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It is shown that a convex function, defined on an arbitrary, possibly finite, subset of a linear space, can be extended to the 

whole space. An application to decision making under risk is given. 

1. Introduction 

The definitions of convexity of a function, customary in literature, assume or imply convexity of 
the domain. In applications however, observations about the values of a function, and inequalities 
verified by these, are often available only on non-convex, e.g. finite, domains. 

This paper considers a way to define convexity on non-convex domains. The main theorem, in 
section 2, shows that a function is convex, if and only if it is the restriction of a convex function 
defined on the whole space. Section 3 gives an application to decision making under risk, and section 
4 concludes. 

2. The extension theorem 

Let V be a linear space over the reals. Let T be some arbitrary subset of V, and f a function from 
T to Iw u { - co, m}. The following definition adapts the definitions of convexity, given in literature 
only for convex sets T [see for instance Rockafellar (1970, sect. 4)], to general, possibly finite, sets T. 
For compact sets it was given in Peters and Tijs (1981) and for general sets in Wakker, Peters and 
Van Riel (1985). 

Definition 1. The function is convex if for all convex combinations Xy=ip,x’ of elements xJ of T, 

for which not both - cc and + cc are contained in { f(~J)}/n=~, we have 

whenever Cp,xJ is in T. 

(1) 
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Asusualwetake: Xco:=~,forh~lR++, hm := 0 for h = 0, hcc := - co for h E R __; h + rx := 00 
for X E R or X = CL), and A + cc is undefined for h = - cro; X( - m) := - M for h E [w ++, X( - cc) := 0 
for X = 0, h( - m) := cc for X E R__; X - co := - cz3 for X E lR or h = -m, and X - ry, is left 
undefined for X = co. 

A function f is concave if -f is convex. All results, derived in the sequel for convex functions f, 
can be reformulated for concave functions g, by setting g := -f. 

Theorem I (extension theorem). LetVbeaiinearspaceoverR; 1etTcV. Letf:T+RU{-30.00) 
be convex. Then there exists a convex function f”: V + IF8 U { - cc, cc} which extends J: 

Proof. We define f-on V as follows: 

~:~+-+inf{~::=~CJn=~p,f(x’), x is a convex combination Cp,xJ of elements XI of T such that not 
f(x’) = cc for some j, and f(x’) = - cc for some other j}. (2) 

Note that f(x) sf(.x) for all x E T; by convexity of f, f(x) >= f(x) for all x E T. So indeed f 
extends f. Convexity of f remains to be demonstrated. So let y be a convex combination 1:: lq,y’, 
with all q, > 0. We have to prove 

whenever not f”(y’) = m for some i, f( y’) = - 00 for some other i. 

The case where f( y’) = rxj for some i is immediate anyhow, so we suppose fly’) < rx: for all i. 
This implies that every y’ is in conv(T). Say y’ is the convex combination YXk P,~x’~ of elements xfh 
of T. Then ,v = C:f-lCAq,p,k~*‘. By definition of f: 

f(Y) s F q,CP,kf(x’/o. 
r=l k 

(4) 

Now first suppose f((~“) = - co, for some 1. Then, for every ME N, we can take the x” above such 
that 1, ~,~,f(x’~) < -M. Since q, > 0, by (4) we get fl( y) = - 30, and (3) follows. 

Next suppose f”(y’) > - cx) for all i. Then, for any 6 > 0 and every i, we can take the xIh such that 
xkp,l,f(~‘k) sfl_vl) + E. This again implies (3). Q.E.D. 

Note that the [defined in (2) is the maximal convex extension. If f in Theorem 1 is real-valued, then 
even on conv( T), it may be impossible to have f” real-valued, as the following example shows. 

Example 1. Let V=lR’, T= ((-1, -j)},,.U{(l, j)),,.. fix,, x2)= -1x2( forall(x,, x,)ET. 

Then considering the pair ( - 1. -j) and (1. j). one sees that f(0, 0) 5 -j must hold, for all ,j E N. 

For bounded f, f can be taken real-valued on conv( T ): 

Coroilury I. For the f: defined in (2), supflconv( T)) = sup( f( T)), and inffz(conv( T)) = inff( T). 

Proof. Obvious from (2). 

If V = R, then a real-valued f in Theorem 1 can be extended to a real-valued f-on conv( T). 
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Corollary 2. Let V= R, TC V, f: T -+ 08 convex. Then f has a convex extension f-: conv( T) + 08. 

Prooj Obvious if T contains no more than two elements, then f-can be taken affine (i.e., both 
convex and concave). So let x1 > x2 > x 3 in T. Let 1’ be the affine function through (x’, f(x’)) and 

(x2, f(x*)), I* be the one through (x2, f(x2)) and (x3, f(x3)). Then, with f-as in (2), for all x E R 

we have f(x) 2 min{f’(x), r*(x)} > - 00. 
Further, for all x E conv(T). x E [x4, x5] for some x4, x ’ in T. Hence f-(x)smax{ f(x4), 

f(x’)} < co for such x. Q.E.D. 

The following example shows that, even if V = 03, and f is real valued and bounded on T, then 
still no convex real-valued extension f-of f to all of V may exist. 

Example 2. Let T = [0, 11, f : x * - 4x on T. Then any convex extension f-of f on V can be seen 
to assign 00 to all of [w __. 

Lemma I. Let V = CR, and f non-decreasing and convex. Then f: as defined by (2), is non-decreasing 

on conv( T ). 

Proof. By Corollary 1, f” has the same infimum on conv( T), as f on T. Hence the infimum of f-can 
be found on the ‘left side’ of conv(T): the convex f-must be non-decreasing. Q.E.D. 

3. An application to risk aversion 

Let V be a non-empty set of consequences. -Ep”(%?) is the set of (simple) lotteries on %‘; a (simple) 
lottery on % is a probability measure on (%?, 2’@), assigning probability one to a finite subset of %‘. By 
( p,; XJ);=, we denote the simple lottery, assigning probability pj to every xl. Implicit in this is that 
x’ E V for all j, p, 2 0 for all j, and X.p, = 1. For any a: E V’, Lu denotes (1; a), i.e., the lottery which 
with probability one results in consequence a. 

We assume there are two decision makers (persons, players, etc.) Tk, k = 1, 2, with preference 
relations % k , i.e., binary relations on S?(V). The interpretation of 1 t kl’ is that Tk, when having 
to choose one element from {I, I’}, is willing to choose 1. 

We assume that there exist von Neumann-Morgenstern (vNM) utility functions U’, U*, i.e., for 
k = 1, 2, Uk: C+ [w is such that 

J=l i=l 

Here XpJUk(xj) is the expected utility of (p,; xJ)~=,. 

The following definition gives a way to compare T’ and T2 with respect to their ‘risk aversion’. It 
has been introduced in Yaari (1969, p. 316, in terms of so-called ‘acceptance sets’), and is a variation 
on earlier definitions of Pratt (1964) and Arrow (1971). 

Definition 2. T’ is more risk averse (MRA) than T* if 

(p/; SXJ)/nzl t’cY* (p/; xJ)Yzl z*ti. (6) 

The above definition applies if T* is willing to take a risky lottery (p,; xJ),“=~ instead of a certain 
consequence (Y, whenever T’ is willing to do so. 
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Definition 2, and the results to be derived below, have first been studied in literature for the case 
%?= R. Later Kihlstrom and Mirman (1974) extended these to the case %‘= WT. All this was done 
under differentiability and monotonicity assumptions about the vNM utility functions. In Wakker, 
Peters and Van Riel (1985, Theorem 3.1.b) the results were extended to arbitrary spaces %?, without 
any restriction on the vNM utility functions. Motivation for this was, firstly, that differentiability of 
the utility functions does not always have a clear behavioural meaning; secondly, that it seems 
desirable for applications to be able to handle cases where one has information about the choices of 
decision makers, only with respect to finitely many consequences; and thirdly, that it seems desirable 
to be able to handle cases where one does not (yet) have a quantification of the consequences. 

The following theorem characterizes the ‘more risk averse than’ relation. 

Theorem 2. The following two statements are equivalent: 

(i ) T’ is more risk averse than T 2. 

(ii) U2 = $0 U’ for a convex non-decreasing function $J : U’(V) + U2(%‘). 

Proof. First suppose (i). Then fl% ‘Z =$ fl% 2Z, so U’(p) 2 U’(a) * U*(p) >= U2(a). So there 
must exist a non-decreasing 4 : U’( 9) + U*(V) such that U* 14 0 U’. Now let some element U’(p) 

of U’(%?) be a convex combination E;2zlpjU1(~J) of other elements of U’(W). Then (p,; P’);,~ + ‘CL, 
so by (i): (p,; pJ),“=i % 2,ii, i.e., Ep,U (PI) 2 U2(p). Substituting $ gives 

Cp,@J’($)) ‘= [4@W) =I ~(~P,W’))~ (7) 

so 4 is convex on U’(U), and (ii) is proved. 
Next suppose (ii). Let ( pJ; PLJ)~=~ b ‘ii, so C:=,p,U1(pJ) 2 U1(p). Let 4 be as defined in (2); by 

Lemma 1, q is non-decreasing on conv(T). We get Eyzlp,U2(pJ) = Cp,$(U’(pLJ)) 2 1c/(Cp,U’(pj)) 
>= $(U’(~)) = U2(p). This implies (p,; /.LJ),“=~ k *,L., which is what (i) requires. Q.E.D. 

Theorem 2 shows a natural occurrence of convex functions on non-convex domains: if observa- 
tions of choices of T’ and T2 are available only with respect to consequences from %?, then 
(inequalities concerning) li, will only be observed on U’(V), which may be any arbitrary subset of R. 
In the last occurrence of 4 in the proof we essentially use the extension theorem: the argument of +6 
there does not have to be in the domain of 4. Because of this complication, in Wakker, Peters and 
Van Riel (1985) a more complicated proof (without the extension theorem available) was given, using 
first-order-difference results derived in the appendix there. 

4. Conclusion 

Convexity and concavity have proved to be fruitful concepts in economics. Therefore, it seems to 
be worthwhile to define convexity and concavity of a function also on non-convex domains, since 
these may occur in economics in a natural way. The main theorem presented in this paper, which 
extends a convex function to at least the convex hull of its domain, enables one to apply results 
known for convex functions on convex domains to such functions on non-convex domains. An 
example of an application, to decision making under risk, has been given. 
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