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This study develops a new bias-corrected estimator for the fixed-effects dynamic panel data model and
derives its limiting distribution for finite number of time periods, 7, and large number of cross-section
units, N. The bias-corrected estimator is derived as a bias correction of the least squares dummy variable
(within) estimator. It does not share some of the drawbacks of recently developed instrumental variables
and generalized method-of-moments estimators and is relatively easy to compute. Monte Carlo experi-
ments provide evidence that the bias-corrected estimator performs well even in small samples. The pro-
posed technique is applied in an empirical analysis of unemployment dynamics at the U.S. state level for

the 1991-2000 period.
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1. INTRODUCTION

The estimation of fixed-effects dynamic panel data models
has been one of the main challenges in econometrics during
the last two decades. Various instrumental variables (IV) es-
timators and generalized method-of-moments (GMM) estima-
tors have been proposed and compared (see, e.g., Anderson
and Hsiao 1981, 1982; Arellano and Bond 1991; Arellano and
Bover 1995; Ahn and Schmidt 1995; Kiviet 1995; Wansbeek
and Bekker 1996; Ziliak 1997; Blundell and Bond 1998;
Hahn 1999; Judson and Owen 1999). The development and
comparison of such new estimators was necessary because the
traditional least squares dummy variable (LSDV) estimator is
inconsistent for fixed 7. Despite the increasing sophistication
of the IV and GMM estimators, they have two important draw-
backs. First, the complexity of the new estimators is a barrier for
applied researchers (see, e.g., Baltagi, Griffin, and Xiong 2000).
This should be only a temporary drawback, however, as the new
estimators are incorporated into the statistical packages. But
the newly developed estimators may require additional deci-
sions on, for example, which and how many instruments to use.
For example, by evaluating the expectation of asymptotic ex-
pansions of estimation errors, Bun and Kiviet (2002b) showed
that finite-sample bias of GMM estimators increases with the
number of moment conditions used. This makes application
less straightforward. In addition, the new estimators introduce
problems of their own. For example, the performance of some
GMM estimators depends strongly on the ratio of variance of
the individual-specific effects and the variance of the general
error term (see, e.g., Kitazawa 2001; Bun and Kiviet 2002b).

This article introduces a new and simple estimator for dy-
namic panel data models with or without additional exogenous
explanatory variables. An important advantage of this estima-
tor is that it does not depend on the ratio of the variance of the
individual-specific effects and the variance of the general error
term. It is computed as a bias correction to the LSDV estimator
(also referred to as the within estimator) and as such is related
to estimators developed by Kiviet (1995), Hansen (2001), and
Hahn and Kuersteiner (2002). MacKinnon and Smith (1998)

already indicated that bias of parameter estimates may be vir-
tually eliminated in some common cases, albeit at the expense
of increased variance of the estimators. The present article con-
firms this for the case of dynamic panel data models. Regard-
ing dynamic panel data models, Kiviet (1995) and Judson and
Owen (1999) presented Monte Carlo evidence indicating that
the bias-corrected estimator proposed by Kiviet (1995) may
outperform IV and GMM estimators.

This article provides evidence of the usefulness of bias cor-
rection, but the resulting estimator does not share some limita-
tions of existing bias-corrected procedures. First, Kiviet (1995)
proposed consistently estimating the extent of the bias by using
a preliminary consistent estimator. This allows for a consistent
corrected estimator based on additive bias correction. An obvi-
ous disadvantage of such a procedure is that its finite-sample
accuracy depends on the preliminary estimator chosen. Bias
adjustment of the newly developed estimator is done without
resorting to outside initial consistent estimates and appears to
perform well in comparison. Second, Hansen (2001) proposed
a somewhat similar bias-corrected estimator as in this study, but
did not derive its limiting distribution. Also, the bias-correction
procedure proposed by Hansen does not take into account the
inconsistency of the LSDV estimator of the variance of the er-
ror term. Finally, Hahn and Kuersteiner (2002) recently intro-
duced a bias-corrected estimator related to that developed by
Kiviet (1995); however, their estimator is not designed for sam-
ples with small 7.

The rest of the article is organized as follows. In Section 2 we
explain the principle of bias correction in dynamic panel data
models. In Section 3 we derive the limiting distribution of the
bias-corrected estimator for finite 7 and large N. In Section 4
we discuss the special case of the AR(1) model in which no
additional exogenous variables are included. We compare the
bias-corrected estimator with other possible corrections on the
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LSDV estimator. In Section 5 we present results from Monte
Carlo experiments for the model with an additional exogenous
regressor. In Section 6 we apply the estimators to a simple
model of intertemporal dynamics of the unemployment rate
in U.S. states in the 1991-2000 period. Finally, in Section 7
we discuss extensions and limitations of the proposed estimator
in more general models and provide concluding remarks.

2. BIAS—CORRECTED ESTIMATION IN DYNAMIC
PANEL DATA MODELS

In this section we illustrate the principle of bias-corrected es-
timation in the first-order dynamic panel data model. For ease
of exposition, we assume only one additional time-varying re-
gressor (next to the lagged dependent variable regressor) and
the panel to be balanced. Consider the following first-order dy-
namic panel data model

Vit = VYii—1+ BXir +ni + &is,
9]

In this model the dependent variable y;; is determined by the
one-period lagged value of the dependent variable y; 1, the
additional regressor x;;, the unobserved individual-specific ef-
fect 1;, and a general disturbance term ;. The regressor x;; may
be correlated with the individual-specific effect n;, but we as-
sume that it is strictly exogenous with respect to the general er-
ror term &;;. Regarding the latter, we assume that it has mean 0,
constant variance 032, and finite fourth moment, not correlated
either over time or across individuals and not correlated with ;.
Considering the startup observations y;), we assume that they
are uncorrelated with subsequent error terms &;;. Finally, there
are no assumptions about the value of y; that is, it is not neces-
sary to assume that model (1) is dynamically stable.

The unknown individual effects in (1) can be eliminated
by expressing each variable in deviation of its individual-
specific mean. We introduce yi; = yir — i, Yi.i—1 = Yi.i—1 —Yi,—1>
Xit = Xxjy — Xi, and &;; = g;; — &; and rewrite model (1) as
Vit = Vi1 + BXit + i, i=1,...,N;t=1,...,T. (2)
We compute the LSDV estimators by applying ordinary least
squares (OLS) to this equation to give

o= YR Vi iFi — X KiFia1 XY Favir
sdv — - — —
PIPIE-DY Zyl-z,;,l — Q0 Y Xidii—1)?

3)

and

=3 FiFii1 2 2 Vi 13ie + 2 V7 D 2 K
ZZ%%ZZJN’E,,l — QoY XiYii-1)? ’
4)

where the double summations are for i = 1,...,N and t =
1...,T.

The LSDV estimators of y and 8 are biased and inconsistent
for fixed T because of the correlation between y;,—1 and &;.
The extent of the inconsistency can be computed as follows.
We rewrite (3) and (4) as

Z Zizzz Z Zj’i,tflgit - Z Z;Citj’i,tfl Z Ziitgit
YA — (O Y Fdii1)?

Blsdv =

);lsdv =y +
(%)
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and
Blsdv
_ 5 DD Xidig—1 ) Via—18ir _225’%,_1 3 Xiuéir
LYY — (X E udia-1)? '
(6)

From (1), we use continuous substitution to obtain

Yie = ¥'yio + BGir + yxi—1 + -+ y " xin)

1—y' -1

=y Ni+ei+yei—1+--+y e (1)
Note that this also holds for the specific case of y =1, be-
cause we have lim,,_,1(1 — y)/(1 — y) = t. To obtain an ex-
pression for y;,—1, we require the mean y; —1. The sum of
vio through y; 7—1 equals

+

d 1—yT | — 71
Zyl',z—l = 1 yio+ B\ xir—1+--+ ———x
=1 e I—vy
(T—l)—Ty+yTn_+8_T 1
(1—y)? T
l—yT_l
+"'+ﬁ8i1- ®

From this, it can be derived that when y;o is uncorrelated with
subsequent error terms &;;,

DD Vie—18ir
NT-1)

(T =1 =Ty +yT
—0

plim S TT—1D)(1—y)?

N—o00

= —0h(y,T). 9)

This expression is always negative (for y > —1), because
the function h(y, T) is positive. Having N tending to infinity
and using plimy_, o, I\ﬁ >3 Xit€ir = 0 (because the error
term &;, is assumed to be uncorrelated with X;;), we find that the
inconsistency of the LSDV coefficient estimators equals (see
also Nickell 1981, p. 1424; Kiviet 1995, p. 61)

V* = phm ();lsdv -Y)

N—oo
. S FiEi) XXVt

= plim — — - (10)

N—oo 1= Q0 X FurBi—1)*/ Qo 2%, 22 7,-1)

and
B* = plim (Bisay — B)
N—oo
LD XiVi—1

= — plim ==—">—sdv — V)- 11
]5)—1:110 YR Wsdv — ¥) (11)

We introduce the following expressions of the (asymptotic)
variances of y;,—1 and X; and their (limiting) covariance:
2 _ ol 1 ) 2 _ ol 1
oy, =Plimy_, o yr7=1y 22 Vi1, 0x =plimy_ o NT-D X
~2 . 1 ~ o~ .
> in[, and oyxy_, = plimy_, NT-D) Z in’?}"*’*l' The in-
consistency of the LSDV coefficient estimators is now conve-
niently expressed as

_ —oZh(y.T)
(1 - p’%Y—l)G)’z—l
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where pyy | = 0xy_,/0x0y_, and { = oxy_, /02 are the (asymp-
totic) correlation coefficient between y; ;1 and X;; and the (as-
ymptotic) regression coefficient of y; ,—1 on X;. Note that the
denominator (1 — p,%y_])af_ , in the first expression of (12) is
the conditional variance of y; ;—1 given X;;.

From the first expression in (12), it is clear that the LSDV es-
timator Pjsqy is downward-biased. The extent of the (as-
ymptotic) bias depends on five parameters: y, T, 032, Uyz_ "
and ,o,%y_ .- The bias of the LSDV estimator will be especially
severe when (a) the value of y is close to 1 or even exceeds 1;
(b) the number of time periods, T, is low; (c) the ratio of vari-
ances, %2 /cryzi ,» 1s high; or (d) the lagged endogenous variable
and the exogenous variable are highly correlated, either posi-
tively or negatively. The second expression in (12) shows that
the inconsistency of ,élsdv is proportional to that of jsqy. The
bias of the LSDV estimator ,élsdv can be either positive or neg-
ative, depending on the sign of the (asymptotic) covariance be-
tween y; ;—1 and X;.

The principle of bias correction can be explained straightfor-
wardly using (12). First, assume that we would know the values
for o2, pxy Gyzi .»and ¢. Then we may use as a bias-corrected
estimator, . (Where the subscript bc means “bias-corrected”;
the fact that bc also are the initials of the authors’ surnames is
purely coincidental), that value of y for which

o2h(y,T)

—l (13)
(= p)%Y—l )ay2_l

);lsdv =Y -
This estimator can then be inserted into the second expres-
sion in (12) to find the bias-corrected estimator 3bc = ,31st +
¢ (P1sdv — Pbe)- The function A(y, T) as defined in (9) plays an
important role in this nonlinear bias-correction procedure. This
function is always positive and monotonically increasing for
y > —1, a condition that usually can be safely assumed to hold
in applications. For y = 1, the function A(y, T) has a value of
h(1,T) =1/2 (using I’Hopital’s rule) irrespective of the length
of time period T. For T = 2, the function h(y, 2) is equal to 1/2,
and for T = 3, the function h(y, 3) is equal to (2+ y)/6. Hence
for T = 2, the bias-corrected estimator can be expressed explic-
itly as

2
(o}
Poe = Pisdy + =——————— for T=2. (14)
T 20 =gy oy
For T =3, it can be expressed explicitly as
61say + 205 /(1 — pgy_ )0y
Poe = 1% /0Py D% g, (15)

6— 05-2/(1 - p)%y,I )03271

For T > 3, (13) must be solved numerically. Equation (13)
can for example be solved numerically as follows. Define
C= %2 /(1 — p,%yil )cryzi1 and take Y0y = Yisdv- An iterative pro-
cedure to converge toward the bias-corrected estimate (from be-
low) is ¥(j+1) = Pisdv + Ch(¥(j), T).

In practice, we do not know the values for 062, Oxy_1> Gy2_1 R
and ¢. The values of the latter three variables can be estimated

consistently using their sample analogs pxy_, = Oxy_,/6x0y_,,
&yzi »and ¢ =6yy_, /62. However, the LSDV estimator of 67 is

inconsistent, and the variance of the error term can be consis-
tently estimated only when the LSDV estimators for y and B
have been bias-corrected. We discuss three solutions to this
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problem that lead to the same bias-corrected estimates. First,
we can use an iterative procedure for (13). We then substitute
the LSDV estimate for Uez in (13) to achieve one-step estimates
for y and B. These estimates are used to compute the one-
step estimate for 062. This one-step estimate is again substituted
in (13) to achieve two-step estimates for y and § and so on un-
til convergence. Second, an alternative procedure is to use the
expression for the inconsistency of the LSDV estimate for 062,
that is,

plim 6]€dv

N—o00

S5 Gir = Prsav¥i—1 — Brsavin)?

= plim

N—o0o N(T - 1)
_ plim 22 = Pt + (B = Pran)¥ £ Ei)?
N—o00 N(T—-1)

2 2 2 %2
=0, —( _pxy,l)gy,ly . (16)
The expression for a€2 = 61%(1‘, + - ,ofyil)o}?ﬁl (Pisdv — y)2
is then substituted into (13) to arrive at an expression from
which Py can be derived in one step, that is,

Gieah(v. 1)

e — (Pisav — V) Ay, T).
(1- 'O?%yfl)a)gfl

Visdy =¥ — a7

Equation (17) can, for example, be solved numerically as fol-
lows. Define C = 61§dv/(1 — pfyil)ay{l and take Py = Pisdv-
An iterative procedure to converge toward the bias-corrected
estimate is (j+1) = Msav + W(l — V1 —=4Ch(y ), 7)%).
For T = 2, an analytic expression for the bias-corrected esti-
mate can be derived as

Phe = Py + 1= /1= 624, /(1 = py Do | forT=2.

(18)

Finally, to achieve bias-corrected estimates, 082 in equation (13)
can be replaced by the infeasible estimate (we are grateful to a
referee for suggesting this procedure)
2 22— yYia—1 — ,35(,-,)2
€

N NT-1) ’ 19)

and we solve the following equivalent of (12) for y and § si-
multaneously:

ey =y — 2@ PG T)
- (1= 0%y oy,
(20)

,BAlsdv =B- §(7>1st —-¥).

At first sight, this procedure would appear more cumbersome
because there is an optimization with two arguments (y and B)
instead of one argument (y). However, there is an advantage
to deriving the expression for (asymptotic) standard errors, be-
cause the (asymptotic) distribution of &l%dv is not necessary.
Using any one of the iterative procedures (13), (17), or (20)
results in the same bias-corrected estimate, P, Bbc, or &bzc.
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3. ASYMPTOTIC PROPERTIES OF
BIAS—-CORRECTED ESTIMATORS

In this section we discuss the asymptotic properties of
the proposed bias-corrected estimators. We derive consistency
and asymptotic normality for the corrected estimators for fi-
nite 7 and N large. We generalize the discussion to the case
with K additional exogenous variables, xj;; through xg;;, and
use matrix notation. Stacking the observations over time, that

is, yi = (it ... i) Yi—1 = (Yios - > yir-1)'s B=(B1, ...,
Bk)',ei= (e, ..., &), and X; a matrix with the (¢, k) element
equal to x;, we extend (1) to
Yi=VYi-1 +XiB +rni + &, i=1,...,N, (21
where 17 = (1,...,1) is a T x 1 vector of 1’s. Stacking
once more over individuals, that is, y = (y},...,¥y), Yy-1 =
(y/l’_l, ...,y}v’_l)/, n=,....0x), e =(e},....€)), and
X = (X}, ..., X)), we have the following model:
y=ry-1+XB+Uv®tr)n +e
=Wi+Inv®tir)n+e, (22)

where we have defined the NT x (K + 1) matrix W = [y,le]
and the (K + 1) parameter vector § = (y, B’)’. The LSDV esti-
mator for model (22) is equal to

Sisav = (WAW) ™' W’ Ay
~D &/ -1 , A
_ ( oy, Exy1> (UY—1Y>

Zxy,l Txx 2;XY
where the NT x NT idempotent matrix A = Iy ® (I — %tTl/T)
is the within-transformation matrix that eliminates the individ-
ual effects and Xyy, Xxx, 8y71y, and Xyy_, are sample analogs

. 1 : 1

of Tyy = plimy_, o, mX/Ay, Yx = plimy_, o N X

: 1
X'AX, oy ,y = plimy_, o my’_lAy, and Xy, =

. 1
pth—)OO mX’Ay_] .

Define the inconsistency of the LSDV estimator as §* =
plimy_, o, (81sdv — ). We now introduce p§y_l = ):;(y_| X
E;Xl)lxyfl /ayzi , as the (asymptotic) squared multiple correla-
tion coefficient of the regression of y; ;1 on X1; through Xg;
and ¢ =(&q,...,¢x) = Z;Xl Xxy_, as the corresponding vector
of regression coefficients. This allows us to generalize (12) and
express the inconsistency 8* = (y*, B*')’ as

(23)

. —0Zh(y.T)

= 5 k=1,...,K.
(1= pgy )07,

ﬂ;ck = _é‘k‘y*’

(24

Although inconsistent, the LSDV estimator has a limiting

distribution for N — oo and fixed T. Bun and Kiviet (2001)
derived the limiting distribution as

VN @iy = 8" = 8) 5 N0, Vxl, (25)

where

Vx = 02Eghw + 0220 T) Sphwer+ 1€k Swhw-  (26)
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with Twaw = plimy_, o, %W/AW, ekt the (K + 1) vector
with the first element equal to 1 and the other elements equal
to 0, and z(y, T) equal to

(1—yT)?
T2(1 —y)*

2(1—yT)
T(1—y)3

1 + 2)/T_1
(1-y)?

Wy, T)=— (27)

The function z(y, T) is equal to tr(l'[ZT), where I = ArLyI7,
with Ay =17 — lTLTt’T the within-transformation matrix,

r0O O 00
1 0 0
Ly = 010 o and
. 00
LO O 01 0
(28)
o1 0 . 0 0
y 1 0
2
Ir= y v 1 e
. . 1 0
—VT_I J/T_2 A )/2 y 1

(see Bun and Kiviet 2001). We have that lim,_1z(y,T) =
—(T — 1)(T — 5)/12. For T =2, the value of z(y, T) is equal
to 1/4; for T = 3, it is equal to (y* + 4y — 2)/9. The expres-
sion for the inconsistency holds irrespective of the distribution
of the error term ¢;;. However, the specific expression for the
matrix Vx holds under normality of the error term only. Using
notation introduced earlier, the variance—covariance matrix Vx
of the limiting distribution (25) of the LSDV estimator can be
expressed as

Vet v
=l 2
-1
= 0‘3 (U)?—l E;(Y—l)
T—1\Zxy, Zxx
4
aT -’
%Z(Vz) (1 ‘:,). (29)
(T — 121 = pg, 2oy \—¢ &

The result (25) of Bun and Kiviet (2001) showed that the
LSDV estimator has a limiting normal distribution for finite T
and N — oo, but it is not centered at 8, and it has a nonstandard
variance—covariance matrix.

We now turn to bias-corrected estimation of § = (y, B').
We first assume 062 to be given. Generalizing the results of Sec-
tion 2 [see (13)], using (24), the bias-corrected estimator for y
is that y which solves

o2h(y,T)

2

—e (30)
(1= pxy )07,

Psdv =Y —
The resulting estimator can then be inserted into the second ex-
pression in (24) to find the bias-corrected estimator for §. In
short, we solve §1sgy = g(8) for § with

y —osh(n)/o] ) ah

§)=8+68 =
8® (ﬂ +020h(y) /o x
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2 _ 2 2 . .. .
where oy X = (1 pr,l)Uy,l is the conditional variance

of y_1. Defining f(§) = g7 1(8), the expression for the bias-
corrected estimator is

Sbc = f(slsdv) .

The function f is unknown but can be evaluated numerically us-
ing only a few lines of computer code; for details, see Section 2.
From (32), we see that

(32)

plim 8 = plim f(B1u0) =g~ (plim b1 ) =3,

N—oo N—oo N—o00

and hence the bias-corrected estimator is a consistent estimator
of § for finite 7 and N — oco. Furthermore, exploiting (25) and
using the delta method, we have

VNGB — S)N—d> N0, FVxF'], (33)

where F is the (K + 1) x (K + 1) matrix of first partial deriv-
atives of the vector function f. Hence the bias-corrected esti-
mator (32) has a limiting normal distribution centered at §. Its
asymptotic variance depends on Vx and F. The latter matrix is
simply F = G~! with
2y 2
_ (1 —ozh ()/)/inl‘X O)
- 24 2
o2tH ()0l x 1

as the Jacobian matrix of g(§) and

(T-20—yH—Tya-yT?
T(T—1)(1 —y)3 '

H(y)=

Using results on partitioned matrix inversion, the matrix
F = G~! can be written as

1/ =W ()/o]) | x)
=( 2pps 2 2 ) 34
—o2eh ()/ (0} x — o (¥) 1

This implies that the first diagonal element of the matrix FVxF’,
or N  var(Jhc), is simply equal to V,lil/(l — Uszh/(y)/af,”x)z
and that N * var(BbC) is equal to V§2. For T = 2, the matrix F
equals the unity matrix I, because then #'(y) = 0.

In general, ‘732 is unknown and also must be estimated.
There are at least three equivalent approaches leading to the
same bias-corrected estimator; see Section 2 for details. First,
we can use an iterative procedure. Second, we can extend &
to 8 = (v, B, 02)". Exploiting (16), we now solve S1sav = 8(8)
for § with

14 _Ué-zh(y)/0'3il|x
g®) = | B+olthn)/o] x
03+0§h2()/)/0y271\x

(35)

Finally, we can use the original § = (y, ')’ and the (infeasible)
estimate 552 (y, B), where

(y—vy-1 —XB)A(y—yy-1 —XB) _

~2 _
52y, B) = NT—T) (36)
We then have that (31) is replaced by
g(8) = ( Y =50 PO o) ) (37)
B +52(y. BILh(Y) /ol | x
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The corresponding matrix G is then derived as

~ (1 — G2h(y) + G2 ()]0} | x
~\ 2@y + G () /ol x

~2/ 2
—0g h(]/)/O'yqu )
~2’ 2
I+ {Uﬂ h()/)/o’y_l X
1 - A
xy_, B and a; =2%upB —
Zflxy + 2yf2xy71 are the derivates of 652()/, B) with respect to y
and the B-vector. The latter (&;) can be shown to equal O when
evaluated for the bias-corrected estimators, somewhat simpli-
fying calculation of G. We use this last approach to compute
asymptotic standard errors in the simulation and empirical ex-
ercises. They are estimated consistently by %FVXF’ using the

where 62 =262 — 26y y +23%

bias-corrected estimators and F = G~!. We now turn to the spe-
cific case of having no additional exogenous variables.

4. BIAS—CORRECTION IN THE PANEL AR(1) MODEL

In this section we apply the limiting distribution theory of the
previous section to a special case, the first-order dynamic panel
data model without additional exogenous variables. We analyze
the model

Yit = YYiai—1 +ni + i, i=1,....,N;t=1,....,T. (38)
This model is a special case of (21) where 8 = 0. An important
difference from the preceding sections is that here we make ex-
plicit assumptions about the admissible values for y and about
the distribution of the initial observations y;p. Regarding y,
we now assume that |y| < 1, and for the initial observations,
we assume that the process (38) has been going on for a long

time, that is,

1 il
ni + L ,
V1—vy2

L=y

with the same assumptions about ¢;g as for the other disturbance
terms €, t=1,..., T (see Sec. 2). Note that this specific as-
sumption about y;o matches our earlier assumption about the
initial observations made in Section 2; that is, all N startup ob-
servations y;o are uncorrelated with all g;; for r > 0. However,
the additional assumptions about y and y;y enable us to derive
explicit expressions for the inconsistency of the LSDV estima-
tor and its asymptotic variance as a function of y and T, as
we discuss later. This makes it possible to analytically com-
pute and compare the asymptotic efficiency of original and bias-
corrected LSDV estimators.

Stacking the observations over time and across individuals,
we get

i=1,... (39)

Yio =

y=vy-1+ Uy ®tr)n+e. (40)

Focusing on the autoregressive parameter y, estimation of
model (40) by OLS yields

Psav = (Y Ay—D) 'y Ay =y + (v Ay-1) 'y Ae. (41)
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The inconsistency of the LSDV estimator for y when N tends
to infinity can be expressed as (Nickell 1981; Hsiao 1986)
y* = plim (Pisay — )

N—o00

o1 o
= <p11m N(y/_lAY—l)) plim ﬁ(y/—lAe)

N—o0 N—o00

14y . 1—yT
T -—1 T(1—y)
1—yT

(1- 7=l )
x(1- 1— . (42
(I—=y)(T-1) rd-vy)

Note that the inconsistency of the LSDV estimator is a func-
tion of y for fixed T and does not depend on 032; that is, we have
plimy_, oo (71sav) = ¥* + y = g(y) for given T. In the inter-
val [—1, 1), the function g is a monotonically increasing func-
tion of y with minimum value g(—1) = —1 and maximum
value g(1) =1 — 3/(T + 1), the latter of which is computed
using 1’Hopital’s rule. Hence it is possible to invert the func-
tion g and express y as a function of plimy_, o, (Pisdv), that is,
y = f(plimy_, o, (Pisav)) with f = ¢~ !. Analogous to previous
sections, a consistent bias-corrected estimator thus can be con-
structed as

J>bc zf();lsdv)- (43)

For example, when T = 2, we find from (42) that
plimy_, oo (71say) = (¥ — 1)/2. Hence we use 29y + 1 as a
bias-corrected estimator for y. However, for higher values of 7,
the function f is unknown but can be evaluated numerically or
approximated by a known function. Howeyver, in the latter case
consistency is lost, due to the approximation. Carree (2002)
proposed approximating the function f by a linear specifica-
tion. His estimate is easy to calculate but requires using a table
to obtain values for the intercept and slope. Furthermore, the
estimator is inconsistent for N — oo, due to the approximation.
These properties make this estimator less appealing.

We now turn to limiting distributions of the LSDV estimator
and the proposed bias-corrected estimator. Exploiting (25), the
limiting distribution for yi5gy for finite T and large N is

N d
VNGisay =y —y) > NI0. VI, (44)
where V = o2 /(T — 1)0y271 + odz(y, T)/(T — 1)26;‘7l and
z(y,T) as in (27). For given T, this limiting distribution de-
pends only on y as the factor 032 in V cancels out, because
ayzil is proportional to 062. Using equation (14) of Nickell
(1981), we have that
Ve T(1—y?)(1—y)?

T(T—D(1—y)? =2Ty(1—y) +2y(1 —y7)

+z(y,T)

X( T(1—y?) (1 —y)? )2
T(T—1)(A—y)?=2Ty(1—y)+2y(1—yT) )~
(45)

Regarding the bias-corrected estimator (43), we find, us-
ing (33), that

\/N % Cc a N(O, L)
e =) 772, € (1))?

(46)
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The asymptotic variance depends on V and the first deriv-
ative of the function g. Evaluating the latter factor analyti-
cally is cumbersome, but it can be approximated numerically.
In fact, to compute the variance of 4., we insert this esti-
mate into (45) to find V. We then approximate the first deriv-
ative of g using the expression for y*(y) as given in (42) by
g (Foo) = 1+ [y* (o) — 7* (Poc — j0)1/ 1, with o a small num-
ber, say .001. We could also actually derive the analytic first
derivative from (42), but this is not an elegant expression.

For the dynamic panel data model without additional ex-
ogenous regressors (38), other estimators can be used that
are not consistent for fixed 7 but are simple to compute,
being linear functions of the LSDV estimator. It is interest-
ing to compare their asymptotic efficiency with that of the
Ppe estimator. A first estimator emerges from taking a lin-
ear approximation to (42). When we insert in (42) values
for y equal to 0 and 1 (using ’Hopital’s rule), we find that
for y = 0, plimy_, o (P1sdv) = —1/T and that for y — 1,
plimy_, oo (J1sdv) = 1 — 3/(T + 1). A linear approximation for
the function f in the y € [0, 1) interval is found by connect-
ing the points (—1/7,0) and (1 — 3/(T + 1), 1). Hence the pro-
posed estimator is

T2+ T N T+1
Tt 1™ TR

The estimator in (47) strongly resembles an estimator proposed
by Hahn and Kuersteiner (2002),

N T+1, 1

Yhk = TVlsdv + T
Although the estimators (47) and (48) are also inconsistent for
finite 7, the leading bias term of order O(T~") has been ac-
counted for. Hence these estimators may perform reasonably
well for moderate 7.

Each of the three estimators (43), (47), and (48) are functions
of Pisqy, for which we know the limiting distribution (44), which
is dependent on y and 7. This makes it possible to analytically
compute asymptotic bias and variance of the estimators. These
are presented in Table 1 for values of T equal to 3, 6, and 10 and
values of y equal to 0, .4, and .8. The bias-corrected estimator
e has (by definition) the lowest bias, whereas the Hahn and
Kuersteiner estimator has considerable bias for small 7. The
latter estimator has the lowest asymptotic variance of the three
estimators, however. In terms of mean squared error (MSE),
7be Would be preferable if we had small T and N large, because
the extent of bias would dominate this measure for such dimen-
sions.

);c = (47)

(48)

5. MONTE CARLO EXPERIMENTS

In this section we compare the performance of the bias-
corrected estimator (32), denoted by bc, with some alterna-
tive estimators in a first-order dynamic panel model with an
additional exogenous regressor. We compare bc with the orig-
inal LSDV estimator (Isdv), an additive bias-corrected esti-
mator (ac), and the GMM estimator (gmm) of Arellano and
Bond (1991). For ac, we use a slightly different version of
Kiviet’s (1995) estimator in which there is bias correction
of the first-order term only. Bun and Kiviet (2002a) showed
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Table 1. Asymptotic Bias and Variance for the Panel AR(1) Model

T v y* g V. Nvaipe) bias(pe) N'var(jc)  bias(fn)  N'var(ink)
3 0 —.333 611 444 1.191 0 1.306 —111 .790
3 4 —.494 .587 .607 1.763 .010 1.785 —.192 1.080
3 .8 —.663 .569 .814 2.513 .006 2.391 —.284 1.447
6 0 —.167 811 174 .265 0 .320 —.028 .237
6 4 —.251 762 .161 .278 .028 .296 —.059 219
6 .8 —.361 .684 146 312 .020 .268 —.121 .198

10 0 —.100 .891 101 .128 0 .148 —.010 123

10 4 —.148 .864 .086 116 .026 126 —.023 .104

10 .8 —.218 .768 .051 .087 .024 .075 —.060 .062

NOTE: The asymptotic bias(7u) is always equal to 0. The value for V is N*var(Pisay)-

that this first-order term is responsible for most of the finite-
sample bias in the LSDV estimator. We use the GMM es-
timator as the first-step—consistent estimate. Assuming strict
exogeneity of x;;, we have T(T — 1)/2 4+ T(T — 1) moment
conditions for gmm, that is, E[y;;—sAg;] =0 (t=2,...,T;
s=2,...,0) and E[x;xsAey] =0 t=2,...,T;s=1,...,T).
We do not exploit additional moment conditions due to im-
posing homoscedasticity, because Ahn and Schmidt (1995)
noted that efficiency gains are small. Regarding the strict ex-
ogeneity of x;; to economize on the number of moment con-
ditions, we also experimented with a GMM estimator using
Elyi—sAei]l=0(1=2,...,T;5=2,...,1) and E[X;A¢g;] =0,
and hence T(T — 1)/2 + 1 moment conditions. However, this
resulted in lower efficiency, that is, higher root mean squared
error (RMSE). Under the assumptions made in Section 2, the
GMM estimator is consistent for finite 7" and large N, and hence
it is a reasonable benchmark for evaluating the corrected LSDV
variants.

We generated data for y according to (1) with n; ~ ZZN0,
anz] and &; ~ ZZNO, 052]. The generating equation for the ex-
planatory variable x is

Xit = pXi—1 + Eir, i=1,...,N;t=1,...,T, (49)

where &; ~ ZZN]O, 052]. We used three different research
designs. In the first design we chose f =1, p = .8, and
oy = 0¢ = 0 = 1. We used two different values for y, .4 and .8.
We assumed that the panel dataset comprises 600 observations
and conducted experiments for several combinations of 7 and N
for which NT = 600. The second design was equal to the first
design, except that we allowed for time series heteroscedastic-
ity in the general error term ¢;. (We also experimented with
cross-sectional heteroscedasticity in the general error term ¢&;y,
but the results were qualitatively not very different from those
obtained in the first design.) In this design, 0'62 is varying over
time; that is, we specify %2,1 =.95 — .05T + .1t. This specifica-
tion ensures that % Zthl 0627[ = 1; hence a proper comparison
can be made with the simulation results in case of homoscedas-
ticity. The third research design has identical parameter settings
to the design used by Kiviet (1995, table 1). In all of Kiviet’s ex-
periments the long-run effect 8/(1 — y) of x ony is set equal to
unity, and hence the impact multiplier B varies with the chosen
values for y. Homoscedasticity is assumed, and the value of o2
is set equal to 1, but the values of the variances 03 and 082 differ
across experiments. By varying a,%, the relative impact on y of
the two error components 1 and ¢ is changed, whereas the para-
meter 052 determines the signal-to-noise ratio of the model (for

details, see Kiviet 1995). For each experiment, we performed
10,000 Monte Carlo replications.

Selected simulation results for the first, second, and third de-
signs are presented in Tables 2—4. Regarding coefficient esti-
mators, these tables present in the bias in estimating y and B
together with the RMSE. In calculating the RMSE of coefficient
estimators, we use the variance as estimated from the Monte
Carlo as a measure of true variance. Next to bias and RMSE,
we report actual size of (two-sided) simple #-tests of the para-
meters y or 8 to be equal to the values chosen in the respec-
tive designs. The nominal size is 5% for each research design.
Actual size is calculated as the percentage of replications for
which the ratio of coefficient estimator and its standard devi-
ation estimator is larger than 1.96 in absolute value. Regard-
ing the variance estimators used to calculate ¢ ratios, for Isdv
and ac we use the standard variance expression, &ez(W/ AW) L.
For bc, we use the expression in (33) (unreported simulation

Table 2. Homoscedasticity, y = p =.8and g =1

(N, T) (300,20 (200,3) (150,4) (100,6) (60,10) (40,15)
bias y

Isdv —.365 —.214 —.143 —.079 —.038 —.021
ac 157 .089 .059 .031 .013 .007
bc .005 .000 .001 .000 —.001 —.000
gmm —.002 —.008 —.009 —.011 —.014 —.016
RMSE y

Isdv .368 217 .146 .082 .041 .025
ac 172 .100 .068 .039 .021 .015
bc .073 .044 .033 .023 .016 .013
gmm .072 .046 .036 .027 .022 .021
bias g

Isdv —.101 —.030 —.003 .014 .021 .019
ac .044 .015 .003 —.007 —.007 —.006
bc .002 .002 .001 —.001 .001 .000
gmm —.000 .000 .001 .001 .008 .013
RMSE 8

Isdv 124 .066 .052 .046 .044 .039
ac .099 .065 .053 .045 .039 .035
bc .082 .060 .052 .044 .038 .034
gmm .081 .060 .052 .044 .039 .037
% actual size y (nominal is 5%)

Isdv 100.0 100.0 100.0 97.5 71.3 40.0
ac 78.5 66.9 54.7 34.6 16.7 10.1
bc 2.3 3.0 41 4.4 4.8 5.3
gmm 5.7 6.6 7.3 8.6 14.0 23.3
% actual size S (nominal is 5%)

Isdv 29.9 9.2 5.9 6.9 9.3 8.6
ac 8.6 5.9 5.1 5.3 5.5 5.4
bc 5.0 5.3 5.2 5.2 5.3 5.1
gmm 5.6 5.6 5.7 5.6 6.5 7.9
NOTE:  For the variances, we assume that 02 = 02 = JEZ =1.
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Table 3. Time Series Heteroscedasticity, y = p=.8and B =1

(N,T) (300,20 (200,3) (150,4) (100,6) (60,10) (40,15)
bias y

Isdv —.353 —-.203 -—.133 —.072 —.033 —.018
ac 178 104 .071 .040 .019 .011
bc .035 .020 .015 .010 .005 .003
gmm —.002 —-.008 —.009 —.010 —.013 —.014
RMSE y

Isdv .356 .206 136 .075 .036 .022
ac 192 114 .079 .046 .025 .017
be .084 .050 .037 .025 .017 .013
gmm .072 .046 .036 .026 .021 .020
bias g

Isdv —.098 —-.029 —.003 .013 .018 .015
ac .050 .017 .003 —.008 —-.010 —.009
be .010 .005 .001 —.003 —.002 —.003
gmm —.000 .001 .001 .001 .007 .012
RMSE 8

Isdv 21 .066 .052 .046 .042 .038
ac 102 .066 .054 .045 .039 .036
be .084 .061 .052 .044 .038 .034
gmm .081 .060 .052 .044 .039 .037
% actual size y (nominal is 5%)

Isdv 100.0 100.0 99.9 94.2 59.5 29.2
ac 86.1 77.9 68.0 48.5 25.4 15.4
bc 1.1 3.0 4.7 5.8 5.7 6.0
gmm 5.8 6.4 7.0 8.1 12.8 211

% actual size B (nominal is 5%)

Isdv 28.0 8.8 5.9 6.7 8.5 7.5
ac 9.4 6.0 5.1 5.5 6.0 5.9
bc 4.9 5.3 5.2 5.1 5.3 5.0
gmm 5.6 5.6 5.7 55 6.7 7.7
NOTE: We assume that 62, =.95—.05T +.1tand 02 =07 =1.

results show that the accuracy of #-tests based on the bc esti-
mator depends on the normality assumption needed to derive
asymptotic standard errors), whereas for gmm, we exploit the
so-called one-step estimates.

Regarding the first design, Table 2 presents the results for
y = .8. The results for y = .4 are similar and hence are deleted
to save space. We observe the following patterns in the simula-
tion results for the coefficient estimators. First, bias in estimat-
ing the autoregressive parameter y is always negative for Isdv
and gmm, whereas positive bias has been found for ac. Second,
for (bias-corrected) LSDV, the bias in estimating both y and B
decreases for larger T (and smaller N), but not so for gmm.
This is to be expected because gmm should perform well, es-
pecially for 7 small and N large. Third, especially for y, bias
in gmm carries over to bias in ac, demonstrating the dependence
of additive bias correction on preliminary consistent estimators.
Fourth, in estimating both y and 8, bc is virtually unbiased.
Finally, based on a MSE criterion, bc is almost never beaten by
the other coefficient estimators. Regarding simple #-tests for bc,
we observe that the actual size is close to the nominal size in
most cases (except for y in the case of small 7', when the actual
size is somewhat low), indicating the accuracy of the asymp-
totic approximation in this design.

Table 3 presents simulation results for the second design with
time series heteroscedasticity. Again, we show the results for
y = .8 only. In general, results for bias-corrected estimators
(ac and bc) are worse here than in the case of homoscedasticity.
This is not surprising, because bias-corrected estimators are not
consistent in cases of time series heteroscedasticity. The addi-
tive bias-corrected estimator ac is especially vulnerable to the
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presence of heteroscedasticity, but the detrimental effects on bc
seem modest. Based on an MSE criterion, bc is now some-
times beaten by gmm, especially for smaller 7. The actual size
for bc is still quite close to the nominal size of 5% (except for
testing ¥ when T = 2).

Finally, we turn to simulation results using the third design,
that is, the parameterizations used by Kiviet (1995). Table 4
presents the simulation results for a selection of parameteri-
zations. The first part of the table gives the parameterizations
used. We need to make several points before discussing the sim-
ulation results. First, the relative impact on y;; of the two error
components 7; and &;; is 1 in experiments I-VIII, but increases
to 5 in experiments IX and X. Hence the individual-specific ef-
fect is relatively strong in experiments IX and X. Second, the
signal-to-noise ratio corresponds to an expected R* of 2/3 in
all experiments except VIII and X, where it increases to 8/9.

Regarding the third design, we observe the following pat-
terns for the coefficient estimators. First, except for ac, bias
in estimating the autoregressive parameter y increases with y
for all estimators. Especially for larger values of y, substan-
tial coefficient bias is found for gmm. Second, there is no one
estimation method with the lowest RMSE across all parameteri-
zations. The bias-corrected estimator performs well in all of the
designs except designs III and VI, in which there is a relatively
high value for y combined with a relatively low signal-to-noise
ratio. The bias-corrected estimator fails to converge in about
40% of the replications in these two designs. We decided to skip
such replications completely for each of the estimators. In all
other experiments, we found very limited or no convergence
problems. We also simulated designs III and VI with N = 1,000
and found much less convergence problems (around 5%), indi-
cating that this is a small sample issue. Regarding simple 7-tests
in the third design, we observe that for bc, again actual size is
quite close to nominal size, whereas coefficient bias of other
estimators clearly carries over to the accuracy of #-tests.

Summarizing, regarding coefficient estimators and sim-
ple #-tests, we find large bias for Isdv, moderate bias for
ac and gmm, and little bias for bc. In addition, based on
an RMSE criterion, the bias-corrected estimator performs
comparatively well for a range of parameter combinations.
However, the Monte Carlo results do not suggest that one es-
timation technique is superior for all parameter combinations.
Hence in empirical applications, it may be advisable to compare
results using different (consistent) estimation techniques.

6. EMPIRICAL APPLICATION: UNEMPLOYMENT
DYNAMICS AT THE U.S. STATE LEVEL

In this section we apply the bias-corrected estimation pro-
cedure (denoted by bc) to a model of unemployment dynam-
ics at the U.S. state level. We compare the coefficient estimates
and estimated standard errors with those of the LSDYV, additive
bias-corrected LSDV, and GMM estimators (denoted by Isdv,
ac, and gmm); see the previous section for more details. As
a benchmark, we included also the pooled OLS estimator (ols)
in the empirical analysis.

The model relates the current unemployment rate (Uj;) to the
unemployment rate and economic growth rate (Gj;) in the pre-
vious year. The model includes individual-specific and time ef-
fects (n; and X,),

Ui =yUi—1+BGir—1 +ni+ A+ &ir. (50)
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Table 4. Simulation Results for Selected Designs From Kiviet (1995)

Design nr. / 1 1 v %4 Vi Vil Vil IX X

T 6 6 6 6 6 3 3 3 3

y 0 4 .8 0 4 8 4 4 4 4

P 8 .8 .8 .99 .99 99 .8 .8 8 8

oy 1 .6 2 1 .6 2 .6 .6 3 3

o¢ .85 .88 4 2 19 .07 .88 1.84 .88 1.84

bias y

Isdv —.104 —-.175 —.366 —.163 —.247 -.375 —.381 -.215 —.381 —.215

ac .040 .060 .007 .058 .069 —.005 141 .088 .133 .087

bc —.001 —.001 —.037 —.001 —.001 —.042 .005 .000 .005 .000

gmm —-.017 —.035 -.179 —.034 —.069 -.197 —.047 —-.017 —.067 —.019

RMSE y

Isdv .109 179 .368 167 .251 377 .386 221 .386 221

ac .055 .076 .066 .077 .091 .067 173 110 .169 .109

bc .037 .045 .077 .049 .060 .080 .109 .064 .109 .064

gmm .044 .061 .200 .067 .098 217 116 .066 145 .073

bias 8

Isdv .044 .045 .015 .085 .095 .049 .013 .008 .013 .008

ac —.019 —.017 —.001 —.037 —.033 —.007 —.005 —.003 —.004 —.003

bc —.001 —.001 .001 —.004 —.005 —.001 —.000 .000 —.000 .000

gmm .006 .008 .007 .014 .023 .022 .002 .001 .003 .001

RMSE g

Isdv .069 .068 116 .238 .257 .678 .092 .046 .092 .046

ac .057 .053 .109 211 221 .622 .102 .048 101 .048

bc .053 .050 109 21 .221 .619 .096 .046 .096 .046

gmm .054 .051 110 215 227 .635 .095 .046 .095 .046

% actual size y (nominal is 5%)

Isdv 85.3 99.8 100.0 971 100.0 100.0 100.0 99.0 100.0 99.0

ac 21.9 36.7 20.1 27.6 35.8 20.5 48.3 38.4 45.1 37.9

bc 4.8 4.0 5.6 4.3 3.1 6.1 2.8 3.3 2.8 3.3

gmm 7.6 10.8 51.1 9.7 171 54.8 9.5 7.2 10.7 75

% actual size S (nominal is 5%)

Isdv 13.7 16.7 9.1 9.0 11.0 10.2 6.6 6.4 6.6 6.4

ac 6.4 6.2 52 4.7 4.6 54 5.0 5.2 5.0 52

bc 5.1 5.1 5.2 5.0 5.0 5.2 5.1 5.3 5.1 5.3

gmm 5.8 5.8 6.0 5.7 5.8 6.3 5.8 5.9 5.8 5.9

NOTE: We assume that of =1, N=100, and B =1 — y in all experiments.

Equation (50) can be rewritten in an easier-to-interpret, from,
AU =y = DU -1 — ;) + B(Gi p—1 — )+ Ar +€is, (51)

where (1 — y)a; — B8 = n;. Equation (51) indicates that the
change in the unemployment rate is determined by an adjust-
ment of the unemployment rate toward a “natural” or “equilib-
rium” rate of unemployment, «;, which may differ across the
states, and by the previous economic growth rate. The speed
of adjustment of the unemployment rate toward the “natural”
or “equilibrium” rate is equal to 1 — y. Partial adjustment,
0 < y < 1, is expected. A state that has relatively high eco-
nomic growth is more likely to have reduced unemployment
rates compared with states in which the economy is growing
more slowly. This would imply that § < 0.

The data for the unemployment rate for the 1991-2000 pe-
riod are obtained from the U.S. Bureau of Labor Statistics, and
data for the (current dollar) gross state product are obtained
from the U.S. Bureau of Economic Analysis. The economic
growth rate is taken to be the relative growth of the gross state
product. Data are available for all U.S. states and Washing-
ton, DC (N = 51). The number of time periods in estimation
is T =9, because the year 1991 is taken as the starting observa-
tion.

Table 5 presents the various coefficient estimates and their
estimated standard deviations. The value of the LSDV esti-
mate of y is .484, which would imply an adjustment rate

of around 50% per year. In contrast, the bias-corrected esti-
mate (bc) is equal to .615, which implies an adjustment rate of
less than 40%. Hence the speed of adjustment toward a “natural
rate of unemployment” is not as large as the original LSDV es-
timator would suggest. The value of the LSDV estimate of
equals —.064, whereas the value of the bias-corrected estimate
is —.057. This implies a somewhat smaller effect of economic
growth on the change in unemployment than indicated by the
traditional within estimate. The results for the additive bias-
corrected estimator (ac) are somewhat different from those of
the bias-corrected estimator introduced in this article. However,
the results for the GMM estimator (gmm) are more or less equal
to that of bc.

A restrictive assumption of bias-corrected LSDV estimators
is that consistency depends on strict exogeneity of the lagged
growth rate, G; ;—1. Because we have assumed strict exogeneity

Table 5. Empirical Results for the Unemployment-Growth Model

ols Isdv ac bc gmm
y .840 .484 .763 .615 .600
sd(p) 022 .037 .040 047 .048
B —.041 —.064 —.049 —.057 —.057
sd(B) .008 012 013 012 013
NOTE: T =9 and N =51; time dummies are included.
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of G;;—1 in GMM estimation, we can test against exogeneity
using the Sargan test. To increase power, we do not use all mo-
ment conditions, only E[U; ;—sAe;;] =0(t=2,...,T;5s=2,3)
and E[G;;—1Ag;] =0 (t =2,...,T). The test has a value
of 25.09 (p value .29), and hence the validity of the mo-
ment conditions is not rejected. We conclude that the problem
of G;;—1 being only weakly exogenous is not an issue in this
particular application.

7. EXTENSIONS AND CONCLUDING REMARKS

In this article we have developed a new bias-corrected esti-
mator for dynamic panel data models. The proposed estimator
has desirable asymptotic properties for finite 7 and large N, but
these have been derived under certain restrictive assumptions,
including strict exogeneity of regressors in x;;, homoscedastic-
ity of the disturbances, and balanced panels. In this final sec-
tion we discuss the limitations and possible extensions of our
approach with respect to each of these three assumptions.

First, regarding the exogeneity assumption, some regressors
in x;; could be predetermined as well. Inconsistencies originat-
ing from this source are not accounted for in the current bias
corrections. It can be shown that the order of magnitude of such
inconsistency terms equals that of lagged dependent variable
regressors, that is, of order O(T~!). But addressing the impor-
tance of this source of bias requires full specification of the
marginal process of the regressors x;;, which is a major com-
plication in practice. Simulation evidence for the dynamic panel
data model with predetermined or endogenous regressors x;; has
been given by Bun and Kiviet (2002b) and Blundell, Bond, and
Windmeijer (2000). In general, these simulation results show
that lack of strict exogeneity of x;; does influence the finite-
sample properties of estimators, and hence it is expected that in
practice estimators will be affected as well. Note, however, that
in the current application on unemployment dynamics, strict
exogeneity of the additional regressor (lagged growth rate) is
not rejected. Second, regarding homoscedasticity of the distur-
bances, we have provided some simulation results allowing for
either cross-section or time series heteroscedasticity. From the
simulation results, we see that in the latter case, bias-corrected
estimators behave somewhat worse, as expected.

Finally, the proposed method in this study can be extended
to unbalanced panels. In this case not all time observations are
available for each individual i. That is, the data may be ob-
served for certain individuals 7 only from a certain date, or the
data may be observed for other individuals only up until a cer-
tain date. This implies that the starting date and ending date of
the data are individual-specific. Denoting the beginning of the
data period by B; and the final time period of observation by Tj,
we have 1 < B; < T; < T. We then order the individuals in terms
of the length of the time period, 7; — B; + 1. The largest value
for this length of time period is T, and the smallest value is 2.
Denote by ¢, the fraction of observations with period of time
length t =2,...,T; that is, Zszz ¢; = 1. Then we replace the
function h(y) in Sections 2 and 3 with

T

- t
ha(y) = Zq) (Z)—W—H/ (52)
=2

-1 —y)?°
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and likewise derive expressions for the limiting distribution of
the estimator. Note that we do not take possible sample selec-
tion issues into account in this way. Research into problems of
sample selection in dynamic panel data models has started only
recently, with Kyriazidou (2001) providing a first contribution
in this area.

Given the assumptions, the bias-corrected estimator per-
forms well when T is small and N is large. Simulation results
on various designs show that based on an RMSE criterion,
bias-corrected LSDV estimators perform well against GMM es-
timators. In cases where both 7 and N are small, the limiting
distributions for the estimators may have little to say about
the actual distribution (especially when y is close to unity).
However, given the strong (relative) performance of the bias-
corrected estimator in the Monte Carlo exercises in cases where
T is as small as 2 or 3, this estimator appears suitable for
research efforts with samples with large numbers of individ-
uals/firms and a (very) small number of time periods. Many
datasets, especially those in which data are collected yearly,
have these panel dimensions.

New estimators for the dynamic panel data model have re-
cently been introduced. Each of these estimators has advantages
and disadvantages, and it is not clear that any of them would
uniformly outperform the bias-corrected estimator. Hahn and
Kuersteiner (2002) introduced an estimator that requires that
the number of time periods be at least moderate. They also paid
the most attention to the case of no exogenous variables. Hsiao,
Pesaran, and Tahmiscioglu (2002) introduced a maximum like-
lihood estimator based on first differencing the dynamic panel
data model to get rid of the unobserved individual effects.
Methods based on first differencing are conceptually different
from methods based on removing unobserved effects by sub-
tracting the individual-specific means. One potential source of
distinction between methods based on either first difference
or within transformations is the influence of measurement er-
rors. Mairesse, Hall, and Mulkay (1999), for example, argued
that biases from random measurement errors are more severe
in cases of first-differenced estimates than in cases of within
estimates. Alvarez and Arellano (2003) introduced a random-
effects maximum likelihood estimator, but did not consider the
case of exogenous variables included, and assumed in deriving
the asymptotic distribution that both N and T tend to infinity.
Finally, Lancaster (2002) took a Bayesian approach to dynamic
panel data models, finding a relatively simple set of first-
order conditions for the maximum of the posterior. However,
Lancaster’s work still has some unresolved issues concerning
priors, and its inference may not be completely comparable to
the classic inference used in the present article. Nevertheless,
research into these and other newly developed estimators for
dynamic panel data models remains a very vivid and important
area for both theoreticians and practitioners.

ACKNOWLEDGMENTS

The authors thank the Royal Academy of Arts and Sciences
(KNAW) for financial support. The article was strongly im-
proved by the comments of the associate editor and referees;
the authors thank them for their careful reading. The authors
are also grateful to Boris Lokshin for reporting some inaccura-
cies in an earlier version of the manuscript.



210

[Received November 2001. Revised May 2004.]

REFERENCES

Ahn, S. C., and Schmidt, P. (1995), “Efficient Estimation of Models for Dy-
namic Panel Data,” Journal of Econometrics, 68, 29-52.

Alvarez, J., and Arellano, M. (2003), “The Time Series and Cross-Section
Asymptotics of Dynamic Panel Data Estimators,” Econometrica, 71,
1121-1159.

Anderson, T. W., and Hsiao, C. (1981), “Estimation of Dynamic Models With
Error Components,” Journal of the American Statistical Association, 76,
598-606.

(1982), “Formulation and Estimation of Dynamic Models Using Panel
Data,” Journal of Econometrics, 18, 47-82.

Arellano, M., and Bond, S. R. (1991), “Some Tests of Specification for Panel
Data: Monte Carlo Evidence and an Application to Employment Equations,”
Review of Economic Studies, 58, 277-297.

Arellano, M., and Bover, O. (1995), “Another Look at the Instrumental Vari-
able Estimator of Error-Components Models,” Journal of Econometrics, 68,
29-52.

Baltagi, B. H., Griffin, J. M., and Xiong, W. (2000), “To Pool or Not to Pool:
Homogeneous versus Heterogeneous Estimators Applied to Cigarette De-
mand,” Review of Economics and Statistics, 82, 117-126.

Blundell, R., and Bond, S. (1998), “Initial Conditions and Moment Restrictions
in Dynamic Panel Data Models,” Journal of Econometrics, 87, 115-143.

Blundell, R., Bond, S., and Windmeijer, F. (2000), “Estimation in Dynamic
Panel Data Models: Improving on the Performance of the Standard GMM
Estimators,” in Nonstationary Panels, Panel Cointegration, and Dynamic
Panels, ed. B. H. Baltagi, Amsterdam: Elsevier Science, pp. 53-91.

Bun, M. J. G., and Kiviet, J. F. (2001), “The Accuracy of Inference in Small
Samples of Dynamic Panel Data Models,” Discussion Paper 2001-006/4,
Tinbergen Institute, Amsterdam.

(2002a), “On the Diminishing Returns of Higher-Order Terms in As-

ymptotic Expansions of Bias,” Economics Letters, 79, 145-152.

(2002b), “The Effects of Dynamic Feedbacks on LS and MM Esti-

mator Accuracy in Panel Data Models,” UvA-Econometrics Discussion Pa-

per 2002/05, University of Amsterdam.

Journal of Business & Economic Statistics, April 2005

Carree, M. A. (2002), “Nearly Unbiased Estimation in Dynamic Panel Data
Models,” Discussion Paper 2002-008/2, Tinbergen Institute, Rotterdam.

Hahn, J. (1999), “How Informative Is the Initial Condition in the Dynamic
Panel Model With Fixed Effects?” Journal of Econometrics, 93, 309-326.

Hahn, J., and Kuersteiner, G. (2002), “Asymptotically Unbiased Inference for
a Dynamic Panel Model With Fixed Effects When Both n and T Are Large,”
Econometrica, 70, 1639-1657.

Hansen, G. (2001), “A Bias-Corrected Least Squares Estimator of Dynamic
Panel Models,” Aligemeines Statistisches Archiv, 85, 127-140.

Hsiao, C. (1986), Analysis of Panel Data, Cambridge, U.K.: Cambridge Uni-
versity Press.

Hsiao, C., Pesaran, M. H., and Tahmiscioglu, A. K. (2002), “Maximum Like-
lihood Estimation of Fixed Effects Dynamic Panel Data Models Covering
Short Time Periods,” Journal of Econometrics, 109, 107-150.

Judson, R. A., and Owen, A. L. (1999), “Estimating Dynamic Panel Data Mod-
els: A Guide for Macroeconomists,” Economics Letters, 65, 9-15.

Kitazawa, Y. (2001), “Exponential Regression of Dynamic Panel Data Models,”
Economics Letters, 73, 7-13.

Kyriazidou, E. (2001), “Estimation of Dynamic Panel Data Sample Selection
Models,” Review of Economic Studies, 68, 543-572.

Kiviet, J. F. (1995), “On Bias, Inconsistency, and Efficiency of Various Estima-
tors in Dynamic Panel Data Models,” Journal of Econometrics, 68, 53—78.
Lancaster, T. (2002), “Orthogonal Parameters and Panel Data,” Review of Eco-

nomic Studies, 69, 647-666.

MacKinnon, J. G., and Smith, A. A., Jr. (1998), “Approximate Bias Correction
in Econometrics,” Journal of Econometrics, 85, 205-230.

Mairesse, J., Hall, B. H., and Mulkay, B. (1999), “Firm-Level Investment in
France and the United States: An Exploration of What We Have Learned in
Twenty Years,” Annales d *Economie et de Statistique, 55/56, 27-67.

Nickell, S. (1981), “Biases in Dynamic Models With Fixed Effects,” Economet-

Wansbeek, T., and Bekker, P. (1996), “On IV, GMM and ML in a Dynamic
Panel Data Model,” Economics Letters, 51, 145-152.

Ziliak, J. P. (1997), “Efficient Estimation With Panel Data When Instruments
Are Predetermined: An Empirical Comparison of Moment-Condition Esti-
mators,” Journal of Business & Economic Statistics, 15, 419—431.



http://www.ingentaconnect.com/content/external-references?article=0034-6527()69L.647[aid=6521804]
http://www.ingentaconnect.com/content/external-references?article=0034-6527()69L.647[aid=6521804]
http://www.ingentaconnect.com/content/external-references?article=0034-6527()68L.543[aid=6521805]
http://www.ingentaconnect.com/content/external-references?article=0165-1765()73L.7[aid=6521806]
http://www.ingentaconnect.com/content/external-references?article=0304-4076()109L.107[aid=6521807]
http://www.ingentaconnect.com/content/external-references?article=0002-6018()85L.127[aid=6521808]
http://www.ingentaconnect.com/content/external-references?article=0012-9682()70L.1639[aid=6521809]
http://www.ingentaconnect.com/content/external-references?article=0304-4076()93L.309[aid=6521810]
http://www.ingentaconnect.com/content/external-references?article=0165-1765()79L.145[aid=6521811]
http://www.ingentaconnect.com/content/external-references?article=0012-9682()71L.1121[aid=6521812]
http://www.ingentaconnect.com/content/external-references?article=0012-9682()71L.1121[aid=6521812]
http://www.ingentaconnect.com/content/external-references?article=0034-6535()82L.117[aid=4737009]
http://www.ingentaconnect.com/content/external-references?article=0735-0015()15L.419[aid=1543355]
http://www.ingentaconnect.com/content/external-references?article=0304-4076()85L.205[aid=1543398]
http://www.ingentaconnect.com/content/external-references?article=0165-1765()65L.9[aid=862030]
http://www.ingentaconnect.com/content/external-references?article=0304-4076()87L.115[aid=328870]
http://www.ingentaconnect.com/content/external-references?article=0304-4076()68L.29[aid=325867]
http://www.ingentaconnect.com/content/external-references?article=0304-4076()68L.29[aid=325867]
http://www.ingentaconnect.com/content/external-references?article=0304-4076()68L.29[aid=325867]
http://www.ingentaconnect.com/content/external-references?article=0304-4076()68L.53[aid=325872]
http://www.ingentaconnect.com/content/external-references?article=0165-1765()51L.145[aid=325874]
http://www.ingentaconnect.com/content/external-references?article=0012-9682()49L.1417[aid=322235]
http://www.ingentaconnect.com/content/external-references?article=0012-9682()49L.1417[aid=322235]
http://www.ingentaconnect.com/content/external-references?article=0162-1459()76L.598[aid=43031]
http://www.ingentaconnect.com/content/external-references?article=0162-1459()76L.598[aid=43031]
http://www.ingentaconnect.com/content/external-references?article=0304-4076()18L.47[aid=43032]
http://www.ingentaconnect.com/content/external-references?article=0034-6527()58L.277[aid=43033]

