) series whose weights in the multi-

variate LS regression converge to zero in probability in such an unbalanced system. Moreover,

the Monte Carlo simulations in Section 4 also show good small sample behavior of the test

statistics (11) and (12) when r is overestimated.

A MF reduced rank structure hypothesis H0 : rank(β̃1) ≥ s1, for min(n − r, s) ≥ s1 >

max(0, s−r) and rank(β̃2) ≥ s2 against Ha : rank(β̃1) < s1 or rank(β̃2) < s2, with s1+s2 = s,

can be tested in several ways. One way is to test SF restrictions for s1 = 1, . . . , n−r, using the

statistic ξS in (11). As this test ignores the restrictions implied by the existence of s2 weak

form common features, some power might be lost as will be illustrated in the next section.

Alternatively, the parameters β̃ and α from the WF can be estimated jointly by FIML

for given s and β, e.g. by maximizing the likelihood function based on the (s× 1) subsystem

11



(10), normalized on the first s variables of ∆yt by setting β̃′ = (Is β̃∗′s×(n−s)), and completed

by adding (n− s) ”reduced form” equations for the remaining (n− s) variables in ∆yt

B′∆yt =


 0s×n 0s×n . . . 0s×n α1

Φ∗21 Φ∗22 . . . Φ∗2p−1 α2


 X̂∗

t−1 + B′εt, (13)

with

B′ =


 Is β̃∗′s×(n−s)

0(n−s)×s In−s


 ,

X̂∗
t−1 = X∗

t−1 with β replaced by the first stage superconsistent estimate, the Φ∗2i matrices,

i = 1, . . . , p − 1, indicate the n − s bottom rows of the Φ∗i matrices in (2) and (α′1 α′2) is

the partition of α′B. Under a MF structure, for given β, s and s1, we can specify a similar

pseudo-structural system:

B′∆yt =




0s1×n 0s1×n . . . 0s1×n 0s1×r

0s2×n 0s2×n . . . 0s2×n α2

Φ∗31 Φ∗32 . . . Φ∗3p−1 α3


 X̂∗

t−1 + B′εt, (14)

where

B′ =




Is1 β̃∗′1,s1×(n−s1)

0s2×s1 β̃′2,s2×(n−s1)

0(n−s)×s1
A(n−s)×(n−s1)


 ,

β̃′2,s2×(n−s1) = (Is2 β̃∗′2,s2×(n−s))
′, A(n−s)×(n−s1) = (0(n−s)×s2

In−s), the Φ∗3i matrices, i =

1, . . . , p−1, indicate the n−s bottom rows of the Φ∗i matrices in (2) and α′B = (0′s1×r α′2 α′3)

with α2 and α3 of dimension (s2 × r) and (n− s)× r respectively.

For given β and s, the MF with s1 SF vectors and s2 WF vectors can tested against the

WF by testing for the validity of the additional parameter restrictions implied by (14) using

a standard LR test statistics denoted by ξM . No efficiency loss arises if a superconsistent

estimate is substituted for the cointegrating vectors β. Under the null of the MF, ξM is

asymptotically χ2-distributed with degrees of freedom given by the number of additional

parametric restrictions imposed under (14), i.e. s1r − s2s1. This estimation procedure has

been used in the empirical analysis reported in Section 5.

For given r, a likelihood ratio test statistic for the null hypothesis of a SF against the alter-
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native of a WF, for each possible common feature rank s = max(1, s∗WF − r +1), . . . ,min(n−
r, s∗WF ), is given by

ξSW = −T

s∑

i=1

log{(1− λi)
(1− λ̃i)

}, (15)

where the λ̃i’s and the λi’s are defined as above. Conditional on known r and β, all variables

involved are weakly stationary both under the null and the alternative, so that standard

asymptotic theory applies. ξSW has an asymptotic χ2-distribution with degrees of freedom

equal to the number of restrictions rs imposed under the H0. If the null hypothesis is rejected,

one can proceed further in determining s by testing the number of zero squared canonical

correlations between Z1 and Z2. Note that the test statistics (11), (12) and (15) only enable

to formally compare nested models. For model comparisons involving non-nested hypotheses,

we propose to select the model which, for given p, r and β, minimizes one of the well-known

model selection criteria (AIC, SBC, HQC) where, given that we have omitted deterministic

terms, the number of parameters is n(n(p− 1) + r)− s(n(p− 1) + r) + s(n− s) under the SF

and n(n(p− 1)+ r)− s(n(p− 1))+ s(n− s) under the WF. These model selection criteria can

be also used to select the optimal values for r and s given p (as we assumed in the preceding

section) and have also recently been considered for common feature analysis by Vahid and

Issler (2002) with unknown s and p.

4 Monte Carlo Results

In this section we present evidence on the finite sample behavior of the sequential test proce-

dures put forward in Section 3.2. One should indeed be careful when interpreting the outcome

of the three sequences of LR tests ξS , ξW and ξSW . Given that s is unknown, and given the

sequential nature of the testing procedure, the significance levels of the individual tests in the

sequence must be distinguished from the overall Type I error of the sequential testing pro-

cedure. Also, the above sequential procedures are essentially based on asymptotic properties

such as the irrelevance of the reduced rank structure for the optimal estimation of β and the

determination of r. A Monte Carlo experiment should shed some light on the finite sample

behavior of the sequences of common features LR tests presented in the preceding section.

We concentrate on three issues which we believe are particularly relevant for applications:

1. the size and power in finite samples of the common feature LR tests,

2. the possible effect of incorrectly specifying the number of cointegrating vectors and/or

the lag length,
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3. the performance of the two-step approach used in the empirical application in which the

cointegrating vectors and their number are estimated in a first step by ML methods.

In order to address these issues we consider a simple trivariate data generating process

(DGP) with p = 2 where we assume the existence of two common feature vectors, i.e. s = 2.

Throughout the simulations,4 p is fixed either to its true value p = 2 or to 4. Strong and weak

form reduced rank structures are considered here. The DGP is a Gaussian VAR of order two

written in VECM form. In order to provide some motivation for the choice of the DGP, we

label the three variables as ct, it, yt for consumption, investment and real output. In line

with a simple form of a neo-classical model (see King et al, 1988; Hecq et al., 2000a; Issler

and Vahid, 2001), we assume the existence of two long-run relationships: ct − yt and it − yt.




∆ct

∆it

∆yt


 =




0.2 0.1 0.1

0.8 0.4 0.4

0.4 0.2 0.2







∆ct−1

∆it−1

∆yt−1


 + αβ

′




ct−1

it−1

yt−1


 +




ε1t

ε2t

ε3t







ε1t

ε2t

ε3t


 ∼ N







0

0

0


 ,




1.0 0.6 0.6

0.6 1.0 0.6

0.6 0.6 1.0





 .

(16)

The cofeature matrix associated with the DGP in (16) is given by

β̃
′
=


 1 −0.25 0

1 0 −0.5


 .

It yields two linear combinations of the variables in the model that annihilate the short-run

dynamics. In our experiments, the nature of the reduced rank structure depends on the choice

of the values for α and β. Tables 1 and 2 illustrate the simulated rejection frequencies when

the DGP has a SF reduced rank structure with r = 1 and s = 2. Tables 3 and 4 present the

rejection frequencies when the DGP has a WF reduced rank structure with s = 2 and r = 1

or r = 2. The four tables report the rejection frequencies of the statistics (11), (12) and (15)

for models assuming r = 1, r = 2 and r being determined using Johansen’s trace test, using

the correct lag length p = 2 (Tables 1 and 3) or setting the lag length equal to 4 (Tables 2 and

4). Notice that for the SF and with n = 3, the number of cointegrating vectors is by definition

4The size and power of codependence tests in the presence of either incorrectly specified lag length of the
model, omission of a cointegrating vector, non-normal errors, or temporal aggregation have been extensively
analyzed by Beine and Hecq (1999).

14



bounded to be equal to one in the DGP. We therefore present simulation results for models

with the correct specification of the cointegrating rank as well as with over-specification of r.

In each case, we use 10,000 replications and a sample size of T=1000 and 100. The

cointegration coefficients β are set equal to their estimated values obtained by ML estimation

in a first stage (see Johansen, 1995). Conditionally on these estimates for β, α and β̃ are

estimated by ML as described in Section 3.2. All simulations have been performed with

GAUSS and the first 50 observations initialize the processes. The empirical (size unadjusted)

power and size are given as percentage rejection frequencies. The nominal size used to obtain

these rejection frequencies is fixed at 5% for each individual test.

Insert Tables 1-2 about here

Tables 1 and 2 report simulation results for a DGP with SF. Several remarks are worth

to be made:

• In general, the differences between the results in Tables 1 and 2 are small. The ineffi-

ciency resulting from choosing too long lags is small.

• When the DGP has a SF and the number of cointegrating vectors is correctly specified,

both ξS and ξW behave fairly well in detecting the two cofeature vectors. Note also that

the sequence of the LR tests ξSW does not show any significant size distortion.

• If we estimate the number of cointegrating vectors or fix it at a value higher than the

true r, the rejection frequency of ξS is distorted. ξW still behaves very well in detecting

the correct number of common feature vectors. However the LR tests for SF versus WF

display significant size distortions reaching 50% instead of the 5% chosen nominal level.

• Overall, the tests appear to reject too frequently the null hypothesis when the model is

misspecified in some way (with the exception of lag length). The tests therefore tend to

favor accepting models with fewer restrictions than the true model, implying thereby a

loss of efficiency, but not a misspecification.

In the Tables 3 and 4, rejection frequencies for a DGP under WF restrictions are given.

Insert Tables 3-4 about here

We draw some conclusions from Tables 3 and 4 for the DGP with WF common features:
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• Again, the effect of overfitting the lag length is small.

• When the DGP with r = 1 has a WF reduced rank structure, ξW determines without

size distortions the correct number of common feature vectors, whether r is fixed at the

true value, estimated or fixed at 2. When the true value of r equals 2, ξW performs

very well except when r is fixed at 1.

• The statistic ξS detects a SF reduced rank structure implied by a WF reduced rank

structure (s−r > 0) with a rejection frequency of approximately 5% when r is correctly

specified (panel one). When r is fixed at a value larger than the true one or when it

is estimated, the size of ξS is much larger than the nominal size of 5%. For ξSW , the

rejection frequencies are similar.

• It is interesting to note that the sequence of ξW still selects the correct number of

common feature vectors without size distortions when we overspecify the number of

cointegrating vectors. This is not surprising since the coefficient of a non significant I(1)

variable in a I(0) model converges in probability to zero. ξS still rejects the presence of

any cofeature vector since this case excludes the existence of an implied SF (s− r = 0).

• Overall, the likelihood ratio statistics ξSW for the null of SF against the WF has high

power close to one in most cases. When s− r > 0 in the DGP, there are (s− r) implied

SF common feature vectors and the rejection frequencies for s = 1 in Tables 3 and 4

have to be interpreted as an empirical size of the test. In these cases, the statistic ξSW

rejects too frequently the (implied) null hypothesis.

• When r is determined from the data using Johansen’s trace test, the rejection frequencies

are close to those for the cases where r equals its true value.

Results for the statistics presented above with a small sample correction as suggested by

Reinsel and Ahn (1992) for cointegration tests, where ξW and ξS are respectively premultiplied

by the factors (T −n(p−1))/T and (T −n(p−1)− r)/T , (for further details see Hecq, 2000),

have been obtained as well. They are available from the authors upon request. Overall, the

results are similar to the corresponding results given in Tables 1-4. For T = 100, in some

instances, the corrected version of the tests performs better than the uncorrected ones.

Table 5 contains some illustrative simulation results for a DGP with a MF reduced rank.

For this purpose, the DGP is slightly modified and extended in order to account for a MF.

The selected DGP is a VAR(2) with n = 4, r = 2 and s = 3. From Lemma 2 there is one
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implied cofeature vector (s − r = 1). The loading matrix α is chosen such that the DGP

displays one additional cofeature vectors, i.e. s1 = 2. The following matrices are retained:

β̃ =




1 1 1

−.25 0 0

0 −.5 0

0 0 −.4




, β̃⊥ =




−.1

−.4

−.2

−.25




, α =




−.2 .2

−.8 0

−.4 .8

−.5 0




, β =




1 0

0 1

1.2 −.8

−1 −1




.

This particular choice of α implies the existence of β̃′1 satisfying5 β̃′1α = 0. As discussed in

the preceding section, we report results for ξS and a likelihood ratio tests of the mixed form

denoted by ξM .

In Table 5 we report rejection frequencies, based on 10,000 replications, under the correct

assumption of a mixed form with s1 = 2 (size of the tests) as well as those obtained when we

let the parameter α3,1 successively take the values -0.45, -0.5 which implies the existence of a

weak form6. In all the cases, the empirical power is not size adjusted.

Insert Table 5 about here

From Table 5, we observe that ξS and ξM do not suffer from serious size distortion. With

respect to the empirical powers, it appears that ξM performs substantially better than ξS .

Remark that r is assumed known while β is estimated and thus the cointegrating rank is

correctly specified.

The limited Monte Carlo evidence presented in this section leads us to propose the fol-

lowing model selection strategy.

1. Start by determining the lag length p and the number of cointegrating vectors, trying

to avoid underestimation of r. In practice, Johansen’s ML statistics complemented by

a visual inspection may prove useful to determine an upper bound for r,

2. compute the sequences of common feature LR tests ξS and ξW and select s for the

SF and WF respectively (denoted by s∗SF and s∗WF ), check whether the number of WF

common features exceeds r, in which case the WF implies s∗WF −r SF common features,

5The columns of the 4× 2 matrix β̃1 may simply be constructed by adding the first and second column of
β̃ on the one hand and by adding the second and the third one on the other hand.

6Remark that the values of α3,1 chosen for the computation of the empirical powers only imply small
deviations from the mixed form. For other values the empirical power rapidly reaches 1.
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3. for the cases where s = max(1, s∗WF − r + 1), ...,min(n− r, s∗WF compute ξSW to select

the appropriate reduced rank structure,

4. for the cases where s = max(1, s∗WF − r + 1), ...,min(n− r, s∗WF ), compute a likelihood

ratio MF test,

Alternatively, one can use information criteria to compare the various forms.

5 Common Cycles and Common Trends in Latin America

In this section we test for the presence of comovements in annual GDP series for five Latin

American countries: Brazil, Argentina, Mexico, Peru and Chile. The series are derived from

the Total Economy Database7 and span the period 1950-1999. We provide evidence for the

importance of imposing short-run reduced rank restrictions when forecasting. We examine

the presence of WF and SF reduced rank structures in a VECM model for the real gross

domestic product of these five major Latin American economies. Figures 1 and 2 present

both the log-levels and the growth rates of these variables. From Figure 1, it appears that

these series display some similar trending behavior. However, by visual inspection of Figure

2 it is difficult to detect the form of short-run comovements. Cointegration and common

feature tests have been performed to determine the number of stochastic trends and cycles

which these series share.

Insert Figures 1 and 2 about here

An unrestricted VAR with three lags seems to capture appropriately the dynamics of this

multivariate process. Johansen’s ML tests detect two cointegrating vectors for the model

with a constant term only and three cointegrating vectors for the model with a deterministic

trend constrained in the long-run. The time trend is used to capture the possible presence

of a deterministic convergence process or of trend stationary variables. The modules of the

largest roots of the companion matrix are respectively (0.9904, 0.9843, 0.9843, 0.9280, 0.9280,

0.8528) and (0.9826, 0.9826, 0.8970, 0.8970, 0.7733, 0.7733) for the model with a constant and

the model with a deterministic trend, suggesting the presence of respectively three and two

common trends in these two specifications. Exclusion restriction tests of the hypothesis that

7University of Groningen and The Conference Board, GGDC Total Economy Database, 2002,
www.eco.rug.nl/ggdc. The variables are expressed in US dollars for the base-year 1990 and converted at
”Geary-Khamis” purchasing power parities.
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one of the countries can be excluded from respectively the two and the three cointegrating

vectors lead to p−values smaller than 0.001.

For the analysis, the determination of the number of common feature vectors is important.

Tables 6 and 7 report the eigenvalues, the value of the log-likelihood, the p−value associated

with the asymptotic test statistic for the null hypothesis that there exist at least s cofeature

vectors, as well as the value of the HQ criterion. From the Tables, it turns out that with

r = 2, we cannot reject, both using LR tests and information criteria, the presence of three

co-feature vectors of each kind (WF and SF). The likelihood ratio statistic for the null of SF

against WF for r = 2 and s = 3 is given by ξSW = ξS − ξW = −2(loglikS-loglikW ) = 3.65.

ξSW follows a χ2
(6) asymptotic distribution, so we do not reject the SF model. Because the

SF imposes more restrictions than the WF, it is selected as our favorite parsimonious model.

Notice that one of the SF vectors has been implied by the WF because s − r = 1. Once we

include a linear trend in the long-run relations however, we do not reject the hypothesis of

three cointegrating vectors. Consequently, due to the constraint r + s ≤ n under SF, we are

only able to detect two co-feature vectors. However, as shown in the simulations, the WF

test is robust to an overestimation of the number of long-run relationships and still provides

evidence in favor of three co-feature vectors. We would reach the same conclusion when using

the HQ criterion.

Insert Tables 6 and 7 about here

Our interest is also in the impact of reduced rank structures on forecast accuracy. Both

Monte Carlo simulations and empirical analyzes in Vahid and Issler (2002) show substan-

tial gains in forecast accuracy from imposing the restrictions implied by the reduced-rank

structures. We compare the 1-step ahead RMSE of different specifications.8 For the model

with the unrestricted intercept we consider (i) the VECM with r = 2, (ii) the VAR in first

differences with two lags (DVAR),9 (iii) the SF and (iv) the WF with in both cases r = 2

and s = 3. For the model with a time trend in the long run we compare (i) the VECM with

r = 3, (ii) the DVAR, (iii) the SF with r = 3 and s = 2, (iv) the WF with r = 3 and s = 3

and (v) a MF in which we cannot reject the null hypothesis (p−value is 0.36) that two of the

WF relationships are also of the SCCF type.

8Notice that we keep p = 3 fixed in our analysis. See Vahid and Issler (2002) for an alternative approach.
9Notice that although the DVAR is misspecified due to the omission of long-run relationships, Clements

and Hendry (1999) show that DVAR forecasts appear to provide immunity against parameter non-constancy
that could seriously bias VECM forecasts.
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The model is estimated for the period 1950-1991. The last 8 years are used to evaluate

the model forecasts. During the period to be forecast two major financial crises hit Latin

American countries in 1994 and 1998. Tables 8 and 9 report the RMSE for the 1-step ahead

forecasts. In order to separate the issue of the non-constancy of the long-run relationships

from the impact of imposing additional reduced rank restrictions, the cointegrating vectors

were obtained using the full sample.

Insert Tables 8 -9

From Tables 8 and 9 we can conclude that imposing additional short-run restrictions

improves the forecast accuracy. The only exception is Chile for which the VAR in first

differences outperforms the other three (or four) specifications. This may be an indication

of parameter non-constancy in the long run. For the specification with r = 2, the SF gives

smaller RMSE’s errors for Argentina and Peru while the WF is preferred for Brazil and

Mexico. For the model with r = 3 and the restricted trend, the WF gives more accurate

forecasts than the SF in almost all cases. The MF provides even better results in terms of

forecasting performance.

6 Conclusion

In this paper, we studied a linear Gaussian VAR model with nonstationary but cointegrated

variables that have common cyclical features.

We introduced the concepts of strong, weak and mixed form reduced rank structures and

discussed their implications for VAR modeling. SF reduced rank structures arise when the

common features are such that there exists one or several linear combinations of the set of

variables under investigation expressed in first differences which are white noise. The existence

of a WF reduced rank structure implies that linear combinations of the first differences of the

variables in the model in deviation from the long-run relationships are white noise. We showed

that the constraint that the number of common features plus the number of cointegrating

relationships should be less than or equal to the number of variables no longer applies under

the WF. This allows to consider a larger number of common feature relationships between the

variables in first differences. Imposing the restrictions implied by WF leads to an efficiency

increase for the estimates, resulting from the reduction in the number of free parameters to

be estimated.

We designed a modeling strategy and proposed likelihood ratio tests for the three types of

reduced rank structures. We studied the small sample properties of the test using Monte Carlo
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simulations. It appeared that in particular under SF it is of great importance to correctly

determine the cointegrating rank before testing SF against WF. The application shows the

presence of both long-run and short-run relationships among the real gross domestic product

of five Latin American countries. Moreover, it appears that imposing MF restrictions gives

the smallest RMSE for all countries but Chile.

Finally, it is worth noticing three extensions to the present paper. Hecq, Palm and Urbain

(2000b) apply a common feature analysis in a dynamic panel context to tackle the problem

of the high dimensionality of the parameter space. Hecq, Palm and Urbain (2002) test for

SF and WF common features together with separation both in the long run and the short

run. Paruolo (2002) develops WF and SF reduced rank structures for processes integrated of

order 2.
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Table 1: Empirical Rejection Frequencies of the LR tests for SF
DGP: SF Estimated Model
r = 1
p = 2
s = 2

α =



−0.10
−0.40
−0.20




β′ =
[

0 1 −1
]

r = 1, p = 2
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 0.24 0.41 0.78 0.33 0.53 0.92
s ≥ 2 4.90 5.00 5.37 6.72 6.53 6.13
s = 3 100.00 100.00 100.00 100.00 100.00 93.96

r = 2, p = 2
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 1.76 0.41 4.09 2.37 0.66 4.81
s ≥ 2 34.59 4.91 50.24 40.88 7.29 53.58
s = 3 100.00 100.00 100.00 100.00 100.00 98.12
r = r̂, p = 2

T = 1000 T = 100
ξS ξW ξSW ξS ξW ξSW

s ≥ 1 0.52 0.42 1.34 0.78 0.61 1.72
s ≥ 2 14.19 5.02 15.85 18.26 7.12 18.87
s = 3 100.00 100.00 100.00 100.00 100.00 94.84

• The rejection frequencies are based on 10,000 replications and calculated using
asymptotic critical values. The nominal level is fixed at 5%.

• r̂ has been determined in the first step using Johansen’s trace test.
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Table 2: Empirical Rejection Frequencies of the LR tests for SF
DGP: SF Estimated Model
r = 1
p = 2
s = 2

α =



−0.10
−0.40
−0.20




β′ =
[

0 1 −1
]

r = 1, p = 4
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 0.26 0.21 2.54 0.48 0.53 3.09
s ≥ 2 5.52 5.49 5.36 10.38 10.17 6.57
s = 3 100.00 100.00 100.00 100.00 100.00 93.45

r = 2, p = 4
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 1.10 0.23 12.94 2.20 0.77 13.99
s ≥ 2 21.97 5.61 49.97 32.78 11.06 51.62
s = 3 100.00 100.00 100.00 100.00 100.00 97.77
r = r̂, p = 4

T = 1000 T = 100
ξS ξW ξSW ξS ξW ξSW

s ≥ 1 0.63 0.22 4.51 1.14 0.67 5.43
s ≥ 2 11.11 5.61 15.99 18.66 11.14 19.17
s = 3 100.00 100.00 100.00 100.00 100.00 94.50

• The rejection frequencies are based on 10,000 replications and calculated using
asymptotic critical values. The nominal level is fixed at 5%.

• r̂ has been determined in the first step using Johansen’s trace test.
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Table 3: Empirical Rejection Frequencies of the LR tests for WF
DGP: WF Estimated Model
r = 1
p = 2
s = 2

α =



−0.50

0.10
0.20




β′ =
[

1 0 −1
]

r = 1, p = 2
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 5.10 0.34 10.78 6.22 0.50 12.34
s ≥ 2 100.00 5.03 100.00 100.00 7.59 100.00
s = 3 100.00 100.00 100.00 100.00 100.00 100.00

r = 2, p = 2
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 30.11 0.35 40.57 36.08 0.60 46.32
s ≥ 2 100.00 4.88 100.00 100.00 7.56 100.00
s = 3 100.00 100.00 100.00 100.00 100.00 100.00
r = r̂, p = 2

T = 1000 T = 100
ξS ξW ξSW ξS ξW ξSW

s ≥ 1 11.69 0.36 17.35 16.45 0.54 22.82
s ≥ 2 100.00 4.98 100.00 100.00 7.80 100.00
s = 3 100.00 100.00 100.00 100.00 100.00 100.00

r = 2
p = 2
s = 2

α =



−0.50 −0.20

0.10 −0.30
0.20 0.20




β′ =
[

1 0 −1
0 1 −1

]

r = 2, p = 2
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 100.00 0.40 100.00 99.84 0.49 99.91
s ≥ 2 100.00 5.17 100.00 100.00 6.98 100.00
s = 3 100.00 100.00 100.00 100.00 100.00 100.00

r = 1, p = 2
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 100.00 5.18 100.00 98.00 5.24 98.61
s ≥ 2 100.00 100.00 100.00 100.00 97.11 99.96
s = 3 100.00 100.00 100.00 100.00 100.00 100.00
r = r̂, p = 2

T = 1000 T = 100
ξS ξW ξSW ξS ξW ξSW

s ≥ 1 100.00 0.40 100.00 99.84 0.49 99.91
s ≥ 2 100.00 5.17 100.00 100.00 6.98 100.00
s = 3 100.00 100.00 100.00 100.00 100.00 100.00

• The rejection frequencies are based on 10,000 replications and calculated using asymp-
totic critical values. The nominal level is fixed at 5%

• r̂ has been determined in the first step using Johansen’s trace test.
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Table 4: Empirical Rejection Frequencies of the LR tests for WF
DGP: WF Estimated Model
r = 1
p = 2
s = 2

α =



−0.50

0.10
0.20




β′ =
[

1 0 −1
]

r = 1, p = 4
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 5.43 0.18 36.10 8.23 0.82 35.07
s ≥ 2 100.00 5.68 100.00 100.00 12.85 99.98
s = 3 100.00 100.00 100.00 100.00 100.00 100.00

r = 2, p = 4
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 18.56 0.19 57.14 25.35 0.62 58.96
s ≥ 2 100.00 5.60 100.00 100.00 11.40 100.00
s = 3 100.00 100.00 100.00 100.00 100.00 100.00
r = r̂, p = 4

T = 1000 T = 100
ξS ξW ξSW ξS ξW ξSW

s ≥ 1 9.87 0.19 40.73 15.66 0.72 42.59
s ≥ 2 100.00 5.69 100.00 100.00 12.39 100.00
s = 3 100.00 100.00 100.00 100.00 100.00 100.00

r = 2
p = 2
s = 2

α =



−0.50 −0.20

0.10 −0.30
0.20 0.20




β′ =
[

1 0 −1
0 1 −1

]

r = 2, p = 4
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 100.00 0.18 100.00 99.42 0.59 99.95
s ≥ 2 100.00 5.67 100.00 100.00 11.57 100.00
s = 3 100.00 100.00 100.00 100.00 100.00 100.00

r = 1, p = 4
T = 1000 T = 100

ξS ξW ξSW ξS ξW ξSW

s ≥ 1 100.00 5.78 100.00 99.12 10.15 98.70
s ≥ 2 100.00 100.00 100.00 100.00 99.68 99.96
s = 3 100.00 100.00 100.00 100.00 100.00 100.00
r = r̂, p = 4

T = 1000 T = 100
ξS ξW ξSW ξS ξW ξSW

s ≥ 1 100.00 0.18 100.00 99.43 0.65 99.95
s ≥ 2 100.00 5.67 100.00 100.00 12.40 100.00
s = 3 100.00 100.00 100.00 100.00 100.00 100.00

• The rejection frequencies are based on 10,000 replications and calculated using asymp-
totic critical values. The nominal level is fixed at 5%.

• r̂ has been determined in the first step using Johansen’s trace test.
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Table 5: Empirical Rejection Frequencies of the LR tests
for MF, p = 2

T Size Power Power
α3,1 = −0.4 α3,1 = −0.45 α3,1 = −0.5

ξS 100 8.22 15.04 28.29
1000 5.15 78.20 99.35

ξM 100 6.87 19.28 38.93
1000 5.03 91.42 100

• The nominal level is fixed at 5%.
• The statistics ξS and ξM use the estimated β̂ under

the assumption of known cointegrating rank r = 2.

Table 6: Common Features Test Statistics, r = 2 (constant only)
SF WF

λi p− val loglikS λ̃i p− val loglikW

s ≥ 1 0.08 0.83 828.727 0.08 0.65 828.748
s ≥ 2 0.21 0.64 823.219 0.17 0.49 824.113
s ≥ 3 0.24 0.54 816.579 0.21 0.41 818.407
s ≥ 4 0.72 (< 0.001) 786.177 0.59 <0.001 797.239
s = 5 0.82 (< 0.001) 746.136 0.69 < 0.001 769.381

Table 7: Common Features Test Statistics, r = 3 (deterministic trend)
SF WF

λi p− val loglikS λ̃i p− val loglikW

s ≥ 1 0.09 0.86 843.73 0.08 0.68 844.069
s ≥ 2 0.21 0.71 837.971 0.17 0.53 839.632
s ≥ 3 0.55 (0.01) 819.051 0.27 0.27 832.141
s ≥ 4 0.75 (<0.001) 786.267 0.62 <0.001 809.077
s = 5 0.82 (<0.001) 746.136 0.70 <0.001 780.489
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Table 8: RMSE of 1-step ahead Forecasts (unrestricted constant)

VECM DVAR SF WF
r = 2, s = 0 r = 0, s = 0 r = 2, s = 3 r = 3, s = 3

Argentina 0.0693 0.0810 0.0489 0.0499
Brazil 0.0215 0.0247 0.0148 0.0130
Chile 0.0482 0.0372 0.0605 0.0594
Mexico 0.0414 0.0474 0.0321 0.0318
Peru 0.0472 0.0636 0.0344 0.0359
• Bold figures indicate the model with the lowest RMSE.

Table 9: RMSE of 1-step ahead Forecasts (linear trend in the long run)
VECM DVAR SF WF MF

r = 3, s = 0 r = 0, s = 0 r = 3, s = 2 r = 3, s = 3
Argentina 0.0620 0.0810 0.0513 0.0485 0.0473
Brazil 0.0236 0.0247 0.0161 0.0167 0.0155
Chile 0.0482 0.0372 0.0467 0.0566 0.0596
Mexico 0.0339 0.0474 0.0340 0.0279 0.0277
Peru 0.0434 0.0636 0.0456 0.0308 0.0303
• Bold figures indicate the model with the lowest RMSE.
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Figure 1: Log-levels of Real Gross Domestic Product (1950-1999)
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Figure 2: Growth Rates of Real Gross Domestic Product (1950-1999)
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