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1 Introduction

The markets in many financial assets are fragmented. To give a few examples, NYSE

listed US stocks are often also traded on regional exchanges; many European stocks

are cross-listed on the NYSE or Nasdaq; on Nasdaq itself and in the foreign exchange

and bond markets there are multiple dealers and the markets for the trading between

dealers and their clients is quite separated from the inter-dealer market. Starting with

Hasbrouck’s (1995) pioneering work, the modeling of microstructure data from such

fragmented markets has received considerable attention in the financial literature.

This literature was recently surveyed in an issue of the Journal of Financial Markets

(2002).

The purpose of price discovery models is to describe the dynamic interactions

between the quotes or transaction prices from two or more markets, or from two or

more dealers of the same asset.1 Based on these dynamics, the relative contribution

of each market or dealer to the price discovery process can be assessed. The most

natural model for prices pit on market i (or quotes by dealer i) is that they equal the

fundamental value of the asset, p∗t , plus a transitory term:2

pit = p∗t + uit. (1)

In the Madhavan (2000) survey this model forms the basis to analyze trading fric-

tions, asymmetric information and inventory control. Equation (1) is in the form

of an unobserved components model, or a structural time series model in the termi-

nology of Harvey (1989). Prices are observed, but the efficient price p∗t is not. The

fundamental value is a random walk, whereas the market (dealer) dependent transi-

tory term uit is stationary and typically close to white noise. The price changes, ∆pit

therefore have a very typical serial correlation pattern: a strong and negative first

order autocorrelation, and small and often negligible higher order autocorrelations.

Despite its intuitive appeal, the unobserved components model is rarely used in

empirical work, neither for estimation nor for the definition of measures of price

discovery. The standard time series model proposed by Hasbrouck (1995) is the

Vector AutoRegression introduced by Sims (1980) in macroeconomics. Since all price

series share the same long term (random walk) component, the VAR is subject to

cointegration restrictions and estimated as a vector error correction model (VECM).

1 See Hasbrouck (1995) for an example with multiple markets. Huang (2002) is a recent applica-
tion to multiple dealers.

2 See e.g. Hasbrouck (1993), Zhou (1996), Lehmann (2002)
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The central quantity of interest is the information share, which measures the relative

importance of each market in the price discovery process. Hasbrouck (1995) defines

the information share as the fraction of the variance of the random walk component

that can be attributed to a particular market (or dealer). The VECM and information

share methodology has been applied in many empirical studies.3

In this paper, we revisit the unobserved components microstructure model of

Hasbrouck (1993) and extend it to a multiple markets setting. The information

flow is modeled through the simultaneous and lagged covariances between the ’noise’

terms in (1) and the innovations in the fundamental values. Within this model, we

introduce a new measure of the contribution to price discovery. Unlike the traditional

information share, which is defined within a reduced form time series model, the new

measure is defined directly within a structural time series model, i.e. the unobserved

components model. Apart from its intuitive appeal as a model for financial market

data, working directly within the unobserved components model has several other

advantages over the VECM approach in settings with many markets or many dealers.

First, the particular pattern of autocorrelations in prices (or quotes) is difficult

to describe with low order autoregressive models. Autoregressions often require long

lags to capture a strong first order autocorrelation but a second autocorrelation that

is almost zero. The VECM also suffers from lack of parsimony in the error correction

part. In a model with N dealers, the cointegration restrictions lead to N −1 different

error correction terms in each of the N equations. The parsimony of the unobserved

components model has advantages both for the statistical inference as well as the

definition of information shares.

Related to this is a potential problem with the data. Although microstructure

time series have many observations, we do not always have that many observations

for all markets (dealers). The NYSE is much more active than its regional satellite

markets. Foreign exchange dealers are often at a few large banks. Most Nasdaq

quotes are issued by a handful of dealers and Electronic Communication Networks

(ECN). In these circumstances the time series for a multivariate model of dynamic

interactions is sampled at the pace of the slowest market (Harris et al., 2002) or

with relatively long fixed calendar intervals. This problem is particularly serious for

3 For example: Hasbrouck (1995) and Harris et al. (2002) for US equities traded on the NYSE
and regional exchanges; Hupperets and Menkveld (2001) for European equities cross listed in the
US; Upper and Werner (2002) for the relation between the cash and futures market in German
government bonds; De Jong, Mahieu and Schotman (1998) and Covrig and Melvin (2002) for the
foreign exchange market.
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large dimensional systems, i.e. a setting with multiple markets. When the number

of dealers increases, the number of simultaneously available observations generally

decreases, but the number of parameters in a VAR increases quadratically with the

number of time series. In the unobserved components model it is also straightforward

to deal with differences in observation period across markets, caused by holidays,

missing data etc.4

Finally, the VAR model has problems in the construction of information shares.

These are not uniquely defined, but depend on the allocation of the covariance terms

in the error covariance matrix. Hasbrouck (1995) suggests to report upper and lower

bounds, obtained by different ordering of the markets. For a two variable system these

bounds are sometimes fairly narrow, but there are also applications (for example, Cov-

rig and Melvin, 2002) where the bounds are very wide. In a high dimensional system

the number of off-diagonal elements in the covariance matrix increases quadratically

in N , and will eventually dominate the variance decomposition, so that it is difficult

to obtain meaningful estimates of the information shares. Our proposed information

share measure does not depend on an arbitrary way to split the correlation of the

reduced form error term over the markets, and will therefore remain meaningful in

high dimensional settings.

The unobserved components model is appealing in these situations, but has a

drawback of its own. Since equation (1) contains the efficient price as a latent vari-

able, there is an inherent identification problem.5 In the multivariate unobserved

components model, that is of interest for price discovery in fragmented markets, the

identification problem turns out to be less severe. Full identification, and hence a

unique value for the information shares, is achieved under plausible assumptions re-

garding the idiosyncratic term uit.

The structure of this paper is as follows. First, we provide a theoretical investiga-

tion of the properties of the structural price discovery model and discuss the various

identification rules. Next, we present our alternative measure for the contribution

to price discovery. We then extend the structural model to higher orde dynamics

and compare the implications of this model with the usual VECM approach. We

examine the economic meaning of information shares within a styzlized theoretical

microstructure model. We end with an empirical illustration using Nasdaq multiple

4 Estimation methods based on Kalman filters are especially appropriate here.
5 For the univariate version of the model this identification problem is discussed in depth in

Hasbrouck (1993).
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dealer quotes.

2 A structural time series model

This section explores a structural time series model for market microstructure and

price discovery in fragmented markets. The model generalizes the univariate model of

Hasbrouck (1993) to a multiple market setting. This section first reviews the results

for a univariate pure random walk plus noise model. Then the model is extended to

a multivariate random walk plus noise. In a later section, higher order dynamics are

introduced.

2.1 Univariate model

Hasbrouck (1993) considers the univariate structural model for pt, the logarithm of

the price of a security,

pt = p∗t + ut,

p∗t = p∗t−1 + rt, Var(rt) = σ2,

ut = αrt + et, Var(et) = ω2,

(2)

where p∗t is the unobserved efficient price (random walk) and ut a transitory com-

ponent. The shocks et and rt are uncorrelated. The coefficient α determines the

covariance between transitory and permanent shocks: Cov(ut, rt) = ασ2.

We can write the price changes (returns) in this model as

∆pt = rt + ∆ut = (1 + α)rt − αrt−1 + ∆et . (3)

The auto-covariances of returns implied by this model are therefore

γ0 = E[∆p2
t ] = σ2

(
(1 + α)2 + α2

)
+ 2ω2 (4a)

γ1 = E[∆pt∆pt−1] = −σ2α(1 + α)− ω2. (4b)

All higher order covariances are zero, and therefore the reduced form of the structural

model is a first order Moving Average process in the price changes.

From the moment equations, the parameter σ2 is uniquely identified as

σ2 = γ0 + 2γ1. (5)
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The parameters α and ω2 cannot be identified separately. Hence, some identifying

restriction is necessary. We first define a range of admissible values for α. From the

moment conditions we obtain

ω2 = −γ1 − α(1 + α)σ2

= −γ0 (ρ1 + α(1 + α)(1 + 2ρ1)) , (6)

where ρ1 = γ1/γ0 is the first order autocorrelation. For microstructure data, the

first order autocorrelation is typically negative, but bigger than −0.5. Therefore,

we assume that −1
2 < ρ1 ≤ 0. For the interpretation of the model ω2 must remain

positive. This provides a bound on the admissible values of α. Equation (6) implies

the inequality

−
√

1− 2ρ1 ≤ (2α + 1)
√

1 + 2ρ1 ≤
√

1− 2ρ1. (7)

These intervals typically contain both positive and negative values for α. Boundary

cases are ρ1 → −1
2 , in which case α is not restricted at all, and ρ1 = 0, in which case

−1 ≤ α ≤ 0. For a typical first order autocorrelation ρ1 = −0.3, we find the interval

−11
2 ≤ α ≤ 1

2 .

Two identifying restrictions are popular in the literature: the Beveridge-Nelson

(BN) normalization (ω2 = 0) and the Watson normalization (α = 0). The BN

normalization is always admissible. The value α = 0 is admissible with a negative first

order autocorrelation.6 Hasbrouck (1993) shows that the choice of normalization for

α may have an important effect on the variance of the idiosyncratic term (Var(ut)) in

empirical applications. In the UC model, we can write the variance of the idiosyncratic

term, using (2) and (6), as

Var(ut) = α2σ2 + ω2 = −γ1 − ασ2 (8)

The noise variance attains a lower bound when α is at its maximum value, which

corresponds to the BN normalization.

This completes the summary of Hasbrouck’s (1993) model. We now turn to a

multivariate generalization of his model.

6 Morley, Nelson and Zivot (2003) study the identification of α in a model with positive first
order autocorrelation, which is typical for macro-economic data. In that case, the range of admis-
sible α may not contain zero, and the Watson restriction is not feasible. But since the first order
autocorrelation for microstructure return data is almost always negative, the Watson restriction is
always feasible for typical microstructure data.
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2.2 Multivariate model

Let pt now be a vector of N prices for the same asset from different markets. The

multivariate model reads,

pt = ιp∗t + ut,

p∗t = p∗t−1 + rt, Var(rt) = σ2,

ut = αrt + et, Var(et) = Ω,

(9)

where α is an N -vector, ι is a vector of ones, and Ω a (N × N) matrix. Again,

Cov(ut, rt) = ασ2. As in the univariate model, the innovations in the efficient price

and the transitory term may be correlated. By construction, all price series share

the same random walk component and are therefore cointegrated. The price changes

(returns) in this model are written as

∆pt = ιrt + ∆ut = (ι + α)rt − αrt−1 + ∆et, (10)

which lead to the moment conditions

Γ0 = E[∆pt∆p′t] = σ2 ((ι + α)(ι + α)′ + αα′) + 2Ω (11a)

Γ1 = E[∆pt∆p′t−1] = −σ2α(ι + α)′ − Ω (11b)

All parameters in this model are (over)identified, except the vector α, which is only

identified up to a translation along the unit vector. First, the sum of lead, current

and lag covariances,

Γ′1 + Γ0 + Γ1 = σ2ιι′ (12)

(over-)identifies the variance of the efficient price innovation. Next consider the dif-

ference between lead and lag cross-covariances

Γ1 − Γ′1 = σ2 (ια′ − αι′) . (13)

From this, α can be identified up to a translation along ι. Finally, given values for σ2

and α, the noise covariance matrix Ω can be identified from equation (11a), or from

the sum of the lead and lag covariances

Γ1 + Γ′1 = −σ2 (αι′ + ια′ + 2αα′)− 2Ω (14)

The entire set of equivalent solutions is characterized by

α = α̃− wι, (15a)

Ω = Ω̃ + wσ2 ((1− w)ιι′ + ια̃′ + α̃ι′) , (15b)
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where w is an arbitrary scalar and α̃ and Ω̃ constitute an initial admissable solution.

Since Ω is a covariance matrix, it must be positive definite. Therefore not all values

for w are admissable, analogous to the univariate case. The range of alternative

equivalent combinations of α and Ω in the multivariate model is smaller than in the

univariate model. For each price series the univariate restrictions must hold for the

diagonal element ωii and they must hold jointly. In addition positive definiteness for

Ω is stronger than just positive diagonal elements.

Analogous to the univariate model the Beveridge-Nelson representation provides

an admissable solution (α̃, Ω̃). The BN representation is obtained from the reduced

form. The reduced form of the multivariate random walk plus noise model is the first

order vector moving average (VMA) process,

∆pt = εt − Cεt−1, Var(εt) = Σ, (16)

where cointegration requires that

C = I − ιθ′ (17)

for some vector θ. The BN representation of the reduced form is

pt = ιp̃t + (I − ιθ′)εt

p̃t = p̃t−1 + θ′εt.
(18)

Under the BN restriction, the innovations in the permanent component are equal to

an exact linear combination of the VMA innovations: rt = θ′εt. Since the variance of

the random walk component is uniquely identified, we have

σ2 = θ′Σθ (19)

To relate the other parameters in the UC to the reduced form parameters we write

Cov(∆pt, rt) = Σθ = σ2(ι + α), (20)

where the last equality follows from (10). This gives a particular choice for α, that

we shall call the BN value,

α̃ = Σθ/σ2 − ι. (21)

For the BN normalization the covariance matrix of et is semi-definite

Ω̃ = Σ− Σθθ′Σ
θ′Σθ

. (22)
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All other normalizations of α and Ω are obtained from (15a) and (15b). In the

appendix we show that for 0 < ι′θ < 2 only positive values for w are allowed. In that

case the BN value of α is the maximal value, as in the univariate case.

For a generalization of the Watson restriction we could assume that there is one

market whose idiosyncratic term is uncorrelated with the efficient price, i.e. by setting

one element αi = 0. The interpretation of the Watson restriction is that one market

is designated as the central market. In some applications there is a natural choice

for the central market. For example, when studying the relation between the NYSE

and regional markets in the US, the NYSE would be the central market. As another

example, in an application with cross-listed stocks, the home market is the candidate

central market. Setting some arbitrary αi = 0 could easily be inadmissable because

it will violate the condition that Ω must be positive definite. Admissability must

be checked on a case by case basis and will restrict the potential normalizations of

α. More generally one can assume that a linear combination of the different price

series is unrelated to the change in the efficient price, α′π = 0. Imposing the Watson

restriction αi = 0 on every market leads to N − 1 overidentifying restrictions, which

may be violated by the data.

In many applications microstructure theory does not suggest a Watson type nor-

malization. More natural is the assumption that Ω is diagonal. Under that assump-

tion the deviations from the efficient price, pit − p∗t , will only be correlated across

markets because of their joint dependence on the innovation in the efficient price rt.

Diagonality of Ω of course does not help identification in the univariate model. The

bivariate case (N = 2) is special, since the off-diagonal element ω21 can be set to

zero by a suitable choice of w in (15b) without imposing any further overidentifying

conditions. When N > 2, assuming Ω is diagonal does put testable restrictions on the

data. With the value of w fixed through a normalization on Ω, the vector α becomes

fully identified.

Diagonality of Ω is very different from diagonality of the reduced from covariance

matrix Σ. The latter is violated in any empirical application. With microstructure

data the typical covariances among price innovations are positive. In the UC these

positive covariances are modelled by their common dependence on the efficient price

using the coefficients β = ι + α. In the next section we analyse how the assumption

facilitates the interpretation of information shares.

8



3 Information shares

Information measures of price discovery summarize the relation between the change

in the efficient price and actual price changes. The most common measure is due to

Hasbrouck (1995), who defines information shares within a reduced form model. In

the simplest case with only first order dynamics, the VMA(1) model (16) from the

previous section can be written in the permanent-transitory decomposition form (18),

with rt = θ′ε. Hasbrouck (1995) proposes the variance decomposition

σ2 = Var(rt) = θ′Σθ =
N∑

i=1

N∑
j=1

θiθjσij (23)

to define information shares for each dealer. If the shocks εit would be mutually

uncorrelated the information shares

ki =
θ2

i σii

σ2
(24)

would measure the part of the variance of the innovation to the efficient price that is

due to the information in dealer i’s quotes. When the covariances σij are not equal

to zero, it is not clear how much of the covariance θiθjσij should be attributed to

dealers i and j. In empirical work the covariance terms are often large. For large N

the covariance terms could even dominate the contributions of the diagonal elements.

By varying the order of the variables in pt in alternative Cholesky decompositions of

Σ it is possible to obtain an upper and a lower bound.

In this section we suggest a modification of this definition, which allocates the

covariance terms in a particular way. Instead of the reduced form definition we define

the information shares directly within the structural unobserved components model.

Price innovations in the UC model are given by

vt = ιrt + ut = (ι + α)rt + et = βrt + et, (25)

and have covariance matrix

E[vtv
′
t] = Υ = σ2ββ′ + Ω. (26)

As in Hasbrouck (1995) we consider the relation between the innovation in the efficient

price and the shocks to individual prices,

rt = γ′vt + ηt, (27)
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where ηt is the part of the innovation in the efficient price that is unrelated to inno-

vations in prices. In the UC, ηt will generally have a positive variance, while in the

reduced form VMA, by construction, ηt = 0. The regression coefficients γ follow as

γ = Υ−1βσ2 (28)

Next, analogous to the Hasbrouck (1995) definition, consider a variance decomposition

of rt,

Var(rt) ≡ σ2 = γ′Υγ + σ2
η (29)

Because σ2
η is positive, not all variance can be attributed to innovations in observed

prices. The total fraction of the variance in rt explained by price innovations is

R2 = 1− σ2
η/σ

2 = γ′Υγ/σ2 = γ′β =
N∑

j=1

γjβj (30)

As information shares we propose

ISj = γjβj (31)

For an interpretation of this definition, recall that β is the regression coefficient of the

price innovations vt on the efficient price rt, while γ is the coefficient in the reverse

regression of rt on vt. The product of the elements of these vectors can be interpreted

as a partial R2, indicating how much of the variance of rt is explained by each element

of vt. These partial R2’s do not add up to one, because in the UC model some of the

variation in the efficient price is uncorrelated with the price innovations.

The information shares are not invariant with respect to the normalization of α and

Ω. Different choices for w will lead to different information shares. Without a credible

choice of w the definition still contains some arbitrary allocation of covariances. As

a plausible identification we consider the assumption that Ω is diagonal. In that case

the only source of covariance between elements of vt is through the common factor rt.

With Ω diagonal we can express the information shares as in the following theorem.

Theorem 1 Let information shares be defined by ISj = βjγj. Assume Ω diagonal

with positive diagonal elements ω2
j . Then

ISj =
β2

j /ω
2
j

1/σ2 +
∑

i β
2
i /ω

2
i

, (32)
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Proof: Use the matrix inversion lemma

Υ−1 = Ω−1 − σ2

1 + σ2(β′Ω−1β)
Ω−1ββΩ−1

to compute

γ = Υ−1βσ2 =
σ2

1 + σ2(β′Ω−1β)
Ω−1β,

and thus

βjγj =
σ2

1 + σ2(β′Ω−1β)
βj(Ω

−1β)j,

which can be rewritten in the form given in the theorem.

¤

Information shares therefore depend on the ratio βj/ωj. The less noise in market

j, the higher the information share. Similarly, the stronger the covariance between

prices in market j and the efficient price, the higher the information share.

Recall that βj = 1+αj. When a diagonal Ω is close to the Watson restriction with

some central market having αi = 0, we expect that less informative satellite markets

have αj < 0 and/or have a high ωj. In other words, informationally less efficient

markets will be characterised by slow and/or noisy price adjustment.

To see the relation between this definition of the information share and Has-

brouck’s, consider first the Beveridge-Nelson normalization. From (21) it follows that

β̃ = Σθ/σ2. This is also the maximum possible value for β, because the BN normal-

ization gives the highest possible value for α. By substituting the value of Ω̃ from

(22), we find that

Υ̃ = σ2β̃β̃′ + Ω̃ = Σ (33)

Likewise γ̃ = Υ̃−1β̃ = θ. Hence, under the BN identification rule the information

shares are

ĨSj = γ̃jβ̃j =

∑N
i=1 σijθiθj

σ2
(34)

By construction, these information shares add up to one. This is not surprising, since

the variance of the residual in (27), σ2
η, is zero in this case. These information shares

are identical to Hasbrouck’s (1995) definition if Σ is diagonal. In the generic case

where Σ is not diagonal, this information share distributes the covariances between

markets in a particular way.
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4 Higher order models

In practice, microstructure data show second order and sometimes even higher order

serial covariances. A natural way to model higher order dynamics is by adding lagged

noise terms et−j to the deviations from the efficient price.7 Looking at the simplest

case, the specification for the dealer behavior becomes

ut = αrt + et + Ψet−1, (35)

with Ψ an (N ×N) matrix. The moment conditions become

Γ0 = E[∆pt∆p′t] = σ2 ((ι + α)(ι + α)′ + αα′) + Ω + (Ψ− I)Ω(Ψ− I)′ + ΨΩΨ′,

Γ1 = E[∆pt∆p′t−1] = −σ2α(ι + α)′ + (Ψ− I)Ω−ΨΩ(Ψ− I)′, (36)

Γ2 = E[∆pt∆p′t−2] = −ΨΩ.

As this is the model we will use in the empirical part of the paper, we analyse

this specific case in a bit more detail. The additional parameter matrix Ψ is just

identified from the second order autocovariance matrix Γ2. The random walk variance

is still overidentified as in the first order case from the long-run covariance matrix∑2
j=−2 Γj = σ2ιι′. Identification of α is slightly more complicated than in the first

order model. Consider the following combination of moments

D(Γ) = Γ′1 − Γ1 + 2(Γ′2 − Γ2) = σ2(αι′ − ια′). (37)

This identifies α up to a translation along the unit vector. Like in the first order case,

the full set of equivalent solutions for α can be characterized by

α = α̃− wι, (38)

where w is an arbitrary scalar and α̃ is an initial admissible solution. As before,

not all values for w are allowed, however, since the implied value for Ω has to be

positive semidefinite. Given the other parameters the noise covariance matrix Ω can

be obtained from the moment equations, for example using

Γ′1 + Γ1 + 2(Γ′2 + Γ2) = −σ2 (αι′ + ια′ + 2αα′)− Ω−ΨΩΨ′

= −σ2 (αι′ + ια′ + 2αα′)− Ω− Γ2Ω
−1Γ′2

(39)

7 An alternative way to model higher order dynamics is by including lagged effects of the efficient
price in the transitory term. This imposes a particular structure on the serial correlation pattern,
which may be at odds with the data. We therefore do not pursue this idea further.
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Unlike the first order case (14), these moment equations are nonlinear in Ω due to

the presence of Ω−1. The identification rules for α of section 2 can also be applied

in this case. The Watson restriction (π′α = 0) and a diagonal Ω will lead to full

identification. The definition of the information share in equation (31) can then be

applied directly.

The relation with the reduced form in the higher order model is more complicated

than in the first order model. The reduced form of the second order model can be

written as a VMA(2) model

∆pt = εt + B1εt−1 + B2εt−2, (40)

with Var(ε) = Σ. Cointegration requires that the coefficient matrices add up to

C(1) ≡ I + B1 + B2 = ιθ′. (41)

Working out the moments gives

Γ0 = E[∆pt∆p′t] = Σ + B1ΣB1 + B2ΣB2,

Γ1 = E[∆pt∆p′t−1] = B1Σ + B2ΣB2, (42)

Γ2 = E[∆pt∆p′t−2] = B2Σ.

Substituting these values in the expression for D(Γ) and using the cointegration

restriction (41) gives

D(Γ) = (I −B2)Σθι′ − ιθ′Σ(I −B2) = σ2(αι′ − ια′) (43)

From this equality, the full set of admissible values for α can be written as

α = (I −B2)Σθ − (w + 1)ι. (44)

The expression for Ω is complicated, however, due to the presence of Ω−1 in (39).

Notice that in the first order case (B2 = 0), the value w = 0 corresponds to the

Beveridge-Nelson value (β = ι + α = Σθ).

Adding further lags Ψjet−j does not alter anything in the identification of α. With

more lags the model becomes increasingly more difficult to analyze, but α remains

easily connected to the asymmetry of the autocovariance structure. The result is

given in the form of a theorem.

13



Theorem 2 Let prices be generated by the unobserved components model (9) but with

dealer shocks

ut = αrt +
M∑

j=0

Ψjet−j, (45)

where E[etrs] = 0 for all t and s. Then

M+1∑

j=−(M+1)

Γj = σ2ιι′ (46)

and
M+1∑
j=1

j(Γ′j − Γj) = σ2(αι′ − ια′) (47)

Proof: The representation for the price change is

∆pt = (ι + α)rt − αrt−1 + Ψ0et +
M∑
i=1

(Ψi −Ψi−1)et−i −ΨMet−M−1 (48)

The identification of σ2 in (46) is a general result, which follows directly from sub-

stituting the moment equations. For the second result, we start by analyzing the

covariance structure of the series Ψ0et +
∑M

j=1(Ψj − Ψj−1)et−j − ΨMet−M−1. The

auto-covariances are

Γ̃M+1 = −ΨMΨ′
0

Γ̃M = −
M∑

i=M−1

ΨiΨ
′
i−M+1

Γ̃j = (Ψj −Ψj−1)Ψ
′
0 +

M∑
i=j+1

(Ψi −Ψi−1)(Ψi−j −Ψi−j−1)
′ −ΨM(ΨM−j+1 −ΨM−j)

′

= −
M∑

i=j−1

ΨiΨ
′
i−j+1 + 2

M∑
i=j

ΨiΨ
′
i−j −

M∑
i=j+1

ΨiΨ
′
i−j−1 1 < j < M (49)

Summing the elements in (49) gives

M+1∑
j=1

jΓ̃j = −
M∑
i=0

ΨiΨ
′
i, (50)

since all terms of the form
∑M

i=j ΨiΨ
′
i−j cancel because the coefficients (−(j + 1) +

2j − (j − 1)) are always zero. Putting the efficient price changes (ι + α)rt − αrt−1

back in, the same sum of the moments of ∆pt follows as

M+1∑
j=1

jΓj = −σ2α(ι + α)′ −
M∑
i=0

ΨiΨ
′
i (51)
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Subtracting the transpose of this matrix all symmetric terms cancel and we are left

with the result
M+1∑
j=1

j(Γ′j − Γj) = σ2(αι′ − ια′) (52)

¤

From these moment equations, the parameters σ2 and the set of admissible values for

α are easily found.

5 Example

Hasbrouck (2002) considers a number of stylized examples to evaluate the economic

plausibility of alternative statistical price discovery measures. His example 4.2 is a

simple version of the Glosten and Harris (1988) model. There are two markets, but

all information is revealed in the first market. Prices are given by

p1t = p∗t + q1t,

p2t = p∗t−1 + q2t, (53)

p∗t = p∗t−1 + q1t,

where q1t and q2t both have unit variance. To formulate this model in our notation,

let rt = q1t, write

p2t = p∗t + p∗t−1 − p∗t + q2t = p∗t − rt + q2t,

let e2t = q2t, and set e1t = 0. With this notation the dealer behavior becomes
(

u1t

u2t

)
=

(
1

−1

)
rt +

(
e1t

e2t

)
, (54)

where the vector (e1t e2t) has covariance matrix

Ω =

(
0 0

0 1

)
(55)

From (54) it is immediate that σ2 = 1 and α = (1 − 1). This is consistent with the

moment conditions

α1 − α2 = E[∆p2t∆p1,t−1]− E[∆p2t∆p2,t−1] = 2 (56)

Given α, β follows as (2 0)′. Since α1 > 0, the example implies that β1 = 2 > 1. So

here we have a simple structural model that features a β > 1.
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The matrix Ω is diagonal in line with what we also think is the most plausible

identification. For the parameter γ we first compute the covariance matrix

Υ = σ2ββ′ + Ω =

(
2

0

)
(2 0) +

(
0 0

0 1

)
=

(
4 0

0 1

)
. (57)

Therefore

γ = Υ−1βσ2 =

(
1
4 0

0 1

)(
2

0

)
=

(
1
2

0

)
, (58)

and the information shares are
(

IS1

IS2

)
=

(
2

0

)
¯

(
1
2

0

)
=

(
1

0

)
, (59)

exactly as intended by the example. Market 1 contains all the information and the

information share IS1 reflects this.

This should be a good point to leave the example, were it not that α is not

uniquely identified from the data. Observationally equivalent representations arise

by translating α along the unit vector, and doing a compensating transformation on

the errors et. The set of equivalent models in this example is

(
u1t

u2t

)
=

(
1− w

−1− w

)
rt +

(
e1t

e2t

)
, (60)

with covariance matrix

E[ete
′
t] = Ω =

(
3w − w2 w − w2

w − w2 1− w − w2

)
(61)

Hasbrouck’s structural representation obtains for w = 0. Alternative representations

are admissible if Ω is positive semi-definite. With some algebra it follows that this

restricts w to

0 ≤ w ≤ 3/5. (62)

Table 1 reports the implications of three representations corresponding to 3 differ-

ent values of w. Results for the Hasbrouck identification (w = 0) have been discussed

before. For the other observationally equivalent models the noise covariance matrix

Ω is not diagonal.8 The relation between w and the information shares is far from

8 According to (61) the off-diagonal element of Ω will be zero of w = 0 or w = 1, but the latter
is outside the admissable range in (62).
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linear.9 For most values of w, like w = 0.25 in the table, market 1 remains dominant.

The identification problem can, however, lead to a completely different interpretation

as shown in the last rows (w = 3/5). In this case the market specific shocks are not

idiosyncratic at all, but perfectly correlated. Under these conditions the partial R2’s

ISi = βiγi of course don’t make any sense. We don’t advocate the use of information

shares if it is believed that Ω can be so far from diagonality. A credible identification

is required, as otherwise observationally equivalent models might produce radically

opposing results.

6 Empirical Application

To illustrate the various models we consider a set of Nasdaq dealer quotes. For

the five most active dealers for Intel we considered midquotes for the six month

period February-July 1999 containing 123 trading days. The five top dealers are

the two ECN’s Island (ISLD) and Instinet (INCA) and the three wholesale deal-

ers Spear, Leeds & Kellogg Capital (SLKC), Mayer and Schweitzer (MASH), and

Knight/Trimark Securities (NITE). Quotes are sampled at two minutes intervals.

Since Intel is a liquid stock, there are hardly any missing values at this sampling

frequency.10 The total number of observations for all series is 24,108.

The purpose of the application is to compare the alternative specifications. From

the example we can get an impression whether a UC model violates typical moments

in high frequency quote data and give rise to misleading implications about the in-

formation contents of quotes or the interactions among dealers.

Results depend on the sample autocovariance matrices of the quotes changes. All

sample covariances are estimated omitting the overnight returns. The contemporane-

ous covariance matrix and the first two lags are reported in table 2. Contemporaneous

correlations among the quotes changes is only around 0.4. Since cointegration im-

plies that the long-run correlation must be equal to one, enough dynamic structure

remains despite the relatively low two minutes sampling frequency. All first order

autocorrelations are negative. Most first order autocorrelations are around -0.20, ex-

9 With straightforward algebra the exact formula is found as IS1 = (4− 8w + 3w2)/(4− 5w)
10 At higher frequencies we do not observe quote updates for the less active dealers in many time

periods. Various ways to deal with these missings have been suggested, see for example Harris,
McInish, Shoesmith and Wood (1995) and DeJong, Mahieu and Schotman (1998). For clarity in
this empirical illustration of the parameterization issues, we decided to keep the econometrics as
simple as possible and work with data at the two-minutes frequency.
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cept for INCA, where it is only -0.10. Since the INCA quotes are much closer to

a random walk than the others, we should expect that most of the price discovery

will go through INCA. Second order covariances are negligible, except for SLKC and

NITE.

The variance of the random walk component can be estimated from the long run

covariance matrix

Γ̄ = Γ0 +
L∑

i=1

(Γi + Γ′i) = σ2ιι′ (63)

It is clear from table 2 that with L = 2 not all elements in Γ̄ are the same, nor that all

correlations are equal to one. For the three wholesale dealers, and especially SLKC,

the diagonal elements are still larger than for the two ECN’s. Given the large number

of observations, the differences are significant. Further lags must add some negative

autocorrelations for the three dealers. We did not obtain full equality of all elements

of Γ̄ by adding a small number of lags. On the other hand, a few more lags hardly

affects the estimate of the random walk variance σ2. We therefore estimate all models

with a maximum of second order lags, with cointegration as a maintained hypothesis.

Applying GMM to estimate σ2 from the ten moments in Γ̄ gives σ̂2 = 2.54 with a

standard error of 0.06.

Implications for α can be obtained from the moment matrix

D(Γ) = Γ′1 − Γ1 + 2(Γ′2 − Γ2) = σ2(αι′ − ια′) (64)

Elements of D(Γ) scaled by σ2 are reported in the last panel of table 2. In the table all

columns of D(Γ) are in deviation of the first element, assuming that αISLD = 0. With

this normalisation all columns should be equal and show estimates of the other αi’s.

The sample moments in the table indeed exhibit a structure with almost identical

columns. The magnitudes are the same in all columns. The α of ISLD is the biggest

in all columns, while those of SLKC and NITE are the two smallest. The α’s of INCA

and MASH are about the same and close to ISLD.

6.1 Vector Error Correction Model

A VECM is the most common model for estimating information shares. We estimated

the model with second order dynamics,

∆pt = c + Ast−1 + D∆pt−1 + εt, (65)
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where st is the vector of differences between the midquote of ISLD and each of the

other four dealers, A a (5× 4) matrix of error correction parameters, and D a (5× 5)

matrix. The most salient features of the VECM are reported in table 3.

The estimates of the information shares confirm the results of Huang (2002) that

the ECN’s dominate the price discovery on Nasdaq. Individual information shares

of either ECN’s or regular dealers are, however, in extremely wide intervals. For

example, the lower and upper bound for ISLD are 3% and 70% respectively. The

wide intervals are caused by the strong contemporaneous correlations of the errors.

The errors of ISLD have a correlation of 0.70 with INCA, the other ECN.11

6.2 Reduced Form Vector Moving Average

The reduced form VMA with second order dynamics is

∆pt = c + εt + (ιθ′ − I −B)εt−1 + Bεt−2 (66)

The 45 parameters in θ, Σ and B are estimated by GMM using the 65 moment

conditions for Γ0, Γ1 and Γ2. Table 4 shows estimation results.12 Hansen’s J-statistic

rejects the 20 overidentifiying moment conditions that result from the cointegration

restriction C(1) = ιθ′. The empirical violation of this restriction in the model with

second order lags was already evident in table 2. Although the VECM and VMA are

not nested, it seems that the VMA fits the data better: all diagonal elements of Σ

and also the determinant are smaller for the VMA.

Implications for the information shares are similar to the VECM results. Both

minimum, maximum, and θ are close to the VECM estimates. The high information

share of Instinet (INCA) is mainly caused by its low residual variance.

6.3 Unobserved Components

By reparameterising the VMA we obtain alternative observationally equivalent unob-

served components representations with second order dynamics as in (35). In table 5

we report results for two of these equivalent models. The first is a model in ”Wat-

son” format (
∑

i αi = 0). In the second model we have set w so that the maximum

11 The wide intervals for the information shares are not an artefact of the sampling frequency:
Huang (2002) finds similar wide intervals for Intel at the one minute frequency. Huang (2002) uses
slightly different data though, since he aggregates individual dealers into categories.

12 The VMA representation in the table uses the invertible solution for the moment equations with
all characteristic roots inside the unit circle except for the four unit roots imposed by cointegration.
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absolute correlation between the dealer noise terms eit is minimal. The latter model

is the representation of the UC for which the noise covariance matrix is closest to

diagonality. In addition, we present results for the overidentified model where diag-

onality of Ω is imposed. Since the first two models are observationally equivalent to

the reduced form VMA, they have the same GMM J-statistic13

The implications are consistent with both VECM and VMA. The information

shares from the structural model are all within the minimum/maximum range of

the reduced form models. The two ECN’s still dominate with the information share

of INCA almost double that of ISLD. As in the VECM and VMA, NITE is the

dealer that contributes least to the price discovery process. It is the only dealer

with a significantly different αi. For the ”Watson” and ”approximately diagonal”

representations we cannot reject the hypothesis that the differences αi − αNITE are

all the same using the GMM test based on the difference of the J-statistic of restricted

and unrestricted models.

Diagonality appears a good modeling assumption. Considering the large sample

size, the restriction is only marginally rejected against the VMA (and its equivalent

UC representations). It seems surprising that diagonality provides such a good fit to

the data, since the correlation between the shocks of ISLD and INCA was -0.47 in

the ”Watson” model. Note, however, that shifting α in the direction of ι induces a

compensating change in the structure of Ω. The results in panel B show that we can

shift α such that Ω becomes almost diagonal with the maximum absolute correlation

only 0.14.

Assuming a diagonal Ω is a structural modeling assumption about the behavior

of dealers. The results for the ”diagonal” model differ from the others mostly with

regard to SLKC. In the diagonal model it has the highest α of all dealers. That is

a somewhat surprising result, since from the matrix D(Γ) in table 2 we have seen

that the raw covariances implied a low α relative to ISLD. The explanation is that

the GMM weighting function also puts weight on fitting the total variance in Γ0, for

which it needs a much higher value of α. In the parsimoneous diagonal model there

are not enough other parameters to ease the tension between fitting the asymetry in

the lagged covariances between SLKC and other dealers and fitting the variance of

SLKC quote updates.

Despite various possibilities for a more detailed modelling of these quote series,

13 To compare the various specifications we have used the same GMM weighting matrix for all
specifications, obtained from estimating the VMA.

20



the main results seem robust across specifications. Instinet (INCA) is the most in-

formative source for price discovery, followed by the other network Island (ISLD).

7 Conclusion

In this paper we proposed an Unobserved Components model for price discovery in

fragmented markets. The model decomposes the observed prices in an underlying

common efficient price and market-specific transitory components. We show how this

model is related to the usual VAR or VECM models for price discovery, and argue

that the unobserved components model is a natural and parsimonious way of modeling

price discovery. The parameters in the unobserved components model have natural

interpretations as the variance of the efficient price, variances and covariances of the

transitory terms, and correlations between transitory terms and the efficient price.

Because of this structure, it is easy to impose economically interesting or plausible

restrictions on the model, for example diagonality of the transitory term covariance

matrix. Moreover, the dynamic structure (lag length) of the model can be easily

adapted to the serial correlation pattern observed in the data.

We also propose a new measure for the contribution to price discovery based on a

permanent/ transitory decomposition of the error terms instead of the usual Cholesky

decomposition. This measure is based on the covariance between the transitory com-

ponents and the efficient price and can also be applied in the context of the usual

VECM models.

Our empirical example using Nasdaq quotes illustrates the approach. We conclude

that the key parameters of interest can be estimated from a parsimonious unobserved

components model. These parsimonious models could prove useful for applications

on smaller data sets, for example around specific events as corporate announcements.

Appendix A Maximum α

In this appendix we show that the BN normalization of α is the maximum possible

value in the random walk plus noise UC model. Substituting the BN expressions (21)

and (22) in the solution set for Ω we find

Ω = Σ− Σθθ′Σ/σ2 + w(ιθ′Σ + Σθι′)− w(w + 1)σ2ιι′ (A1)
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We now show that this implies that only positive values for w are allowed. First, pre-

and post-multiply the expression for Ω by θ and use θ′Σθ = σ2 to obtain

θ′Ωθ = 2wσ2Θ− w(w + 1)σ2Θ2, (A2)

where Θ = ι′θ is the sum of elements of θ. The right hand side of this equation is a

quadratic function of w with roots w1 = 0 and

w2 =
2

Θ
− 1 (A3)

As long as 0 < Θ < 2, w2 is positive and θ′Ωθ is positive for values 0 < w < w2.

Negative values for w are not allowed, like too high positive values (too low values

of α). The condition 0 < Θ < 2 seems plausible. Individual elements of θ will likely

be positive if innovations to prices are positively correlated with an innovation in

the efficient price. Furthermore, consider the time series process for qt = Θ−1θ′pt, a

weighted average of the prices with positive weights,

∆qt = Θ−1θ′εt −Θ−1θ′(I − ιθ′)εt−1, (A4)

which can be written as

∆qt = et − (1−Θ)et−1, (A5)

with et = Θ−1θ′εt. An MA coefficient 1 − Θ between 0 and 1 seems reasonable for

stationary microstructure data with negative first order serial correlation. If Θ = 1,

then qt is a weighted average of individual prices which follows a random walk, equal

to the efficient price p∗t . In the empirical applications we always find that 0 < Θ < 1,

and usually Θ close to one.
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Table 1: Observationally equivalent structural models

The table reports alternative observationally equivalent parameter
configurations of the model

pt = p∗t + ut

ut = αrt + et

p∗t = p∗t−1 + rt,

related to the stylized example in section 5.

w α Ω β γ IS

0 1 0 0 2 1
2 1

-1 0 1 0 0 0

0.25 0.75 0.688 0.188 1.75 0.456 0.799

-1.25 0.188 0.813 -0.25 -0.155 0.039

0.60 0.40 1.440 0.240 1.40 0.200 0.280

-1.60 0.240 0.040 -0.60 -1.200 0.720
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Table 2: Data (Auto-)Covariances

The table reports the sample covariances (correlations) for the time series
of quote changes of the five most active dealers in Intel in the period
February-July 1999. The entry on row i and column j for Γ` refers to
the covariance E[∆pit∆pj,t−`]. The long-run covariance matrix is defined
as Γ̄ = Γ0 +

∑2
i=1(Γi + Γ′i). The dealer information matrix is defined as

D(Γ) =
∑2

i=1 i(Γ′i − Γi)/σ2. Columns in this matrix are shown in deviation
of the first element, so that the row corresponding to dealer ISLD consists
of zeros by construction. The scaling factor σ2 is a GMM estimate from Γ̄.
Dealer acronyms are ISLD (Island), INCA (Instinet), SLKC (Spear, Leeds &
Kellogg Capital), MASH (Mayer and Schweitzer) and NITE (Knight/Trimark
Securities).

Dealer ISLD INCA SLKC MASH NITE

Lag 0 ISLD 5.37 0.54 0.38 0.40 0.28
(Γ0) INCA 2.36 3.50 0.50 0.48 0.37

SLKC 2.37 2.49 7.08 0.36 0.29
MASH 2.51 2.41 2.59 7.24 0.27
NITE 1.84 1.95 2.21 2.07 7.98

Lag 1 ISLD -1.31 0.08 0.02 0.02 0.01
(Γ1) INCA 0.22 -0.36 0.12 0.13 0.11

SLKC 0.64 0.48 -1.21 0.42 0.29
MASH 0.09 0.07 0.04 -2.06 -0.13
NITE 0.52 0.41 0.31 0.44 -1.75

Lag 2 ISLD -0.03 0.05 0.08 -0.01 0.01
(Γ2) INCA 0.02 -0.04 -0.03 0.02 -0.05

SLKC -0.11 -0.11 -0.44 -0.14 -0.14
MASH 0.04 0.02 0.02 -0.09 0.12
NITE 0.00 0.02 -0.02 -0.02 -0.58

Long run ISLD 2.70 1.01 0.94 0.94 0.80
(Γ̄) INCA 2.73 2.71 0.94 0.94 0.81

SLKC 2.99 2.95 3.79 0.87 0.75
MASH 2.64 2.65 2.90 2.93 0.79
NITE 2.39 2.44 2.65 2.48 3.32

Information ISLD 0.00 0.00 0.00 0.00 0.00
asymmetry INCA -0.04 -0.04 -0.06 -0.06 -0.05
D(Γ) SLKC -0.17 -0.16 -0.17 -0.15 -0.14

MASH -0.05 -0.03 -0.07 -0.05 -0.03
NITE -0.20 -0.19 -0.23 -0.21 -0.20

σ2 2.54
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Table 3: Vector Error Correction

The table reports results obtained from the vector error correction model

∆pt = c + Ast−1 + D∆pt−1 + εt

with E[εtε
′
t] = Σ. The vector st contains the difference between the quotes of ISLD and

each of the other four dealers. Parameters are estimated by OLS. The table reports
estimates of the long-run impact matrix of the VECM,

C(1) = ιθ′.

The ”Info shares” are the minimum and maximum information shares (percentage) for
each of the dealers, estimated using the methodology of Hasbrouck (1995). Residual
correlations are in italics. The last entry in the table is the variance of the random
walk component, σ2 = θ′Σθ.

residual covariances (correlations) Info shares

Dealer θ ISLD INCA SLKC MASH NITE min max

ISLD 0.21 4.38 0.70 0.52 0.55 0.37 0.03 0.70
INCA 0.53 2.66 3.28 0.61 0.61 0.44 0.12 0.91
SLKC 0.10 2.64 2.66 5.82 0.47 0.31 0.01 0.52
MASH 0.09 2.71 2.60 2.67 5.55 0.35 0.01 0.51
NITE 0.04 2.01 2.04 2.12 2.15 6.61 0.01 0.26

σ2 = 2.80
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Table 4: Vector Moving Average

The table reports results obtained from the vector moving average model

∆pt = B2εt−2 + B1εt−1 + εt

with E[εtε
′
t] = Σ and under the cointegration restriction

C(1) = I + B1 + B2 = ιθ′.

Parameters are estimated by GMM using the moment conditions for Γ0, Γ1 and Γ2.
The ”Info shares” are the minimum and maximum information shares for each of
the dealers. Residual correlations are in italics. The last part of the table shows the
variance of the random walk component, σ2 = θ′Σθ, and the criterion value of the
GMM estimator known as Hansen’s J-statistic.

residual covariances (correlations) Info shares

Dealer θ ISLD INCA SLKC MASH NITE min max

ISLD 0.25 4.31 0.71 0.55 0.59 0.46 0.07 0.75
INCA 0.49 2.66 3.23 0.63 0.64 0.53 0.14 0.90
SLKC 0.02 2.57 2.56 5.04 0.51 0.44 0.05 0.47
MASH 0.10 2.79 2.66 2.64 5.29 0.42 0.05 0.56
NITE 0.08 2.25 2.25 2.31 2.25 5.54 0.05 0.39

σ2 = 2.64 J(20) = 103.21
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Table 5: Unobserved Components Model

The table reports results for the unobserved components model

pt = ιp∗t + ut,

p∗t = p∗t−1 + rt,

ut = αrt + Ψet−1 + et.

Panels A and B are reparameterizations of the VMA in Table 4. Panel A is the
”Watson” representation with

∑
i αi = 0. Panel B reports the representation with the

lowest maximum correlation in Ω = E[ete
′
t]. In panel C diagonality of Ω is imposed.

Entries report GMM estimates for σ2, α, Ω and the GMM criterion function. The IS
column gives the information shares as defined in equation (31). R2 is the sum of the
individual information shares, and equals the fraction of variance of the efficient price
innovation explained by the observed prices.

A) ”Watson” representation:
∑

αi = 0

Error covariances Ω (correlations)

Dealer α ISLD INCA SLKC MASH NITE IS

ISLD 0.074 1.160 -0.47 -0.06 -0.13 -0.16 0.262
INCA 0.027 -0.320 0.400 -0.05 -0.20 -0.17 0.490
SLKC -0.008 -0.086 -0.049 2.088 0.05 0.03 0.049
MASH 0.024 -0.221 -0.191 0.115 2.401 -0.07 0.099
NITE -0.116 -0.318 -0.194 0.073 -0.208 3.431 0.065

R2 = 0.965 σ2 = 2.64 J(20) = 103.21

B) Approximately diagonal Ω

Error covariances Ω (correlations)

Dealer α ISLD INCA SLKC MASH NITE IS

ISLD 0.003 1.363 -0.14 0.04 -0.01 -0.07 0.251
INCA -0.044 -0.130 0.589 0.14 -0.01 -0.02 0.461
SLKC -0.079 0.074 0.185 2.782 0.10 0.09 0.030
MASH -0.047 -0.027 -0.011 0.260 2.587 -0.02 0.096
NITE -0.187 -0.155 -0.030 0.281 -0.055 3.568 0.061

R2 = 0.899 σ2 = 2.64 J(20) = 103.21

C) Diagonal covariance matrix

Error covariances Ω (correlations)

Dealer α ISLD INCA SLKC MASH NITE IS

ISLD 0.000 1.517 0.187
INCA -0.008 0.626 0.446
SLKC 0.087 2.166 0.155
MASH -0.032 2.489 0.123
NITE -0.144 3.591 0.058

R2 = 0.967 σ2 = 2.54 J(29) = 162.03
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